General Information of Disease (ID: DISMJPLE)

Disease Name Prostate carcinoma
Synonyms
cancer of prostate; cancer of the prostate; prostate cancer, NOS; prostate cancer; carcinoma of prostate gland; carcinoma of the prostate; prostate gland carcinoma; prostate carcinoma; carcinoma of prostate
Definition A carcinoma that arises from epithelial cells of the prostate gland.
Disease Hierarchy
DISF190Y: Prostate cancer
DISH9F1N: Carcinoma
DISMJPLE: Prostate carcinoma
Disease Identifiers
MONDO ID
MONDO_0005159
UMLS CUI
C0600139
MedGen ID
108657
SNOMED CT ID
254900004

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 2 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Metformin DM89QE1 Approved Small molecular drug [1]
Simvastatin DM30SGU Approved Small molecular drug [2]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 1109 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCC8 TTP835K Limited Genetic Variation [3]
ACLY TT0Z6Y2 Limited Altered Expression [4]
ADCYAP1R1 TT5OREU Limited Genetic Variation [5]
ADM TTV14YH Limited Altered Expression [6]
ADRA1D TT34BHT Limited Altered Expression [7]
AGK TTJETQC Limited Biomarker [8]
AKT2 TTH24WI Limited Altered Expression [9]
ANG TTURHFP Limited Altered Expression [10]
ANO1 TTOJI4S Limited Altered Expression [11]
ANXA5 TT2Z83I Limited Biomarker [12]
AREG TT76B3W Limited Altered Expression [13]
ARG2 TTV1AG6 Limited Altered Expression [14]
ATF3 TTCE793 Limited Biomarker [15]
AURKB TT9RTBL Limited Genetic Variation [16]
AZGP1 TTUPYLV Limited Biomarker [17]
BIRC3 TTAIWZN Limited Altered Expression [18]
CACNA2D2 TTU8P3M Limited Biomarker [19]
CACNA2D3 TTN7T29 Limited Genetic Variation [3]
CAD TT2YT1K Limited Biomarker [20]
CCK TT90CMU Limited Genetic Variation [21]
CCKBR TTVFO0U Limited Biomarker [22]
CCL5 TT9DWLC Limited Biomarker [23]
CCN1 TTPK79J Limited Altered Expression [24]
CCR4 TT7HQD0 Limited Biomarker [25]
CCR6 TTFDB30 Limited Genetic Variation [26]
CCR7 TT2GIDQ Limited Biomarker [27]
CD33 TTJVYO3 Limited Biomarker [28]
CD59 TTBGTEJ Limited Biomarker [29]
CDH2 TT1WS0T Limited Genetic Variation [30]
CDK5 TTL4Q97 Limited Biomarker [31]
CDK8 TTBJR4L Limited Altered Expression [32]
CEBPB TTUI35N Limited Biomarker [33]
CFD TT8D13I Limited Altered Expression [34]
CFLAR TTJZQYH Limited Genetic Variation [35]
CGA TTFC29G Limited Biomarker [36]
CHUK TT1F8OQ Limited Posttranslational Modification [37]
CLCN2 TT30NW6 Limited Biomarker [38]
CLIC1 TT8KZG6 Limited Biomarker [39]
CNTN1 TTPR8FK Limited Biomarker [40]
CREB1 TTH4AN3 Limited Biomarker [41]
CRY2 TTAO58M Limited Genetic Variation [42]
CRYZ TTP6UO8 Limited Genetic Variation [43]
CSNK2A2 TT7GR5W Limited Biomarker [44]
CXXC5 TTVS4C3 Limited Altered Expression [45]
CYP2B6 TTMH124 Limited Genetic Variation [46]
DAPK3 TTERVQN Limited Altered Expression [47]
DDR2 TTU98HG Limited Biomarker [48]
DKK1 TTE3RAC Limited Altered Expression [49]
DNM2 TTVRA5G Limited Genetic Variation [3]
DYRK1B TTYGQ8A Limited Biomarker [50]
E2F3 TTWIJYH Limited Altered Expression [51]
EIF4EBP1 TTKGEBL Limited Biomarker [52]
EML4 TT92GY4 Limited Biomarker [53]
EPHA1 TTLFZVU Limited Altered Expression [54]
EPHA5 TTV9KOD Limited Posttranslational Modification [55]
EPHA6 TTFAHWI Limited Biomarker [56]
EPOR TTAUX24 Limited Biomarker [57]
ESRRB TTKF0XS Limited Altered Expression [58]
F2RL3 TTD0652 Limited Biomarker [59]
F3 TT38MDJ Limited Altered Expression [60]
FANCA TTV5HJS Limited Genetic Variation [61]
FDPS TTIKWV4 Limited Biomarker [62]
FGF19 TTGCH11 Limited Biomarker [63]
FKBP4 TTHY0FT Limited Biomarker [64]
FLT1 TT1VAUK Limited Biomarker [65]
FOXP1 TT0MUCI Limited Biomarker [66]
FOXP3 TT1X3QF Limited Biomarker [67]
FTO TTFW3BT Limited Genetic Variation [68]
FUS TTKGYZ9 Limited Biomarker [69]
G3BP1 TTG0R8Z Limited Altered Expression [70]
GABRG3 TTEX6LM Limited Genetic Variation [3]
GAPDH TTUGSWA Limited Altered Expression [71]
GAS6 TT69QD2 Limited Biomarker [72]
GATA3 TT45KOB Limited Biomarker [73]
GHRHR TTG4R8V Limited Genetic Variation [74]
GHSR TTWDC17 Limited Biomarker [75]
GLIPR1 TTEQF1O Limited Altered Expression [76]
GNRHR TT8R70G Limited Biomarker [77]
GRK5 TTTCXO0 Limited Biomarker [78]
GSR TTEP6RV Limited Genetic Variation [3]
HAAO TTWON83 Limited Posttranslational Modification [79]
HBEGF TT15SL0 Limited Biomarker [80]
HCRTR1 TT60Q8D Limited Biomarker [81]
HCRTR2 TT9N02I Limited Biomarker [81]
HEXIM1 TTFOKAH Limited Altered Expression [82]
HGF TT4V2JM Limited Biomarker [83]
HNRNPA2B1 TT8UPW6 Limited Biomarker [84]
HPSE TTR7GJO Limited Biomarker [85]
HSD11B1 TTN7BL9 Limited Biomarker [86]
HSD17B1 TTIWB6L Limited Biomarker [87]
ID1 TTBXVDE Limited Altered Expression [88]
IDO1 TTZJYKH Limited Altered Expression [89]
IFNB1 TT4TZ8J Limited Biomarker [90]
IGFBP1 TTCJTWF Limited Genetic Variation [91]
IGFBP5 TTDWEA8 Limited Biomarker [92]
IL11RA TTZPLJS Limited Biomarker [93]
IL12A TTRTK6Y Limited Biomarker [94]
IL15 TTJFA35 Limited Biomarker [95]
IL15RA TTGN89I Limited Biomarker [96]
IL25 TTVMO5W Limited Biomarker [97]
IL4R TTDWHC3 Limited Biomarker [98]
ILK TT7ALZG Limited Altered Expression [99]
IMP3 TTEJA2R Limited Altered Expression [100]
INHBA TTVB30D Limited Biomarker [101]
INSR TTCBFJO Limited Altered Expression [102]
IRS2 TTF95B8 Limited Altered Expression [103]
ITCH TT5SEWD Limited Altered Expression [104]
ITGA4 TTJMF9P Limited Posttranslational Modification [105]
ITGB7 TTLT9XQ Limited Genetic Variation [106]
ITK TT3C80U Limited Biomarker [107]
ITPR2 TTK9OV3 Limited Biomarker [108]
KAT6B TTH4VJL Limited Altered Expression [109]
KCND3 TTPLQO0 Limited Genetic Variation [110]
KDM1A TTNR0UQ Limited Biomarker [111]
KDM4A TTZHPB8 Limited Biomarker [112]
LAMP2 TTULDG7 Limited Biomarker [113]
LAPTM4B TTEJQT0 Limited Biomarker [114]
LARP1 TTSN1YP Limited Biomarker [115]
LGALS1 TTO3NYT Limited Altered Expression [116]
LHCGR TT2O4W9 Limited Biomarker [117]
LIFR TTID542 Limited Biomarker [118]
LIMK1 TTWL9TY Limited Biomarker [119]
LYN TT1RWNJ Limited Biomarker [120]
M6PR TT95ICL Limited Biomarker [121]
MAGEA3 TTWSKHD Limited Biomarker [122]
MAP2K7 TT6QY3J Limited Altered Expression [123]
MAP3K11 TTETX6Q Limited Altered Expression [124]
MAP4 TT0VFPN Limited Biomarker [38]
MARCKS TTHRM39 Limited Altered Expression [125]
MARK2 TTAJ45Y Limited Altered Expression [126]
MAZ TT059DA Limited Altered Expression [127]
MC1R TT0MV2T Limited Genetic Variation [128]
MLH1 TTISG27 Limited Biomarker [129]
MRC2 TTYVR8M Limited Biomarker [130]
MTA1 TTO4HUS Limited Biomarker [131]
MTDH TTH6SA5 Limited Biomarker [132]
MTNR1A TT0WAIE Limited Altered Expression [133]
MTR TTUTO39 Limited Genetic Variation [134]
MVD TTE5J6X Limited Biomarker [135]
NAAA TTMN4HY Limited Biomarker [136]
NCOA3 TT124R0 Limited Biomarker [137]
NDUFA13 TTRU1NG Limited Biomarker [138]
NGF TTDN3LF Limited Biomarker [139]
NPPC TTRK0B9 Limited Biomarker [140]
NRG4 TTWAGKJ Limited Altered Expression [141]
NRP1 TTIPJCB Limited Altered Expression [142]
NTSR1 TTTUMEP Limited Altered Expression [143]
OLFM4 TTK1CX7 Limited Biomarker [144]
OPHN1 TTU7HRD Limited Biomarker [145]
P2RY2 TTOZHQC Limited Biomarker [146]
PAOX TTNQ760 Limited Biomarker [147]
PAWR TT3I4WV Limited Biomarker [59]
PCSK9 TTNIZ2B Limited Altered Expression [148]
