General Information of Drug Off-Target (DOT) (ID: OTV7ZA9O)

DOT Name Glutamate receptor ionotropic, NMDA 2C (GRIN2C)
Synonyms GluN2C; Glutamate receptor subunit epsilon-3; N-methyl D-aspartate receptor subtype 2C; NMDAR2C; NR2C
Gene Name GRIN2C
UniProt ID
NMDE3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8E92; 8E93; 8E94; 8E97; 8E98; 8E99
Pfam ID
PF01094 ; PF00060 ; PF10613 ; PF10565 ; PF00497
Sequence
MGGALGPALLLTSLFGAWAGLGPGQGEQGMTVAVVFSSSGPPQAQFRARLTPQSFLDLPL
EIQPLTVGVNTTNPSSLLTQICGLLGAAHVHGIVFEDNVDTEAVAQILDFISSQTHVPIL
SISGGSAVVLTPKEPGSAFLQLGVSLEQQLQVLFKVLEEYDWSAFAVITSLHPGHALFLE
GVRAVADASHVSWRLLDVVTLELGPGGPRARTQRLLRQLDAPVFVAYCSREEAEVLFAEA
AQAGLVGPGHVWLVPNLALGSTDAPPATFPVGLISVVTESWRLSLRQKVRDGVAILALGA
HSYWRQHGTLPAPAGDCRVHPGPVSPAREAFYRHLLNVTWEGRDFSFSPGGYLVQPTMVV
IALNRHRLWEMVGRWEHGVLYMKYPVWPRYSASLQPVVDSRHLTVATLEERPFVIVESPD
PGTGGCVPNTVPCRRQSNHTFSSGDVAPYTKLCCKGFCIDILKKLARVVKFSYDLYLVTN
GKHGKRVRGVWNGMIGEVYYKRADMAIGSLTINEERSEIVDFSVPFVETGISVMVARSNG
TVSPSAFLEPYSPAVWVMMFVMCLTVVAITVFMFEYFSPVSYNQNLTRGKKSGGPAFTIG
KSVWLLWALVFNNSVPIENPRGTTSKIMVLVWAFFAVIFLASYTANLAAFMIQEQYIDTV
SGLSDKKFQRPQDQYPPFRFGTVPNGSTERNIRSNYRDMHTHMVKFNQRSVEDALTSLKM
GKLDAFIYDAAVLNYMAGKDEGCKLVTIGSGKVFATTGYGIAMQKDSHWKRAIDLALLQF
LGDGETQKLETVWLSGICQNEKNEVMSSKLDIDNMAGVFYMLLVAMGLALLVFAWEHLVY
WKLRHSVPNSSQLDFLLAFSRGIYSCFSGVQSLASPPRQASPDLTASSAQASVLKMLQAA
RDMVTTAGVSSSLDRATRTIENWGGGRRAPPPSPCPTPRSGPSPCLPTPDPPPEPSPTGW
GPPDGGRAALVRRAPQPPGRPPTPGPPLSDVSRVSRRPAWEARWPVRTGHCGRHLSASER
PLSPARCHYSSFPRADRSGRPFLPLFPELEDLPLLGPEQLARREALLHAAWARGSRPRHA
SLPSSVAEAFARPSSLPAGCTGPACARPDGHSACRRLAQAQSMCLPIYREACQEGEQAGA
PAWQHRQHVCLHAHAHLPFCWGAVCPHLPPCASHGSWLSGAWGPLGHRGRTLGLGTGYRD
SGGLDEISRVARGTQGFPGPCTWRRISSLESEV
Function
Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable). Plays a role in regulating the balance between excitatory and inhibitory activity of pyramidal neurons in the prefrontal cortex. Contributes to the slow phase of excitatory postsynaptic current, long-term synaptic potentiation, and learning.
Tissue Specificity
Mainly expressed in brain with predominant expression is in the cerebellum, also present in the hippocampus, amygdala, caudate nucleus, corpus callosum, subthalamic nuclei and thalamus. Detected in the heart, skeletal muscle and pancreas.
KEGG Pathway
Calcium sig.ling pathway (hsa04020 )
cAMP sig.ling pathway (hsa04024 )
Neuroactive ligand-receptor interaction (hsa04080 )
Circadian entrainment (hsa04713 )
Long-term potentiation (hsa04720 )
Glutamatergic sy.pse (hsa04724 )
Alzheimer disease (hsa05010 )
Amyotrophic lateral sclerosis (hsa05014 )
Spinocerebellar ataxia (hsa05017 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Cocaine addiction (hsa05030 )
Amphetamine addiction (hsa05031 )
Nicotine addiction (hsa05033 )
Alcoholism (hsa05034 )
Reactome Pathway
Neurexins and neuroligins (R-HSA-6794361 )
Synaptic adhesion-like molecules (R-HSA-8849932 )
Assembly and cell surface presentation of NMDA receptors (R-HSA-9609736 )
Negative regulation of NMDA receptor-mediated neuronal transmission (R-HSA-9617324 )
Long-term potentiation (R-HSA-9620244 )
Unblocking of NMDA receptors, glutamate binding and activation (R-HSA-438066 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [1]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [2]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [3]
Triclosan DMZUR4N Approved Triclosan increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [4]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [5]
Menadione DMSJDTY Approved Menadione increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [3]
Menthol DMG2KW7 Approved Menthol decreases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [6]
Melphalan DMOLNHF Approved Melphalan increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [7]
Thalidomide DM70BU5 Approved Thalidomide decreases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [8]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [11]
Cordycepin DM72Y01 Investigative Cordycepin increases the expression of Glutamate receptor ionotropic, NMDA 2C (GRIN2C). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
3 Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Cancer Res. 2002 Nov 1;62(21):6246-54.
4 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
5 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
6 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
7 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
8 Early Transcriptomic Changes upon Thalidomide Exposure Influence the Later Neuronal Development in Human Embryonic Stem Cell-Derived Spheres. Int J Mol Sci. 2020 Aug 3;21(15):5564. doi: 10.3390/ijms21155564.
9 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
10 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
11 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.
12 Cordycepin inhibits the proliferation and progression of NPC by targeting the MAPK/ERK and -catenin pathways. Oncol Lett. 2022 Jan;23(1):20. doi: 10.3892/ol.2021.13138. Epub 2021 Nov 16.