General Information of Drug Off-Target (DOT) (ID: OTYXI0WO)

DOT Name Vang-like protein 1
Synonyms Loop-tail protein 2 homolog; LPP2; Strabismus 2; Van Gogh-like protein 1
Gene Name VANGL1
Related Disease
Neural tube defects, susceptibility to ( )
UniProt ID
VANG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06638
Sequence
MDTESTYSGYSYYSSHSKKSHRQGERTRERHKSPRNKDGRGSEKSVTIQPPTGEPLLGND
STRTEEVQDDNWGETTTAITGTSEHSISQEDIARISKDMEDSVGLDCKRYLGLTVASFLG
LLVFLTPIAFILLPPILWRDELEPCGTICEGLFISMAFKLLILLIGTWALFFRKRRADMP
RVFVFRALLLVLIFLFVVSYWLFYGVRILDSRDRNYQGIVQYAVSLVDALLFIHYLAIVL
LELRQLQPMFTLQVVRSTDGESRFYSLGHLSIQRAALVVLENYYKDFTIYNPNLLTASKF
RAAKHMAGLKVYNVDGPSNNATGQSRAMIAAAARRRDSSHNELYYEEAEHERRVKKRKAR
LVVAVEEAFIHIQRLQAEEQQKAPGEVMDPREAAQAIFPSMARALQKYLRITRQQNYHSM
ESILQHLAFCITNGMTPKAFLERYLSAGPTLQYDKDRWLSTQWRLVSDEAVTNGLRDGIV
FVLKCLDFSLVVNVKKIPFIILSEEFIDPKSHKFVLRLQSETSV
Tissue Specificity According to PubMed:11956595, ubiquitously expressed. According to PubMed:12011995, expressed specifically in testis and ovary.
KEGG Pathway
Wnt sig.ling pathway (hsa04310 )
Reactome Pathway
RHOB GTPase cycle (R-HSA-9013026 )
RHOC GTPase cycle (R-HSA-9013106 )
CDC42 GTPase cycle (R-HSA-9013148 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOD GTPase cycle (R-HSA-9013405 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOH GTPase cycle (R-HSA-9013407 )
RHOG GTPase cycle (R-HSA-9013408 )
RHOJ GTPase cycle (R-HSA-9013409 )
RHOU GTPase cycle (R-HSA-9013420 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOV GTPase cycle (R-HSA-9013424 )
RHOF GTPase cycle (R-HSA-9035034 )
RND3 GTPase cycle (R-HSA-9696264 )
RND2 GTPase cycle (R-HSA-9696270 )
RND1 GTPase cycle (R-HSA-9696273 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neural tube defects, susceptibility to DISHA84K Limited Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Vang-like protein 1. [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Vang-like protein 1. [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Vang-like protein 1. [14]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Vang-like protein 1. [14]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Vang-like protein 1. [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Vang-like protein 1. [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Vang-like protein 1. [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Vang-like protein 1. [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Vang-like protein 1. [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Vang-like protein 1. [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Vang-like protein 1. [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Vang-like protein 1. [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Vang-like protein 1. [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Vang-like protein 1. [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Vang-like protein 1. [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Vang-like protein 1. [16]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Vang-like protein 1. [17]
Glyphosate DM0AFY7 Investigative Glyphosate decreases the expression of Vang-like protein 1. [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Mutations in VANGL1 associated with neural-tube defects. N Engl J Med. 2007 Apr 5;356(14):1432-7. doi: 10.1056/NEJMoa060651.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
10 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
17 Integrated analysis of paraquat-induced microRNAs-mRNAs changes in human neural progenitor cells. Toxicol In Vitro. 2017 Oct;44:196-205. doi: 10.1016/j.tiv.2017.06.010. Epub 2017 Jun 12.
18 Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS One. 2019 Jul 11;14(7):e0219610. doi: 10.1371/journal.pone.0219610. eCollection 2019.