PDE4A TTZ97H5 Limited Biomarker [149]
PDGFB TTQA6SX Limited Biomarker [150]
PGR TTUV8G9 Limited Biomarker [151]
PHB TT6U071 Limited Altered Expression [152]
PI4KA TTCUS9F Limited Biomarker [153]
PKM TT4LOT8 Limited Biomarker [154]
PLA2G1B TT9V5JH Limited Biomarker [155]
PLAT TTXAGYU Limited Altered Expression [156]
PLCG1 TT6T4JI Limited Altered Expression [157]
PLG TTP86E2 Limited Biomarker [158]
PLK1 TTH4IP0 Limited Biomarker [159]
PLK4 TTGPNZQ Limited Biomarker [160]
PML TTLH9NY Limited Biomarker [161]
POLA1 TTGPJ0U Limited Biomarker [162]
PPIA TTL2ADK Limited Biomarker [163]
PPP5C TTTW7FJ Limited Altered Expression [164]
PRDX4 TTPBL9I Limited Biomarker [165]
PRKCA TTFJ8Q1 Limited Biomarker [166]
PRKCB TTYPXQF Limited Biomarker [166]
PRKCE TT57MT2 Limited Biomarker [167]
PRKDC TTK3PY9 Limited Altered Expression [168]
PSIP1 TTH9LDP Limited Biomarker [169]
PTGER1 TTG1QMU Limited Altered Expression [170]
PTGER2 TT1ZAVI Limited Biomarker [171]
PTGER3 TTPNGDE Limited Altered Expression [172]
PTK7 TTXH2ZN Limited Biomarker [173]
PTN TTA9EJK Limited Altered Expression [174]
PTP4A1 TTA8GFO Limited Altered Expression [175]
PTPN7 TT2C1DT Limited Biomarker [176]
PTPRS TTCWXFA Limited Genetic Variation [3]
RAD51 TTC0G1L Limited Genetic Variation [177]
RARA TTW38KT Limited Biomarker [178]
RGMA TTURJV4 Limited Altered Expression [179]
RNF6 TT4S09X Limited Biomarker [180]
ROCK1 TTZN7RP Limited Altered Expression [181]
ROS1 TTSZ6Y3 Limited Biomarker [182]
RPGR TTHBDA9 Limited Genetic Variation [3]
RPS6KA1 TTIXKA4 Limited Biomarker [183]
RPS6KA2 TT0ZW9O Limited Biomarker [183]
RRM2 TT1S4LJ Limited Altered Expression [184]
S100A4 TTPR5SX Limited Biomarker [185]
S100A8 TT4AF6N Limited Altered Expression [186]
S1PR5 TTDZCKV Limited Biomarker [187]
SATB1 TTLFRIC Limited Altered Expression [188]
SCARB1 TTRE324 Limited Biomarker [86]
SCGB1A1 TTONPVW Limited Biomarker [189]
SDC1 TTYDSVG Limited Biomarker [190]
SENP1 TTW9HY5 Limited Altered Expression [191]
SEPTIN6 TTAGE7U Limited Altered Expression [192]
SGK1 TTTV8EJ Limited Altered Expression [193]
SIK2 TTCUGZR Limited Altered Expression [194]
SLCO2A1 TTKVTQO Limited Genetic Variation [3]
SORT1 TTRX9AV Limited Altered Expression [143]
SPHK1 TTOHFIY Limited Biomarker [195]
SPHK2 TTCN0M9 Limited Biomarker [196]
SQLE TTE14XG Limited Altered Expression [197]
SQSTM1 TTOT2RY Limited Biomarker [198]
SREBF1 TTER0UB Limited Biomarker [199]
SRPK2 TTCZEJ9 Limited Altered Expression [200]
SSTR3 TTJX3UE Limited Biomarker [201]
STAR TTEI40H Limited Altered Expression [202]
STC1 TTDLUER Limited Altered Expression [203]
STMN1 TT7W5OT Limited Biomarker [204]
TACSTD2 TTP2HE5 Limited Biomarker [205]
TAGLN TTDRZ9H Limited Altered Expression [206]
TBK1 TTMP03S Limited Biomarker [207]
TDGF1 TTN7HMG Limited Altered Expression [208]
TEK TT9VGXW Limited Biomarker [209]
TF TT8WXAV Limited Altered Expression [210]
TFF1 TTNOJIZ Limited Biomarker [211]
TGFA TTTLQFR Limited Biomarker [212]
TGFB2 TTI0KH6 Limited Biomarker [213]
TLR9 TTSHG0T Limited Altered Expression [214]
TMPRSS6 TTL9KE7 Limited Biomarker [215]
TNFRSF10B TTW20TU Limited Biomarker [216]
TOP1 TTGTQHC Limited Biomarker [217]
UCHL1 TTX9IFP Limited Biomarker [218]
VDAC1 TTAMKGB Limited Biomarker [219]
VEGFB TTPJQHE Limited Biomarker [220]
WWP2 TT6TU05 Limited Altered Expression [221]
XRCC5 TTCB9KW Limited Altered Expression [222]
ZEB2 TTT2WK4 Limited Biomarker [223]
AGTR1 TT8DBY3 Disputed Biomarker [224]
ATAD2 TT9A0HI Disputed Biomarker [225]
BUB1 TT78309 Disputed Biomarker [226]
CBS TTVZJ7G Disputed Altered Expression [227]
DGAT2 TTRHEQ4 Disputed Genetic Variation [228]
DUSP1 TTG8HIM Disputed Biomarker [176]
EPHA3 TTHS2LR Disputed Altered Expression [229]
EZR TTE47YC Disputed Biomarker [230]
FABP4 TTHWMFZ Disputed Biomarker [231]
FABP5 TTNT2S6 Disputed Altered Expression [232]
FCGR3A TTIFOC0 Disputed Genetic Variation [233]
IDH1 TTV2A1R Disputed Genetic Variation [234]
LPAR3 TTE2YJR Disputed Biomarker [235]
LTB4R2 TTVJX54 Disputed Biomarker [236]
MAP3K1 TTW8TJI Disputed Biomarker [237]
MUSK TT6SA0X Disputed Biomarker [238]
NPR1 TTM9IYA Disputed Altered Expression [239]
PKN1 TTSL41O Disputed Altered Expression [240]
PPARA TTJ584C Disputed Altered Expression [241]
PTPN6 TT369M5 Disputed Posttranslational Modification [242]
REG4 TTVZEHU Disputed Altered Expression [243]
RPS6KB1 TTG0U4H Disputed Biomarker [244]
SLC22A1 TTM5Q4V Disputed Altered Expression [245]
SMAD9 TTX8EBV Disputed Altered Expression [246]
ABCG1 TTMWDGU moderate Altered Expression [247]
AKT3 TTO6SGY moderate Altered Expression [248]
ALAD TTJHKYD moderate Biomarker [249]
ALCAM TT2AFT6 moderate Biomarker [250]
ALPI TTHYMUV moderate Biomarker [251]
AXL TTZPY6J moderate Biomarker [252]
BAZ2A TT2MV0R moderate Biomarker [253]
BCL2L1 TTRE6AX moderate Biomarker [254]
BMP1 TT0L58T moderate Biomarker [255]
BRIP1 TTZV7LJ moderate Genetic Variation [256]
BTK TTGM6VW moderate Biomarker [257]
CAPN2 TTG5QB7 moderate Genetic Variation [258]
CASP5 TTWR48J moderate Genetic Variation [259]
CCNA2 TTAMQ62 moderate Biomarker [260]
CCR1 TTC24WT moderate Biomarker [261]
CCR3 TTD3XFU moderate Biomarker [262]
CD38 TTPURFN moderate Biomarker [263]
CD3E TTZAT79 moderate Biomarker [264]
CD47 TT28S46 moderate Biomarker [251]
CDC37 TT5SOEU moderate Biomarker [265]
CDK1 TTH6V3D moderate Altered Expression [266]
CDK7 TTQYF7G moderate Biomarker [267]
CDKL1 TTBTI6P moderate Biomarker [268]
CRBN TTDKGTC moderate Altered Expression [269]
CX3CR1 TT2T98G moderate Altered Expression [270]
CXCR5 TTIW59R moderate Altered Expression [271]
DNASE1 TTYWGOJ moderate Biomarker [272]
DPEP1 TTYUENF moderate Biomarker [273]
DPP4 TTDIGC1 moderate Biomarker [274]
DUSP10 TTF3RJ0 moderate Biomarker [275]
EIF5A TTIVCNR moderate Altered Expression [276]
EPAS1 TTWPA54 moderate Biomarker [277]
EPHX2 TT7WVHI moderate Altered Expression [278]
ESRRA TTPNQAC moderate Biomarker [279]
ETS1 TTTGPSD moderate Altered Expression [280]
F2RL2 TTVSEBF moderate Biomarker [281]
FDFT1 TTFQEO5 moderate Biomarker [282]
FHIT TTMS54D moderate Genetic Variation [3]
FOXC2 TTLBAP1 moderate Biomarker [283]
FSCN1 TTTRS9B moderate Biomarker [284]
GABRE TTBY4OD moderate Altered Expression [285]
GDF2 TTAP4T1 moderate Biomarker [286]
GPNMB TT7315J moderate Biomarker [287]
GSK3A TTQWAU1 moderate Altered Expression [288]
HMGCR TTPADOQ moderate Biomarker [289]
HNF1A TT01M3K moderate Altered Expression [290]
HOXA13 TTN26OM moderate Altered Expression [291]
HSF1 TTN6STZ moderate Biomarker [292]
HTR1B TTK8CXU moderate Genetic Variation [293]
IAPP TTHN8EM moderate Biomarker [251]
ICA1 TTMX06B moderate Biomarker [294]
IGF2R TTPNE41 moderate Altered Expression [295]
ITGA5 TTHIZP9 moderate Biomarker [296]
ITGA6 TT165T3 moderate Altered Expression [297]
KDM4C TTV8CRH moderate Biomarker [298]
KISS1 TTU2O6T moderate Biomarker [299]
KLK14 TTDA81R moderate Biomarker [300]
KLK6 TTLPF4X moderate Genetic Variation [301]
KMT5A TTGC95K moderate Genetic Variation [302]
KRT19 TT3JF9E moderate Biomarker [303]
LANCL1 TTZW8NS moderate Biomarker [304]
LASP1 TTZJA87 moderate Altered Expression [305]
LATS2 TTML7FG moderate Altered Expression [306]
LILRB1 TTC0QRJ moderate Biomarker [307]
