General Information of Drug Off-Target (DOT) (ID: OTZEPVGF)

DOT Name Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3)
Synonyms EC 1.3.3.6; Branched-chain acyl-CoA oxidase; BRCACox; Pristanoyl-CoA oxidase
Gene Name ACOX3
Related Disease
Prostate cancer ( )
Prostate carcinoma ( )
Prostate neoplasm ( )
UniProt ID
ACOX3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.3.3.6
Pfam ID
PF01756 ; PF02770
Sequence
MASTVEGGDTALLPEFPRGPLDAYRARASFSWKELALFTEGEGMLRFKKTIFSALENDPL
FARSPGADLSLEKYRELNFLRCKRIFEYDFLSVEDMFKSPLKVPALIQCLGMYDSSLAAK
YLLHSLVFGSAVYSSGSERHLTYIQKIFRMEIFGCFALTELSHGSNTKAIRTTAHYDPAT
EEFIIHSPDFEAAKFWVGNMGKTATHAVVFAKLCVPGDQCHGLHPFIVQIRDPKTLLPMP
GVMVGDIGKKLGQNGLDNGFAMFHKVRVPRQSLLNRMGDVTPEGTYVSPFKDVRQRFGAS
LGSLSSGRVSIVSLAILNLKLAVAIALRFSATRRQFGPTEEEEIPVLEYPMQQWRLLPYL
AAVYALDHFSKSLFLDLVELQRGLASGDRSARQAELGREIHALASASKPLASWTTQQGIQ
ECREACGGHGYLAMNRLGVLRDDNDPNCTYEGDNNILLQQTSNYLLGLLAHQVHDGACFR
SPLKSVDFLDAYPGILDQKFEVSSVADCLDSAVALAAYKWLVCYLLRETYQKLNQEKRSG
SSDFEARNKCQVSHGRPLALAFVELTVVQRFHEHVHQPSVPPSLRAVLGRLSALYALWSL
SRHAALLYRGGYFSGEQAGEVLESAVLALCSQLKDDAVALVDVIAPPDFVLDSPIGRADG
ELYKNLWGAVLQESKVLERASWWPEFSVNKPVIGSLKSKL
Function Oxidizes the CoA-esters of 2-methyl-branched fatty acids.
KEGG Pathway
Fatty acid degradation (hsa00071 )
beta-Alanine metabolism (hsa00410 )
alpha-Linolenic acid metabolism (hsa00592 )
Propanoate metabolism (hsa00640 )
Biosynthesis of unsaturated fatty acids (hsa01040 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Fatty acid metabolism (hsa01212 )
PPAR sig.ling pathway (hsa03320 )
cAMP sig.ling pathway (hsa04024 )
Peroxisome (hsa04146 )
Alcoholic liver disease (hsa04936 )
Reactome Pathway
Peroxisomal protein import (R-HSA-9033241 )
Beta-oxidation of pristanoyl-CoA (R-HSA-389887 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Prostate cancer DISF190Y Strong Altered Expression [1]
Prostate carcinoma DISMJPLE Strong Altered Expression [1]
Prostate neoplasm DISHDKGQ Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [9]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [7]
Testosterone DM7HUNW Approved Testosterone increases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [7]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Peroxisomal acyl-coenzyme A oxidase 3 (ACOX3). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer.Prostate. 2005 Jun 1;63(4):316-23. doi: 10.1002/pros.20177.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.