General Information of Drug Off-Target (DOT) (ID: OTYIG6TP)

DOT Name SERTA domain-containing protein 2 (SERTAD2)
Synonyms Transcriptional regulator interacting with the PHD-bromodomain 2; TRIP-Br2
Gene Name SERTAD2
Related Disease
Advanced cancer ( )
Hepatocellular carcinoma ( )
Neoplasm ( )
UniProt ID
SRTD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06031
Sequence
MLGKGGKRKFDEHEDGLEGKIVSPCDGPSKVSYTLQRQTIFNISLMKLYNHRPLTEPSLQ
KTVLINNMLRRIQEELKQEGSLRPMFTPSSQPTTEPSDSYREAPPAFSHLASPSSHPCDL
GSTTPLEACLTPASLLEDDDDTFCTSQAMQPTAPTKLSPPALLPEKDSFSSALDEIEELC
PTSTSTEAATAATDSVKGTSSEAGTQKLDGPQESRADDSKLMDSLPGNFEITTSTGFLTD
LTLDDILFADIDTSMYDFDPCTSSSGTASKMAPVSADDLLKTLAPYSSQPVTPSQPFKMD
LTELDHIMEVLVGS
Function
Acts at E2F-responsive promoters as coregulator to integrate signals provided by PHD- and/or bromodomain-containing transcription factors. May act as coactivator as well as corepressor of E2F1-TFDP1 and E2F4-TFDP1 complexes on E2F consensus binding sites, which would activate or inhibit E2F-target genes expression. Modulates fat storage by down-regulating the expression of key genes involved in adipocyte lipolysis, thermogenesis and oxidative metabolism.
Tissue Specificity Expressed in adipose tissue.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Altered Expression [1]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [1]
Neoplasm DISZKGEW Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of SERTA domain-containing protein 2 (SERTAD2). [2]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of SERTA domain-containing protein 2 (SERTAD2). [13]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of SERTA domain-containing protein 2 (SERTAD2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of SERTA domain-containing protein 2 (SERTAD2). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of SERTA domain-containing protein 2 (SERTAD2). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [8]
Selenium DM25CGV Approved Selenium decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of SERTA domain-containing protein 2 (SERTAD2). [10]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of SERTA domain-containing protein 2 (SERTAD2). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of SERTA domain-containing protein 2 (SERTAD2). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of SERTA domain-containing protein 2 (SERTAD2). [14]
Cycloheximide DMGDA3C Investigative Cycloheximide increases the expression of SERTA domain-containing protein 2 (SERTAD2). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 TRIP-Br2 promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumors.J Transl Med. 2009 Jan 20;7:8. doi: 10.1186/1479-5876-7-8.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005 Mar;128(5):636-44.
9 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
15 Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci. 2009 Nov;112(1):229-44.