LMO2 TTFX379 moderate Altered Expression [308]
LPA TTU9LGY moderate Biomarker [309]
LPAR1 TTQ6S1K moderate Biomarker [169]
LTA4H TTXZEAJ moderate Genetic Variation [310]
MBTPS1 TTNSM2I moderate Biomarker [311]
MCM7 TT1RM3F moderate Biomarker [312]
MGAT1 TTYJRN5 moderate Biomarker [313]
MKI67 TTB4UNG moderate Altered Expression [314]
MTAP TTDBX7N moderate Biomarker [315]
NCF1 TTZ4JC3 moderate Altered Expression [316]
NLRP1 TTQX29T moderate Genetic Variation [317]
NME1 TTDY8JH moderate Genetic Variation [318]
NR4A1 TTMXE2Q moderate Altered Expression [319]
NUF2 TTIXBFP moderate Altered Expression [320]
OLR1 TTKSND3 moderate Biomarker [321]
OSM TTIVXSE moderate Biomarker [322]
OXER1 TT7WBSV moderate Altered Expression [323]
PARP2 TTQ4V96 moderate Biomarker [324]
PDE4D TTSKMI8 moderate Biomarker [325]
PLAC1 TTM18HX moderate Altered Expression [326]
PRDX5 TTLPJWH moderate Genetic Variation [327]
PRKAR2B TTW4Y2M moderate Altered Expression [328]
PSMB6 TT8EPLT moderate Biomarker [329]
PSMB9 TTOUSTQ moderate Biomarker [330]
PTGES2 TTWU04I moderate Genetic Variation [310]
PTP4A3 TT7YM8D moderate Biomarker [331]
PTPN1 TTELIN2 moderate Biomarker [332]
RACK1 TTJ10AL moderate Biomarker [333]
RAPGEF3 TTOE7I0 moderate Biomarker [334]
REN TTB2MXP moderate Biomarker [335]
RICTOR TT143WL moderate Biomarker [336]
RIPK1 TTVJHX8 moderate Biomarker [337]
RPSA TTLUW5B moderate Altered Expression [338]
RXFP1 TTMAHD1 moderate Biomarker [339]
SLC18A2 TTNZRI3 moderate Altered Expression [340]
SLC22A3 TTG2UMS moderate Biomarker [107]
SLC2A12 TTZO36H moderate Biomarker [341]
SLC39A6 TTZN1CF moderate Altered Expression [80]
SLCO2B1 TTDL3UZ moderate Altered Expression [342]
SMAD1 TT9GR53 moderate Biomarker [343]
SMAD7 TT0J32Z moderate Altered Expression [344]
SMYD3 TTKLJYX moderate Altered Expression [345]
SRPK1 TTU3WV6 moderate Altered Expression [346]
STAT1 TTN7R6K moderate Biomarker [347]
TCF7L2 TT80QAL moderate Genetic Variation [348]
TERF1 TT1Y6J2 moderate Altered Expression [349]
TMPRSS11D TTWHYC8 moderate Biomarker [350]
TNC TTUCPMY moderate Altered Expression [351]
TNFSF15 TTEST6I moderate Biomarker [352]
TPX2 TT0PHL4 moderate Biomarker [353]
TRIM59 TT613U4 moderate Biomarker [354]
TRPM4 TTJ2HKA moderate Biomarker [355]
TXNRD1 TTR7UJ3 moderate Altered Expression [356]
TXNRD3 TTDYFVB moderate Biomarker [357]
USP1 TTG9MT5 moderate Biomarker [358]
USP2 TTUEQ1W moderate Altered Expression [359]
VIPR1 TTCL30I moderate Altered Expression [360]
WDR5 TT7OFWB moderate Altered Expression [361]
WWP1 TTBWMKT moderate Biomarker [362]
ZNF217 TTY3BRA moderate Altered Expression [363]
ZWINT TTWY768 moderate Biomarker [364]
ABCA1 TTJW1GN Strong Biomarker [365]
ABCB1 TT3OT40 Strong Biomarker [366]
ABCC1 TTOI92F Strong Genetic Variation [367]
ABCC4 TTUEAFL Strong Biomarker [368]
ABCG2 TTIMJ02 Strong Genetic Variation [369]
ABCG5 TTKZ7WY Strong Altered Expression [370]
ACAT1 TTK3C21 Strong Biomarker [371]
ACKR3 TTRQJTC Strong Altered Expression [372]
ACO2 TTMTF2P Strong Biomarker [373]
ACR TTAHE2N Strong Biomarker [374]
ACVR1 TTJNBQA Strong Biomarker [286]
ACVR2A TTX2DRI Strong Altered Expression [375]
ACVRL1 TTGYPTC Strong Biomarker [376]
ADAM10 TTVXEGU Strong Biomarker [377]
ADAM17 TT6AZXG Strong Altered Expression [378]
ADAM8 TTQWYMD Strong Biomarker [379]
ADAM9 TTTYQNS Strong Altered Expression [380]
ADCYAP1 TTW4LYC Strong Altered Expression [5]
ADIPOQ TTXKA7D Strong Altered Expression [381]
ADRA1A TTNGILX Strong Altered Expression [372]
ADRA2B TTWM4TY Strong Altered Expression [372]
ADRB2 TTG8ZWP Strong Biomarker [382]
AGR2 TT9K86S Strong Altered Expression [383]
AGTR2 TTQVOEI Strong Biomarker [384]
AHR TT037IE Strong Altered Expression [385]
AIMP2 TTXWHGF Strong Altered Expression [386]
AKR1C3 TT5ZWB6 Strong Biomarker [387]
ALAS1 TTG1FXO Strong Biomarker [388]
ALKBH5 TTOHB1M Strong Biomarker [389]
ALOX12 TT12ABZ Strong Altered Expression [390]
ALOX15 TTN9T81 Strong Altered Expression [391]
ALOX5 TTSJ6Q4 Strong Biomarker [392]
ALPL TTMR5UV Strong Biomarker [393]
AMD1 TTBFROQ Strong Biomarker [394]
AMOT TTI48OS Strong Biomarker [395]
ANGPT1 TTWNQ1T Strong Altered Expression [396]
ANGPT2 TTKLQTJ Strong Biomarker [397]
ANGPTL4 TTWALY5 Strong Altered Expression [398]
ANO7 TT2X79I Strong Biomarker [399]
ANTXR2 TTOD34I Strong Biomarker [400]
ANXA1 TTUCK4B Strong Altered Expression [401]
ANXA10 TT0NL6U Strong Altered Expression [402]
ANXA2 TT4YANI Strong Biomarker [403]
AOX1 TT3MOS2 Strong Genetic Variation [404]
APEX1 TTHGL48 Strong Genetic Variation [405]
AQP1 TTSF1KH Strong Altered Expression [406]
AQP3 TTLDNMQ Strong Biomarker [407]
AQP7 TTNGCRK Strong Altered Expression [408]
AQP9 TTQEI32 Strong Altered Expression [408]
ARF1 TT70KXY Strong Altered Expression [409]
ARRB2 TT8SO2I Strong Altered Expression [410]
ARSB TTESQTG Strong Biomarker [411]
ASRGL1 TT4WT91 Strong Biomarker [412]
ATAT1 TTWUHQ1 Strong Genetic Variation [348]
ATF4 TTQCKWT Strong Biomarker [413]
ATG7 TTLVB9Z Strong Biomarker [414]
ATP7B TTOPO51 Strong Altered Expression [415]
ATR TT8ZYBQ Strong Biomarker [416]
ATXN2 TTPQJ7P Strong Genetic Variation [417]
AVPR2 TTK8R02 Strong Biomarker [418]
B2M TTY7FKA Strong Biomarker [419]
BACH1 TT2ME4S Strong Altered Expression [420]
BAZ2B TT6K8YG Strong Biomarker [253]
BBC3 TT7JUKC Strong Altered Expression [421]
BCAT1 TTES57P Strong Biomarker [422]
BCL2A1 TTGT9C7 Strong Biomarker [423]
BGN TT0JPVF Strong Altered Expression [424]
BIRC2 TTQ5LRD Strong Biomarker [425]
BIRC7 TTHZ8TA Strong Altered Expression [426]
BMI1 TTIPNSR Strong Biomarker [427]
BMP10 TTTG6H1 Strong Biomarker [428]
BMP2 TTP3IGX Strong Altered Expression [429]
BMP7 TTKOBRA Strong Biomarker [430]
BMPR2 TTGKF90 Strong Biomarker [431]
BMX TTN2I9E Strong Biomarker [257]
BRD4 TTSRAOU Strong Biomarker [432]
BRD7 TT07ZS1 Strong Altered Expression [433]
BRS3 TTKYEPM Strong Altered Expression [372]
BSG TT5UJWD Strong Biomarker [434]
BTG1 TTL7N2W Strong Biomarker [435]
CACNA1D TT7RGTM Strong Biomarker [436]
CALCA TTVSFJW Strong Altered Expression [437]
CAMKK2 TTV298Y Strong Biomarker [438]
CARM1 TTIZQFJ Strong Biomarker [439]
CASP1 TTCQIBE Strong Biomarker [440]
CASP2 TT12VNG Strong Biomarker [441]
CASP6 TTKW4ML Strong Biomarker [442]
CASP7 TTM7Y45 Strong Biomarker [443]
CASP8 TT6SZNG Strong Genetic Variation [348]
CBR1 TTVG0SN Strong Genetic Variation [444]
CCL11 TTCF05Y Strong Altered Expression [445]
CCL20 TT2XAZY Strong Altered Expression [446]
CCL21 TTLZK1U Strong Biomarker [447]
CCL22 TTBTWI1 Strong Biomarker [25]
CCNB1 TT9P6OW Strong Genetic Variation [448]
CCNE1 TTCEJ4F Strong Altered Expression [449]
CCR2 TTFZYTO Strong Biomarker [25]
CCR5 TTJIH8Q Strong Altered Expression [262]
CCR9 TTIPS8B Strong Genetic Variation [26]
CD163 TTTZ9DE Strong Biomarker [450]
CD24 TTCTYNP Strong Altered Expression [451]
CD276 TT6CQUM Strong Biomarker [452]
CD40 TT1ERKL Strong Altered Expression [453]
CD46 TTMS7DF Strong Altered Expression [58]
CD69 TTPQE9F Strong Biomarker [454]
CD9 TTZEIBV Strong Altered Expression [455]
CDC20 TTBKFDV Strong Biomarker [456]
CDC25A TTLZS4Q Strong Altered Expression [457]
CDC25B TTR0SWN Strong Biomarker [458]
CDC25C TTESBNC Strong Biomarker [459]
CDCA8 TT04YCM Strong Biomarker [460]
