General Information of Drug Off-Target (DOT) (ID: OTVTBNSM)

DOT Name Glycerate kinase (GLYCTK)
Synonyms EC 2.7.1.31; HBeAg-binding protein 4
Gene Name GLYCTK
Related Disease
D-glyceric aciduria ( )
Primary hyperoxaluria type 2 ( )
Schizophrenia ( )
UniProt ID
GLCTK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.1.31
Pfam ID
PF13660 ; PF05161
Sequence
MAAALQVLPRLARAPLHPLLWRGSVARLASSMALAEQARQLFESAVGAVLPGPMLHRALS
LDPGGRQLKVRDRNFQLRQNLYLVGFGKAVLGMAAAAEELLGQHLVQGVISVPKGIRAAM
ERAGKQEMLLKPHSRVQVFEGAEDNLPDRDALRAALAIQQLAEGLTADDLLLVLISGGGS
ALLPAPIPPVTLEEKQTLTRLLAARGATIQELNTIRKALSQLKGGGLAQAAYPAQVVSLI
LSDVVGDPVEVIASGPTVASSHNVQDCLHILNRYGLRAALPRSVKTVLSRADSDPHGPHT
CGHVLNVIIGSNVLALAEAQRQAEALGYQAVVLSAAMQGDVKSMAQFYGLLAHVARTRLT
PSMAGASVEEDAQLHELAAELQIPDLQLEEALETMAWGRGPVCLLAGGEPTVQLQGSGRG
GRNQELALRVGAELRRWPLGPIDVLFLSGGTDGQDGPTEAAGAWVTPELASQAAAEGLDI
ATFLAHNDSHTFFCCLQGGAHLLHTGMTGTNVMDTHLLFLRPR
Tissue Specificity Widely expressed.
KEGG Pathway
Pentose phosphate pathway (hsa00030 )
Glycine, serine and threonine metabolism (hsa00260 )
Glycerolipid metabolism (hsa00561 )
Glyoxylate and dicarboxylate metabolism (hsa00630 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Reactome Pathway
Fructose catabolism (R-HSA-70350 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
D-glyceric aciduria DIS0DL0F Strong Autosomal recessive [1]
Primary hyperoxaluria type 2 DISGZT3W Strong Genetic Variation [2]
Schizophrenia DISSRV2N Strong Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Glycerate kinase (GLYCTK). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glycerate kinase (GLYCTK). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Glycerate kinase (GLYCTK). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Glycerate kinase (GLYCTK). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Glycerate kinase (GLYCTK). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Glycerate kinase (GLYCTK). [9]
Menadione DMSJDTY Approved Menadione affects the expression of Glycerate kinase (GLYCTK). [8]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Glycerate kinase (GLYCTK). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glycerate kinase (GLYCTK). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glycerate kinase (GLYCTK). [12]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Glycerate kinase (GLYCTK). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Glycerate kinase (GLYCTK). [10]
------------------------------------------------------------------------------------

References

1 D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK). Hum Mutat. 2010 Dec;31(12):1280-5. doi: 10.1002/humu.21375. Epub 2010 Nov 9.
2 d-Glyceric aciduria does not cause nonketotic hyperglycinemia: A historic co-occurrence.Mol Genet Metab. 2017 Jun;121(2):80-82. doi: 10.1016/j.ymgme.2017.04.009. Epub 2017 Apr 20.
3 Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity.Hum Brain Mapp. 2018 Nov;39(11):4183-4195. doi: 10.1002/hbm.24238. Epub 2018 Jun 26.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
10 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
11 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
12 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
13 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.