CDH11 TTRGWZC Strong Biomarker [461]
CDK12 TTJ21A9 Strong Genetic Variation [462]
CDK19 TTNABU9 Strong Altered Expression [32]
CDK5R1 TTBYM6V Strong Altered Expression [463]
CDK9 TT1LVF2 Strong Biomarker [464]
CDKN1A TT9GUW0 Strong Altered Expression [465]
CEACAM5 TTY6DTE Strong Altered Expression [466]
CEACAM6 TTIGH2W Strong Altered Expression [467]
CEBPA TT5LWG1 Strong Altered Expression [468]
CENPE TTZD5QR Strong Altered Expression [469]
CGB3 TTUH273 Strong Altered Expression [470]
CHEK2 TT9ABMF Strong Biomarker [471]
CHKA TT10AWB Strong Altered Expression [472]
CHRM1 TTZ9SOR Strong Biomarker [473]
CHRM3 TTQ13Z5 Strong Altered Expression [474]
CLCN3 TT8XNZ7 Strong Altered Expression [475]
CLDN4 TTMTS9H Strong Biomarker [476]
CLK2 TT85TPS Strong Biomarker [477]
CNR1 TT6OEDT Strong Biomarker [478]
CRAT TTC8M31 Strong Biomarker [479]
CREBBP TTFRCTK Strong Biomarker [480]
CRK TTFEUYR Strong Altered Expression [386]
CRTC1 TT4GO0F Strong Biomarker [481]
CRTC2 TTFWETR Strong Biomarker [482]
CSF1 TT0IQER Strong Biomarker [483]
CSF1R TT7MRDV Strong Biomarker [484]
CSNK1E TTA8PLI Strong Biomarker [485]
CSNK2A1 TTER6YH Strong Biomarker [486]
CTAG1A TTE5ITK Strong Genetic Variation [487]
CTH TTLQUZS Strong Altered Expression [488]
CTSB TTF2LRI Strong Biomarker [489]
CTSD TTPT2QI Strong Biomarker [490]
CTSE TTLXC4Q Strong Biomarker [491]
CTSH TT3G406 Strong Altered Expression [492]
CTSK TTDZN01 Strong Biomarker [493]
CTSL TT36ETB Strong Biomarker [494]
CX3CL1 TT1OFBQ Strong Altered Expression [445]
CXCL1 TTLK1RW Strong Biomarker [495]
CXCL11 TTWG0RE Strong Altered Expression [496]
CXCL13 TT0NIZ1 Strong Altered Expression [271]
CXCL9 TTWE5PB Strong Biomarker [497]
CXCR3 TT1UCIJ Strong Altered Expression [498]
CXCR6 TT2BVUA Strong Altered Expression [372]
CYP11A1 TTSYVO6 Strong Biomarker [499]
CYP19A1 TTSZLWK Strong Biomarker [500]
CYP1A2 TTS1DTU Strong Genetic Variation [501]
CYP2E1 TTWVHQ5 Strong Genetic Variation [502]
DAG1 TT4X7PG Strong Altered Expression [503]
DCK TTJOCE4 Strong Biomarker [504]
DCLK1 TTOHTCY Strong Altered Expression [505]
DCN TTB3XAN Strong Biomarker [506]
DCTPP1 TTZ1YIS Strong Biomarker [507]
DDC TTN451K Strong Biomarker [508]
DDIT4 TTVEOY6 Strong Biomarker [509]
DDR1 TTI1FPZ Strong Altered Expression [510]
DDX5 TTZKPVC Strong Biomarker [511]
DEK TT1NMGV Strong Biomarker [512]
DEPDC1 TT8S9CM Strong Biomarker [513]
DEPTOR TTLYP6D Strong Biomarker [514]
DGAT1 TT0GV3R Strong Altered Expression [515]
DHCR24 TTTK0NH Strong Biomarker [516]
DLL3 TT1C9K6 Strong Biomarker [517]
DLL4 TTV23LH Strong Altered Expression [518]
DNAJB1 TTPXAWS Strong Biomarker [519]
DRD1 TTZFYLI Strong Altered Expression [520]
DUSP3 TTIFAYS Strong Biomarker [521]
DUSP5 TTZN92A Strong Altered Expression [522]
E2F2 TT5FYX0 Strong Biomarker [523]
ECE1 TTQ9RYT Strong Biomarker [524]
EDNRA TTKRD0G Strong Altered Expression [372]
EDNRB TT3ZTGU Strong Biomarker [525]
EGLN1 TT9ISBX Strong Biomarker [526]
EGR1 TTE8LGD Strong Altered Expression [527]
EHMT2 TTS6RZT Strong Altered Expression [528]
EIF2AK2 TTXEZJ4 Strong Biomarker [529]
EIF4E TTZGCP6 Strong Biomarker [52]
EIF4EBP2 TTNBTCW Strong Biomarker [530]
EIF5A2 TTH53G9 Strong Altered Expression [531]
ENG TTB30LE Strong Biomarker [532]
ENPEP TT9PBIL Strong Biomarker [533]
ENPP1 TTZTIWS Strong Biomarker [510]
ENPP2 TTSCIM2 Strong Altered Expression [534]
EPCAM TTZ8WH4 Strong Biomarker [535]
EPHA2 TTRJB2G Strong Biomarker [536]
EPHA7 TTAHTVG Strong Altered Expression [537]
EPHB2 TTKPV6O Strong Biomarker [538]
EPHB4 TTI4ZX2 Strong Biomarker [539]
EPHB6 TTZEMUY Strong Altered Expression [540]
EREG TTYSB89 Strong Genetic Variation [541]
ERN1 TTKIAT3 Strong Biomarker [542]
ESRRG TT9ZRHB Strong Biomarker [543]
ETS2 TT9AH0M Strong Biomarker [131]
EYA2 TTUY9C6 Strong Altered Expression [544]
EZH1 TTNJA0C Strong Biomarker [545]
F11R TT3C8EG Strong Genetic Variation [546]
F13A1 TTXI2RA Strong Genetic Variation [547]
F13B TTAXGIP Strong Altered Expression [548]
F2R TTL935N Strong Biomarker [549]
F2RL1 TTQR74A Strong Altered Expression [550]
FAP TTGPQ0F Strong Biomarker [551]
FASN TT7AOUD Strong Biomarker [552]
FAT1 TTGUJYV Strong Biomarker [553]
FECH TTQ6VF4 Strong Biomarker [554]
FER TTRA9G0 Strong Altered Expression [555]
FFAR1 TTB8FUC Strong Altered Expression [556]
FFAR4 TT08JVB Strong Altered Expression [557]
FGF1 TTMY81X Strong Biomarker [558]
FGF10 TTNPEFX Strong Biomarker [559]
FGF23 TT2IZ4K Strong Altered Expression [560]
FGF7 TTFY134 Strong Biomarker [559]
FGF8 TTIUF3J Strong Altered Expression [561]
FHL1 TTI7ENL Strong Biomarker [562]
FKBP1A TTMW94E Strong Biomarker [563]
FKBP5 TT0J5KQ Strong Biomarker [563]
FKBP7 TTO1ENI Strong Biomarker [564]
FLNA TTSTRZY Strong Altered Expression [565]
FLT4 TTDCBX5 Strong Biomarker [566]
FN1 TTPJ921 Strong Biomarker [567]
FOLR1 TTVC37M Strong Biomarker [568]
FOS TTOM5AU Strong Altered Expression [569]
FOSL1 TTY8LZG Strong Biomarker [570]
FOXC1 TTNT3YA Strong Biomarker [571]
FOXM1 TTD3KOX Strong Altered Expression [572]
FST TTDNM9W Strong Altered Expression [573]
FTH1 TT975ZT Strong Biomarker [574]
FUT3 TTUPAD7 Strong Altered Expression [575]
FUT4 TTNV1KZ Strong Biomarker [28]
FYN TT2B9KF Strong Altered Expression [576]
GAD2 TT7UY6K Strong Genetic Variation [577]
GADD45B TTMDW9L Strong Altered Expression [578]
GALNS TTT9YPO Strong Altered Expression [579]
GAN TT6WNG2 Strong Genetic Variation [580]
GCK TTDLNGZ Strong Biomarker [341]
GCLM TTNFESW Strong Altered Expression [581]
GDF15 TT4MXVG Strong Biomarker [582]
GGH TTZJRL0 Strong Biomarker [583]
GGT1 TTZVT7O Strong Biomarker [584]
GHRL TT1OCL0 Strong Biomarker [585]
GJB1 TTSJIRP Strong Altered Expression [586]
GLI1 TTJOMH6 Strong Biomarker [587]
GLO1 TTV9A7R Strong Biomarker [588]
GLP1R TTVIMDE Strong Biomarker [589]
GLUL TTURQ2G Strong Biomarker [590]
GNRH1 TT0ID4A Strong Biomarker [591]
GPC3 TTJTSX4 Strong Altered Expression [592]
GPER1 TTDSB34 Strong Biomarker [593]
GPR39 TTTPCNU Strong Altered Expression [594]
GPRC6A TTI1PRE Strong Biomarker [235]
GREM1 TTOUZN5 Strong Posttranslational Modification [595]
GRHL2 TTUGH4C Strong Altered Expression [596]
GRIA2 TTWM461 Strong Biomarker [597]
GRK2 TTAZ3MN Strong Biomarker [598]
GRK3 TT5A4DX Strong Biomarker [599]
GRM1 TTVBPDM Strong Biomarker [600]
GRPR TTC1MVT Strong Altered Expression [601]
GSK3B TTRSMW9 Strong Biomarker [602]
GSN TTUH7OM Strong Altered Expression [603]
GSTA2 TTNLFBE Strong Genetic Variation [604]
GUSB TTHS7CM Strong Biomarker [605]
HDAC1 TT6R7JZ Strong Biomarker [606]
HDAC2 TTSHTOI Strong Biomarker [607]
HDAC3 TT4YWTO Strong Biomarker [608]
HDAC9 TT8M4E1 Strong Altered Expression [609]
HK2 TTK02H8 Strong Biomarker [610]
HLA-B TTGS10J Strong Genetic Variation [417]
HMGA1 TTBA219 Strong Biomarker [611]
HMGA2 TTSTVM0 Strong Biomarker [612]
HMGB1 TTWQYB7 Strong Biomarker [613]
HMGB2 TTA78JQ Strong Biomarker [614]
HMGCS1 TTQF4TK Strong Biomarker [615]
HMGCS2 TTS0EZJ Strong Altered Expression [616]
HNF4A TT2F3CD Strong Altered Expression [617]
HNMT TT2B6EV Strong Biomarker [618]
HNRNPA1 TTPJ9XK Strong Biomarker [619]
HPD TT8DSFC Strong Biomarker [620]
HSD17B13 TTDJYZR Strong Biomarker [621]
HSD17B2 TT0PT1R Strong Biomarker [622]
HSP90AA1 TT78R5H Strong Biomarker [623]
HSPA5 TTW26OG Strong Biomarker [624]
HSPA9 TTMTPG3 Strong Biomarker [625]
HSPB1 TT9AZWY Strong Altered Expression [626]
HSPB3 TTLH8WG Strong Altered Expression [626]
HSPB8 TTY0OJN Strong Altered Expression [627]
HSPD1 TT9HL5R Strong Biomarker [628]
HSPG2 TT5UM29 Strong Biomarker [629]
HTATIP2 TTC6IX5 Strong Biomarker [630]
HTR3B TTR6K75 Strong Genetic Variation [348]
ID2 TTW8A5N Strong Biomarker [631]
IFNL3 TTRF4Q2 Strong Biomarker [632]
IGF1R TTQFBMY Strong Genetic Variation [633]
IGFBP2 TTU4QSN Strong Biomarker [91]
IGFBP6 TTLAYV8 Strong Biomarker [634]
IGFBP7 TTUQ01B Strong Posttranslational Modification [635]
IKBKB TTJ3E9X Strong Biomarker [37]
IL11 TTGUYTR Strong Biomarker [636]
IL13RA2 TTMPZ7V Strong Altered Expression [637]
IL17D TTC5LTG Strong Biomarker [638]
IL24 TT1EPXZ Strong Biomarker [639]
IL2RB TT9721Y Strong Altered Expression [640]
IL7 TT8FRMO Strong Biomarker [641]
IL9 TT0JTFD Strong Altered Expression [338]
IMPDH2 TTTB4UP Strong Altered Expression [642]
ITGAM TTB69FJ Strong Biomarker [643]
ITGAV TTT1R2L Strong Biomarker [296]
ITGB1 TTBVIQC Strong Altered Expression [644]
ITGB3 TTJA1ZO Strong Altered Expression [645]
ITGB8 TTIF29E Strong Genetic Variation [348]
ITPR3 TTH1769 Strong Altered Expression [646]
JAK1 TT6DM01 Strong Genetic Variation [647]
JUN TTS7IR5 Strong Biomarker [648]
KAT2B TTVK7SB Strong Altered Expression [649]
KCNA5 TTW0CMT Strong Biomarker [650]
KCNH1 TT9XKUC Strong Genetic Variation [417]
KCNH2 TTQ6VDM Strong Altered Expression [651]
KCNMA1 TTE87WJ Strong Biomarker [652]
KCNN3 TT9JH25 Strong Genetic Variation [348]
KCNN4 TT7M9I6 Strong Biomarker [653]
KDM2A TT8XTY2 Strong Genetic Variation [348]
KDM3A TTKXS4A Strong Biomarker [654]
KDM5C TT94UCF Strong Altered Expression [655]
KDM6B TTDIJUQ Strong Biomarker [656]
KDM7A TT0NYMP Strong Biomarker [657]
KDR TTUTJGQ Strong Biomarker [658]
KHDRBS1 TTAT6C7 Strong Altered Expression [659]
KIF11 TTBGTCW Strong Biomarker [660]
KLB TTARBVH Strong Altered Expression [661]
KLF4 TTTI53X Strong Biomarker [662]
KLK1 TT5T3P6 Strong Biomarker [663]
KLK4 TT4319X Strong Biomarker [664]
KLK5 TTULSEW Strong Altered Expression [665]
KLK7 TTE6GTB Strong Altered Expression [666]
KMT2A TT1GNDM Strong Biomarker [667]
KPNB1 TTHOJ5F Strong Biomarker [668]
L3MBTL3 TTQDMJN Strong Genetic Variation [669]
LAMP1 TTC214J Strong Biomarker [670]
LBP TTVQJLY Strong Biomarker [671]
LCK TT860QF Strong Biomarker [672]
LDHA TTW76JE Strong Biomarker [673]
LDLR TTH0DUS Strong Altered Expression [674]
LGALS3 TTFPQV7 Strong Biomarker [675]
LGMN TTPTWV5 Strong Biomarker [676]
LGR4 TTY6C71 Strong Biomarker [677]
LIF TTGZ5WN Strong Biomarker [678]
LIMK2 TTASMD8 Strong Biomarker [679]
LIN28A TTO50LN Strong Biomarker [680]
LIPA TTS8T1M Strong Biomarker [681]
LNPEP TTY2KP7 Strong Biomarker [682]
LOX TTQHNAM Strong Biomarker [683]
LOXL2 TTFSUHX Strong Altered Expression [684]
LPAR2 TTB7Y8I Strong Altered Expression [372]
LPL TTOF3WZ Strong Posttranslational Modification [685]
LRP1 TTF2V7I Strong Biomarker [686]
LRP5 TT7VMG4 Strong Biomarker [687]
LRP6 TTSXOWE Strong Biomarker [688]
LSM1 TT2KHSC Strong Altered Expression [689]
LTBR TTFO0PM Strong Biomarker [690]
LTF TTSZDQU Strong Altered Expression [691]
LY6D TTINE9B Strong Biomarker [692]
MAD1L1 TTNE9U7 Strong Genetic Variation [348]
MAG TT9XFON Strong Biomarker [693]
MAGEA2 TTOZT28 Strong Biomarker [694]
MAGEA6 TTJIWMO Strong Altered Expression [695]
MAGEC1 TT9M6NA Strong Genetic Variation [696]
MAGEC2 TTKGUEB Strong Biomarker [697]
MAN2A1 TT34DCN Strong Altered Expression [555]
MAOA TT3WG5C Strong Altered Expression [698]
MAP2K1 TTIDAPM Strong Genetic Variation [348]
MAP2K5 TTV3O87 Strong Biomarker [699]
MAP3K3 TTJZNIG Strong Altered Expression [700]
MAP3K8 TTGECUM Strong Genetic Variation [701]
MAP4K4 TT6NI13 Strong Biomarker [702]
MAPK14 TTQBR95 Strong Altered Expression [386]
MAPK3 TT1MG9E Strong Biomarker [703]
MAPK8 TT0K6EO Strong Biomarker [41]
MAPK9 TT3IVG2 Strong Biomarker [704]
MAPKAPK2 TTMUG9D Strong Biomarker [705]
MBOAT4 TTSYOWR Strong Biomarker [706]
MCAM TTHRE05 Strong Biomarker [707]
MCL1 TTL53M6 Strong Altered Expression [708]
MECP2 TTTAU9R Strong Biomarker [709]
MELK TTBZOTY Strong Altered Expression [710]
MERTK TTO7LKR Strong Biomarker [711]
METAP2 TTZL0OI Strong Altered Expression [712]
MGLL TTZ963I Strong Biomarker [713]
MMP13 TTHY57M Strong Altered Expression [214]
MMP14 TTJ4QE7 Strong Altered Expression [714]
MMP16 TTNP4CU Strong Biomarker [715]
MRGPRX1 TTIX6PK Strong Biomarker [235]
MSI2 TTTXQF6 Strong Biomarker [716]
MST1R TTBQ3OC Strong Biomarker [717]
MUTYH TTNB0ZK Strong Altered Expression [718]
MYCN TT9JBY5 Strong Biomarker [719]
MYLK TT18ETS Strong Altered Expression [720]
NACC1 TT4AQ5F Strong Biomarker [90]
NCK1 TTMA3VF Strong Biomarker [721]
NCL TTK1V5Q Strong Biomarker [722]
NCOA4 TT8OY02 Strong Genetic Variation [723]
NCR1 TTQNRJM Strong Biomarker [724]
NEDD4 TT1QU6G Strong Altered Expression [725]
NEDD8 TTNDC4K Strong Biomarker [726]
NEK1 TTO5QT2 Strong Biomarker [727]
NEK6 TT8I2M7 Strong Biomarker [728]
NFE2L2 TTA6ZN2 Strong Biomarker [729]
NGFR TTEDJN4 Strong Biomarker [730]
NKX3-1 TT1E0JK Strong Biomarker [731]
NODAL TTK2O1Q Strong Posttranslational Modification [732]
NOTCH4 TTXDIK2 Strong Altered Expression [733]
NOX4 TTQRBSJ Strong Biomarker [734]
NPM1 TTHBS98 Strong Biomarker [735]
NR0B2 TT25A9Q Strong Altered Expression [736]
NR1H2 TTXA6PH Strong Genetic Variation [737]
NR1H3 TTECBXN Strong Biomarker [738]
NR1I2 TT7LCTF Strong Biomarker [739]
NR3C1 TTOZRK6 Strong Altered Expression [151]
NR3C2 TT26PHO Strong Biomarker [740]
NR4A2 TT9HKN3 Strong Altered Expression [741]
NR5A2 TTAU3SY Strong Altered Expression [742]
NRP2 TTRXUVC Strong Biomarker [743]
NT5E TTK0O6Y Strong Altered Expression [744]
NTN1 TT0AH4L Strong Altered Expression [745]
NTRK1 TTTDVOJ Strong Biomarker [746]
NTSR2 TT31Q0V Strong Altered Expression [143]
OR51E2 TTZRE3C Strong Biomarker [235]
ORAI1 TTE76YK Strong Biomarker [747]
P2RX7 TT473XN Strong Genetic Variation [748]
P2RY1 TTA93TL Strong Biomarker [749]
P2RY12 TTZ1DT0 Strong Altered Expression [750]
P4HA1 TTNH25W Strong Altered Expression [751]
PAK1 TTFN95D Strong Altered Expression [752]
PAK4 TT7Y3BZ Strong Genetic Variation [254]
PAM TTF4ZPC Strong Altered Expression [753]
PARP1 TTVDSZ0 Strong Biomarker [754]
PAX5 TTA4REJ Strong Altered Expression [755]
PBK TTMY6BZ Strong Biomarker [756]
PBRM1 TTH8ZRL Strong Biomarker [757]
PCNA TTLG1PD Strong Altered Expression [758]
PCSK1 TTED9LZ Strong Altered Expression [759]
PCSK6 TT75LN9 Strong Biomarker [760]
PDCD1LG2 TTW14O3 Strong Biomarker [761]
PDGFD TTSN0GA Strong Biomarker [762]
PDK1 TTCZOF2 Strong Posttranslational Modification [763]
PEBP1 TT1BGU8 Strong Altered Expression [764]
PECAM1 TT4EZB2 Strong Altered Expression [765]
PF4 TTSG7Q5 Strong Biomarker [766]
PFKFB3 TTTHMQJ Strong Biomarker [767]
PGF TT48I1Y Strong Altered Expression [768]
PHF8 TT81PFE Strong Biomarker [769]
PHGDH TT8DRCK Strong Altered Expression [770]
PIM2 TT69J2Z Strong Biomarker [771]
PIN1 TTJNTSI Strong Biomarker [772]
PINX1 TT4FJ3A Strong Genetic Variation [773]
PIP5K1A TTA7DU1 Strong Biomarker [774]
PKLR TT31N4S Strong Altered Expression [775]
PKN2 TTTHO0M Strong Biomarker [776]
PLA2G2A TTO8QRU Strong Biomarker [777]
PLA2G4A TTT1JVS Strong Altered Expression [778]
PLA2G7 TTDNFMT Strong Altered Expression [779]
PLA2R1 TTHKW7D Strong Biomarker [780]
PLAUR TTNOSTX Strong Biomarker [781]
PLD1 TT3T17P Strong Altered Expression [782]
PLD2 TTRLMKF Strong Altered Expression [783]
PLN TTMCVJF Strong Genetic Variation [784]
PMS1 TTX1ISF Strong Altered Expression [785]
PNP TTMCF1Y Strong Biomarker [786]
POLB TTA0XPV Strong Genetic Variation [787]
POSTN TT8ALTZ Strong Altered Expression [788]
PPARD TT2JWF6 Strong Altered Expression [789]
PPARGC1B TTKSQ3W Strong Biomarker [790]
PPID TTNAFOU Strong Biomarker [791]
PPM1A TTLA7IX Strong Altered Expression [792]
PPP2CA TTHTKNY Strong Altered Expression [793]
PPP3CA TTA4LDE Strong Altered Expression [794]
PPT1 TTSQC14 Strong Altered Expression [795]
PRCP TTTJZ4M Strong Biomarker [255]
PRKACA TT5U49F Strong Biomarker [796]
PRKCI TTWJTHX Strong Biomarker [797]
PRKCZ TTBSN0L Strong Biomarker [798]
PRKD1 TTSLUMT Strong Altered Expression [799]
PRL TTJ2TSA Strong Altered Expression [800]
PRMT5 TTR1D7X Strong Biomarker [801]
PROM1 TTXMZ81 Strong Biomarker [802]
PRSS8 TTT4N0Q Strong Posttranslational Modification [803]
PRTN3 TT5MLC4 Strong Biomarker [804]
PSCA TT9T4AV Strong Biomarker [805]
PSEN2 TTWN3F4 Strong Biomarker [806]
PSMB5 TT68GPI Strong Biomarker [807]
PSMD10 TT2H4LN Strong Biomarker [808]
PTAFR TTQL5VC Strong Biomarker [809]
PTBP1 TTWMX0U Strong Biomarker [810]
PTGER4 TT79WV3 Strong Biomarker [811]
PTGES TTYLQ8V Strong Biomarker [812]
PTGS1 TT8NGED Strong Genetic Variation [813]
PTK2B TTTEFBV Strong Biomarker [814]
PTK6 TT6TH8V Strong Biomarker [815]
PTP4A2 TT1MHKD Strong Biomarker [816]
PTPN13 TT405FP Strong Biomarker [817]
RAC1 TT2M9CG Strong Biomarker [818]
RAC3 TT9BQ50 Strong Altered Expression [819]
RAF1 TTAN5W2 Strong Genetic Variation [820]
RALBP1 TTVSRUA Strong Biomarker [821]
RARB TTISP28 Strong Posttranslational Modification [822]
RARG TT1Q3IE Strong Biomarker [823]
RBP4 TT0C8BY Strong Biomarker [824]
REG3A TTL4H8N Strong Altered Expression [825]
RENBP TTZCG0Q Strong Biomarker [824]
RGS12 TTP9AV7 Strong Biomarker [826]
RGS2 TTKB7T3 Strong Altered Expression [827]
RHCG TTN5MZ3 Strong Biomarker [828]
RHO TTH0KSX Strong Biomarker [829]
RNF43 TTD91BL Strong Genetic Variation [348]
RNF7 TTODWGT Strong Biomarker [830]
ROBO1 TTND1YP Strong Altered Expression [831]
ROBO4 TT3S9TY Strong Altered Expression [832]
ROCK2 TTGWKQJ Strong Altered Expression [181]
ROR2 TTUDPCI Strong Altered Expression [833]
RORA TT1TYN7 Strong Genetic Variation [834]
RSF1 TTMP86V Strong Biomarker [835]
RSPO3 TT7HJTF Strong Altered Expression [836]
RTN4 TT7GXMU Strong Biomarker [837]
RXRA TT6PEUO Strong Altered Expression [838]
S100A6 TT716MY Strong Biomarker [839]
SAA1 TTY0DN9 Strong Biomarker [840]
SCD TT6RIOV Strong Biomarker [199]
SCN11A TTN9VTF Strong Biomarker [841]
SCN1A TTANOZH Strong Biomarker [90]
SCN9A TT4G2JS Strong Altered Expression [842]
SELE TT1PL7M Strong Biomarker [843]
SEMA3A TTVKD3S Strong Altered Expression [844]
SERPINB3 TT6QLPX Strong Biomarker [845]
SERPINB5 TT1KW50 Strong Altered Expression [846]
SERPING1 TTVQ6R9 Strong Altered Expression [847]
SETD7 TTJ0FSU Strong Biomarker [848]
SF3B1 TTL2WUI Strong Biomarker [849]
SFRP4 TTX8I1Y Strong Biomarker [850]
SFTPD TTGLMU7 Strong Altered Expression [851]
SGO1 TTBPKGD Strong Altered Expression [852]
SH2B3 TT36N7Z Strong Genetic Variation [417]
SHH TTIENCJ Strong Altered Expression [853]
SIGMAR1 TT5TPI6 Strong Biomarker [854]
SIRT1 TTUF2HO Strong Biomarker [855]
SIRT2 TTLKF5M Strong Biomarker [856]
SIRT3 TTVZLIJ Strong Altered Expression [857]
SKP2 TT5B2EO Strong Altered Expression [858]
SLC16A3 TTG6VD5 Strong Biomarker [859]
SLC19A1 TT09I7D Strong Biomarker [860]
SLC1A5 TTF7WRM Strong Biomarker [861]
SLC2A4 TTP6MT5 Strong Biomarker [862]
SLC33A1 TTL69WB Strong Biomarker [863]
SLC36A1 TTUYIZW Strong Genetic Variation [864]
SLC38A1 TT1YE9Z Strong Genetic Variation [865]
SLC44A4 TT0NYDG Strong Biomarker [866]
SLC52A2 TT6TKEN Strong Altered Expression [126]
SLC5A5 TTW7HI9 Strong Biomarker [867]
SLC5A7 TTRV7W3 Strong Biomarker [868]
SLC7A1 TT4S150 Strong Biomarker [479]
SLC7A11 TTBZMIO Strong Biomarker [869]
SLC7A5 TTPH2JB Strong Biomarker [861]
SLCO1A2 TTUGD21 Strong Altered Expression [342]
SLCO4C1 TTACFNR Strong Genetic Variation [870]
SLIT2 TTDWK85 Strong Biomarker [871]
SMARCA4 TTVQEZS Strong Altered Expression [872]
SMC2 TTS8D17 Strong Genetic Variation [669]
SMPD1 TTJTM88 Strong Genetic Variation [873]
SOCS1 TT8COJM Strong Altered Expression [874]
SOCS3 TTI0ME6 Strong Altered Expression [875]
SORD TTLSRBZ Strong Altered Expression [876]
SOX2 TTCNOT6 Strong Biomarker [877]
SPARC TTBQFM7 Strong Altered Expression [878]
SPDEF TT2ZUPY Strong Biomarker [813]
SPRY1 TT0PSN6 Strong Altered Expression [879]
SRD5A1 TTTU72V Strong Altered Expression [880]
SRR TTZFUY6 Strong Biomarker [881]
SSRP1 TTETDKQ Strong Altered Expression [882]
SST TTWF7UG Strong Biomarker [883]
SSTR1 TTIND6G Strong Altered Expression [884]
SSTR2 TTZ6T9E Strong Biomarker [885]
SSTR4 TTAE1BR Strong Altered Expression [372]
ST14 TTPRO7W Strong Biomarker [886]
ST8SIA4 TTDP8YM Strong Genetic Variation [887]
STC2 TT4EFTR Strong Altered Expression [888]
STEAP1 TT9E64S Strong Biomarker [889]
STEAP2 TTOXF5J Strong Biomarker [890]
STK38 TT27XFN Strong Biomarker [891]
STK39 TTYQTIU Strong Altered Expression [892]
STK4 TTCPLVN Strong Biomarker [893]
STYK1 TTRMCYJ Strong Altered Expression [894]
SUV39H1 TTUWQTK Strong Altered Expression [895]
TACC3 TTQ4UFD Strong Biomarker [896]
TCF3 TTULOD8 Strong Altered Expression [897]
TEP1 TTQGAVX Strong Altered Expression [898]
TERF2 TT5XSLT Strong Altered Expression [349]
TFAP2A TTDY4BS Strong Biomarker [899]
TFPI TT068JH Strong Biomarker [900]
TGFB3 TTWOMY8 Strong Altered Expression [901]
TGM1 TT7A949 Strong Altered Expression [548]
TGM2 TT2F4OL Strong Altered Expression [902]
THRB TTGER3L Strong Genetic Variation [903]
TIGIT TTWNL74 Strong Biomarker [452]
TK1 TTP3QRF Strong Altered Expression [904]
TKTL1 TTNQ1J3 Strong Altered Expression [905]
TLR1 TTW14D0 Strong Genetic Variation [906]
TLR8 TT8CWFK Strong Biomarker [907]
TMBIM6 TT7QSMG Strong Altered Expression [908]
TMEM219 TTY078U Strong Biomarker [909]
TNFRSF11A TT3K9S2 Strong Biomarker [910]
TNFRSF12A TTKPS7V Strong Biomarker [911]
TNFRSF9 TTPW9LJ Strong Biomarker [912]
TNK2 TTIET93 Strong Altered Expression [913]
TNKS TTVUSO7 Strong Biomarker [914]
TNS4 TT1K65C Strong Altered Expression [915]
TOR1A TTF85KW Strong Genetic Variation [348]
TP53BP1 TTX4UE9 Strong Altered Expression [916]
TPT1 TT3PTB6 Strong Altered Expression [463]
TRIM24 TT9Q7AE Strong Altered Expression [917]
TRIM28 TTQ2BKV Strong Altered Expression [918]
TRIM37 TTAMCSL Strong Biomarker [919]
TRIP10 TTKHTGE Strong Genetic Variation [920]
TRPA1 TTELV3W Strong Biomarker [921]
TRPC1 TTA76X0 Strong Biomarker [922]
TRPC3 TTNVC34 Strong Biomarker [921]
TRPM2 TTEBMN7 Strong Biomarker [923]
TRPM7 TTFPVZO Strong Altered Expression [924]
TRPM8 TTXDKTO Strong Biomarker [925]
TRPV1 TTMI6F5 Strong Genetic Variation [926]
TRPV2 TTBECWA Strong Biomarker [927]
TSG101 TTHU7JA Strong Biomarker [928]
TSPO TTPTXIN Strong Genetic Variation [188]
TTK TTP7EGM Strong Altered Expression [929]
TWIST1 TTX1MY7 Strong Altered Expression [930]
TXN TTZJ5U9 Strong Genetic Variation [931]
TXNIP TTTLDZK Strong Biomarker [932]
TYR TTULVH8 Strong Biomarker [933]
TYRO3 TTIEMFN Strong Altered Expression [934]
TYRP1 TTFRV98 Strong Biomarker [935]
UBC TTBP3XA Strong Biomarker [936]
UBE2T TT0A1R8 Strong Biomarker [937]
UBE3A TTUZX6V Strong Altered Expression [938]
UGT1A1 TT34ZAF Strong Genetic Variation [939]
ULK1 TT4D7MJ Strong Altered Expression [940]
USP10 TT5IH09 Strong Altered Expression [941]
USP14 TTVSYP9 Strong Biomarker [942]
USP44 TTJLTNM Strong Biomarker [943]
USP7 TTXU3EQ Strong Altered Expression [944]
UTRN TTNO1VA Strong Altered Expression [945]
UTS2R TTW5UDX Strong Altered Expression [946]
VEGFC TT0QUFV Strong Altered Expression [947]
VIP TTGTWLF Strong Altered Expression [948]
VIPR2 TT4O5P0 Strong Biomarker [949]
VSIR TT51SK8 Strong Altered Expression [950]
WEE1 TTJFOAL Strong Altered Expression [951]
WNK1 TTJ9UMX Strong Biomarker [952]
WNT5A TTKG7F8 Strong Biomarker [953]
WNT7A TT8NARC Strong Biomarker [954]
WRN TT2H5WQ Strong Genetic Variation [177]
XIAP TTK3WBU Strong Biomarker [955]
XPNPEP2 TTI9MBZ Strong Altered Expression [956]
XPO1 TTCJUR4 Strong Altered Expression [957]
YAP1 TT8UN2D Strong Biomarker [958]
YES1 TT0SQ8J Strong Biomarker [959]
ZUP1 TTZC0KV Strong Biomarker [936]
ACTG1 TTGAZF9 Definitive Biomarker [960]
BACE2 TT69DB8 Definitive Altered Expression [961]
BCL11A TTR61MW Definitive Altered Expression [962]
CBX7 TTBN3HC Definitive Biomarker [963]
CCND3 TT1JXNR Definitive Altered Expression [964]
CCNE2 TTLDRGX Definitive Altered Expression [965]
CHEK1 TTTU902 Definitive Biomarker [966]
CMA1 TT8VUE0 Definitive Altered Expression [967]
CRHR1 TT7EFHR Definitive Biomarker [968]
CRY1 TT5MLZR Definitive Genetic Variation [969]
DGKZ TTSBBXL Definitive Biomarker [970]
ELAVL1 TTPC9D0 Definitive Biomarker [971]
FNDC1 TTQJCV8 Definitive Altered Expression [972]
FOXQ1 TTEJZOL Definitive Biomarker [962]
FZD7 TTUQMO5 Definitive Altered Expression [973]
GPR137 TTATO6X Definitive Biomarker [974]
GPR31 TT71ZLK Definitive Biomarker [975]
GRN TT0LWE3 Definitive Biomarker [805]
GZMB TTKEPHX Definitive Biomarker [28]
HCRT TTU5HJP Definitive Biomarker [976]
HDAC4 TTTQGH8 Definitive Genetic Variation [977]
HGFAC TTD96RW Definitive Altered Expression [978]
HSPA8 TTMQL3K Definitive Biomarker [979]
ITGA2 TTSJ542 Definitive Posttranslational Modification [980]
ITPR1 TT5HWAT Definitive Biomarker [108]
JMJD1C TTBISK4 Definitive Biomarker [981]
KDM5B TTCLI75 Definitive Biomarker [982]
LCN2 TTKTLAI Definitive Biomarker [495]
MME TT5TKPM Definitive Biomarker [983]
MMP11 TTZW4MV Definitive Altered Expression [984]
NEDD9 TT1UREA Definitive Biomarker [985]
NFKBIA TTSHAEB Definitive Genetic Variation [986]
NQO2 TTJLP0R Definitive Biomarker [622]
PCYT1B TTUAIKM Definitive Altered Expression [987]
PGC TT7K6AD Definitive Altered Expression [988]
PIM3 TTCGOIN Definitive Altered Expression [989]
PKD2L1 TTAHD89 Definitive Biomarker [566]
PTK2 TTON5IT Definitive Biomarker [270]
RBPJ TT72D4Z Definitive Altered Expression [990]
RCE1 TT2AP5B Definitive Altered Expression [991]
RPS6KA3 TTUM2ZR Definitive Biomarker [183]
RUNX2 TTD6SZ8 Definitive Biomarker [992]
SLC16A1 TTN1J82 Definitive Altered Expression [967]
SLC2A9 TTIF3GB Definitive Altered Expression [993]
TAP1 TT7JZI8 Definitive Altered Expression [994]
TBL1XR1 TTYXT16 Definitive Biomarker [150]
TBX21 TTNF9PH Definitive Biomarker [995]
TBXA2R TT2O84V Definitive Altered Expression [996]
TLN1 TTQSMFG Definitive Biomarker [997]
TNFSF11 TT9E8HR Definitive Biomarker [992]
TNFSF12 TTBTDM1 Definitive Biomarker [998]
TOP2B TT4NVEM Definitive Biomarker [999]
TRPC6 TTRBT3W Definitive Altered Expression [1000]
YWHAH TTADIOY Definitive Genetic Variation [1001]
------------------------------------------------------------------------------------
⏷ Show the Full List of 1109 DTT(s)
This Disease Is Related to 40 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ATP10A DTTQ8WI Limited Genetic Variation [106]
SLC16A7 DTLT3UG Limited Biomarker [1002]
SLC25A21 DT2UQYR Limited Biomarker [1003]
SLC52A1 DT7NOKR Limited Altered Expression [126]
SLC5A8 DTE3TAW Limited Biomarker [1004]
SLC14A2 DT8QC7K Disputed Genetic Variation [1005]
ATP12A DT5NLZA moderate Altered Expression [1006]
SLC2A11 DTJK135 moderate Biomarker [1007]
SLC2A5 DTOR02F moderate Biomarker [1007]
SLC45A2 DTNCJAT moderate Genetic Variation [16]
SLC7A6 DTTBSQG moderate Altered Expression [1008]
SLC7A7 DTE4HJ8 moderate Altered Expression [1008]
ABCA2 DTJ4NEG Strong Altered Expression [1009]
ABCC10 DTPS120 Strong Altered Expression [1010]
ABCC5 DTYVM24 Strong Altered Expression [1011]
ABCC6 DT582KR Strong Biomarker [1012]
SLC13A3 DTKXTPW Strong Biomarker [1013]
SLC16A10 DTPAQJO Strong Biomarker [1014]
SLC1A4 DTC54PX Strong Biomarker [1015]
SLC25A16 DTNU9EW Strong Genetic Variation [1016]
SLC25A20 DTQOUM4 Strong Biomarker [1017]
SLC2A3 DT9SQ3L Strong Altered Expression [1018]
SLC30A1 DT1BO38 Strong Altered Expression [1019]
SLC30A4 DT280XI Strong Biomarker [1020]
SLC31A1 DTP8L4F Strong Genetic Variation [1021]
SLC35B4 DTMALXP Strong Altered Expression [1022]
SLC39A1 DTLWPXS Strong Biomarker [1023]
SLC39A4 DTEZCUM Strong Biomarker [1024]
SLC39A9 DTJH79E Strong Altered Expression [1025]
SLC43A1 DTBMSWG Strong Altered Expression [1008]
SLC45A3 DTGEFXH Strong Biomarker [1026]
SLC4A7 DT03V27 Strong Biomarker [1027]
SLC50A1 DTI9CQU Strong Biomarker [1028]
SLC52A3 DTBVQIO Strong Genetic Variation [1029]
SLC7A10 DTVL2JY Strong Posttranslational Modification [1030]
KCNK2 DTENHUP Definitive Biomarker [1031]
SLC25A18 DT3VZJO Definitive Biomarker [1032]
SLC2A6 DTS4MKQ Definitive Altered Expression [993]
SLC30A6 DTKPRIL Definitive Altered Expression [1033]
SLC35A2 DT0567K Definitive Genetic Variation [1034]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 DTP(s)
This Disease Is Related to 76 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP2R1 DEBIHM3 Limited Biomarker [1035]
CYP3A43 DEO1IE3 Limited Genetic Variation [1036]
CYP7B1 DE36TMY Limited Altered Expression [1037]
DTYMK DEOTVYU Limited Altered Expression [1038]
GCLC DESYL1F Limited Genetic Variation [1039]
HIF1AN DEY1CBW Limited Biomarker [1040]
HSD17B3 DEX8J7E Limited Biomarker [1041]
HSD17B7 DEDMWFX Limited Biomarker [1042]
HSD3B2 DEN0GVQ Limited Biomarker [499]
LDHC DEQG7F9 Limited Biomarker [1043]
PER1 DE9HF0I Limited Biomarker [1044]
SULT2B1 DEZBN53 Limited Biomarker [622]
UBASH3B DE10BJ5 Limited Altered Expression [1045]
UGT1A3 DEF2WXN Limited Genetic Variation [1034]
UGT1A5 DEPF954 Limited Genetic Variation [1034]
UGT1A9 DE85D2P Limited Genetic Variation [1034]
CYP4F3 DEFCMPI Disputed Genetic Variation [1046]
PTGR1 DE4Q2OE Disputed Biomarker [1047]
SRD5A3 DEZGVDW Disputed Altered Expression [1048]
AKR1A1 DED2FW3 moderate Biomarker [1049]
EGLN3 DEMQTKH moderate Altered Expression [1050]
HSD17B11 DEPFD73 moderate Altered Expression [1051]
HSD17B12 DE915QP moderate Biomarker [1052]
MMEL1 DEYCUQ2 moderate Altered Expression [1053]
PARK7 DEPOVCH moderate Biomarker [1054]
PCYT1A DEQYXD4 moderate Genetic Variation [1055]
PTGDS DER3H9C moderate Altered Expression [1056]
RDH5 DESI4OK moderate Altered Expression [1057]
THOP1 DE95LJC moderate Altered Expression [1058]
ACP4 DE3OZT4 Strong Altered Expression [1059]
ACSS2 DEE76VW Strong Biomarker [1060]
ADH1C DEM1HNL Strong Altered Expression [1049]
ADH5 DEIOH6A Strong Altered Expression [1049]
AKR1B10 DEP6GT1 Strong Biomarker [1061]
AKR1C2 DEOY5ZM Strong Altered Expression [151]
ALDH1A1 DE2JP1Y Strong Biomarker [1062]
ALDH1A2 DEKN1H4 Strong Genetic Variation [1063]
ALDH1B1 DEXI4UQ Strong Genetic Variation [1063]
BAAT DERA3OF Strong Biomarker [1064]
BCO1 DE6BOK3 Strong Genetic Variation [1065]
BLMH DECH1VP Strong Biomarker [1066]
CMPK1 DEMPH4I Strong Altered Expression [1067]
CPA4 DEXKD7J Strong Genetic Variation [1068]
CRMP1 DE0EUXB Strong Altered Expression [945]
CYP27A1 DEBS639 Strong Altered Expression [1069]
CYP2C8 DES5XRU Strong Biomarker [1070]
CYP39A1 DEEG96X Strong Biomarker [1071]
DCXR DE3FEV8 Strong Biomarker [1072]
DDAH1 DEY0TQC Strong Altered Expression [1073]
DHRS7 DEEXSKI Strong Biomarker [1074]
DHRS9 DEGTU5I Strong Biomarker [1075]
DIO3 DET89OV Strong Biomarker [1076]
FAAH DEUM1EX Strong Altered Expression [1077]
GLS DE3E0VT Strong Biomarker [1078]
HAGH DE05IKP Strong Altered Expression [1079]
HPGD DEHKSC6 Strong Genetic Variation [444]
HPRT1 DEVXTP5 Strong Altered Expression [1080]
HSD3B1 DERDQWN Strong Biomarker [1081]
MAT1A DEQ6NC9 Strong Biomarker [371]
MT1A DE5ME8A Strong Biomarker [746]
MT2A DEFKGT7 Strong Genetic Variation [1082]
NAT10 DEZV4AP Strong Biomarker [412]
NNMT DECVGJ3 Strong Altered Expression [1083]
PGPEP1 DEVDR46 Strong Biomarker [255]
SAT1 DEMWO83 Strong Biomarker [1084]
SULT1E1 DESTKG6 Strong Genetic Variation [1085]
SULT2A1 DE0P6LK Strong Biomarker [342]
UGT2B10 DEI8NGH Strong Biomarker [1086]
UGT2B11 DE7TIN4 Strong Biomarker [1086]
GLDC DEIN8FB Definitive Biomarker [1087]
MTRR DE6NIY9 Definitive Genetic Variation [1088]
UGT1A10 DEL5N6Y Definitive Genetic Variation [1034]
UGT1A4 DELOY3P Definitive Genetic Variation [1034]
UGT1A6 DESD26P Definitive Genetic Variation [1034]
UGT1A7 DEZO4N3 Definitive Genetic Variation [1034]
UGT1A8 DE2GB8N Definitive Genetic Variation [1034]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 DME(s)
This Disease Is Related to 1858 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ABHD5 OTY829Z3 Limited Biomarker [1089]
ACOXL OTW680HT Limited Biomarker [1090]
ACTR2 OT3C8U5T Limited Altered Expression [1091]
ADNP OTEGICWR Limited Genetic Variation [1092]
AGAP2 OTEYO9TM Limited Altered Expression [1093]
AGMO OTGMAHAT Limited Genetic Variation [3]
ALDH3A1 OTAYZZE6 Limited Biomarker [1094]
ALOX15B OTWQQ08W Limited Altered Expression [1095]
AMH OT5FH4BD Limited Biomarker [1096]
APAF1 OTJWIVY0 Limited Biomarker [1097]
APOA5 OTEVKLVA Limited Biomarker [1098]
APOBEC3B OTHLNI51 Limited Altered Expression [1099]
ARHGAP1 OT0H2ZBZ Limited Biomarker [1100]
ARHGDIA OTEXWJDO Limited Biomarker [1101]
ARNT OTMSIEZY Limited Biomarker [1102]
ARSL OTF1VTCR Limited Biomarker [1103]
ASAH1 OT1DNGXL Limited Biomarker [1104]
ASCC1 OTH4VAP9 Limited Altered Expression [1105]
ATAD3A OTWF6HBP Limited Biomarker [1106]
ATP6 OTPHOGLX Limited Biomarker [1107]
ATP6V0C OTKPL09B Limited Biomarker [1108]
ATPAF1 OTG1V44F Limited Genetic Variation [1109]
ATXN1 OTQF0HNR Limited Biomarker [1110]
AZIN2 OT8OB7CG Limited Biomarker [1111]
BAG1 OTRQNIA4 Limited Biomarker [1112]
BAG5 OT0J97C6 Limited Altered Expression [1113]
BCAS2 OTRMF2WY Limited Altered Expression [1114]
BCL3 OT1M5B95 Limited Altered Expression [1115]
BNIP2 OTVZD4H6 Limited Biomarker [1100]
BNIP3L OTJKOMXE Limited Biomarker [1116]
BPIFA2 OTLFSDZD Limited Biomarker [1117]
BPY2 OT2WQPNQ Limited Altered Expression [1118]
BTG2 OTZF6K1H Limited Genetic Variation [1119]
BTG3 OT9ANHVT Limited Altered Expression [1120]
BUB1B OT8KME51 Limited Biomarker [1121]
BUD13 OTXG6MX5 Limited Genetic Variation [1098]
C10orf90 OT6DNZC4 Limited Genetic Variation [106]
CALM2 OTNYA92F Limited Altered Expression [1122]
CAMTA1 OTAN1S5B Limited Genetic Variation [3]
CAND1 OTGB6NU0 Limited Biomarker [160]
CAND2 OTOMOG3R Limited Biomarker [38]
CANX OTYP1F6J Limited Biomarker [1123]
CARMIL3 OT4ZN0K3 Limited Altered Expression [1124]
CBX1 OT2L4XZX Limited Biomarker [1125]
CCDC8 OTO295IH Limited Biomarker [1123]
CD109 OTDADBM4 Limited Biomarker [162]
CD200R1 OT65Q9M6 Limited Biomarker [81]
CD63 OT2UGZA9 Limited Biomarker [1126]
CDC42 OT5QBC5M Limited Biomarker [1127]
CDC6 OTX93FE7 Limited Altered Expression [1128]
CENPF OT7AG0SW Limited Biomarker [1129]
CEP57 OTPOHLIX Limited Biomarker [1130]
CHPT1 OT4FJ0K3 Limited Biomarker [1131]
CIZ1 OT3UKHPI Limited Altered Expression [1132]
CLDN11 OTNN6UTL Limited Biomarker [1133]
CMIP OTZN8Z4A Limited Biomarker [1134]
CMTM3 OTS75IGC Limited Biomarker [1135]
CNN2 OTH3CSXA Limited Biomarker [1136]
COL6A1 OTYKSCOB Limited Altered Expression [1137]
COX1 OTG3O9BN Limited Genetic Variation [1138]
CPD OT2CS64Y Limited Altered Expression [1139]
CREB3 OT9617UO Limited Biomarker [1140]
CRIM1 OTTZNV6Y Limited Altered Expression [1141]
CRYBB2 OTL0Z8E6 Limited Genetic Variation [1142]
CSRP1 OTUS7RM2 Limited Biomarker [1143]
CTTN OTJRG4ES Limited Altered Expression [1144]
CUL4B OT2QX4DO Limited Altered Expression [1145]
CUX1 OTU1LCNJ Limited Altered Expression [640]
CUZD1 OTDQJVZ8 Limited Altered Expression [197]
CXCL16 OTD49T9R Limited Biomarker [1146]
CYB5R2 OTTLM7XN Limited Posttranslational Modification [1147]
DAXX OTX6O7PL Limited Biomarker [1148]
DCTN4 OTM7C943 Limited Biomarker [198]
DDX19B OT2084EJ Limited Biomarker [1149]
DESI1 OTFNIW98 Limited Genetic Variation [1150]
DGKK OTHIMF7L Limited Genetic Variation [1151]
DLEC1 OTMKKBUW Limited Altered Expression [1152]
DLG5 OTU9Z17K Limited Biomarker [1153]
DMBT1 OTVNU9D9 Limited Altered Expression [1154]
DNASE1L1 OT9ZOFN9 Limited Biomarker [1155]
DNTT OTFSEF12 Limited Biomarker [94]
DST OTHZBM4X Limited Genetic Variation [1156]
DUSP2 OTH54FMR Limited Altered Expression [5]
DUSP6 OT4H6RKW Limited Biomarker [1157]
DYNLL1 OTR69LHT Limited Biomarker [1158]
E2F4 OTB3JFH4 Limited Biomarker [1159]
EAF2 OTSOET5L Limited Altered Expression [1160]
EFCAB13 OTYZ859V Limited Genetic Variation [977]
EFS OT06O7XL Limited Biomarker [1161]
EIF2S1 OTM0GDTP Limited Altered Expression [1162]
EIF3D OTDOMP80 Limited Biomarker [1163]
ELK1 OTH9MXD6 Limited Biomarker [1164]
ELOC OT0XHHWP Limited Biomarker [1165]
ENO1 OTB1KWJS Limited Biomarker [1166]
ENO2 OTRODL0T Limited Biomarker [1167]
EPS8L3 OT7XYA2T Limited Genetic Variation [1168]
ERCC5 OTQAKFJM Limited Genetic Variation [737]
ETV5 OTE2OBM4 Limited Altered Expression [1169]
EXO1 OTI87RS5 Limited Biomarker [1170]
EXOC4 OT5EWXAN Limited Genetic Variation [1171]
FADD OTV7GFHH Limited Posttranslational Modification [1172]
FASTK OTTHFZMP Limited Biomarker [1173]
FASTKD2 OTD635WX Limited Biomarker [1173]
FBRS OTUVH446 Limited Biomarker [1174]
FBXL4 OTZECCIQ Limited Biomarker [1175]
FBXO8 OTZNGJGW Limited Biomarker [1174]
FGF11 OT6513W2 Limited Biomarker [1176]
FGF12 OTBM9QIO Limited Biomarker [38]
FGF9 OT2SKDGM Limited Biomarker [1177]
FILIP1L OTPY8IMS Limited Altered Expression [1178]
FOXP2 OTVX6A59 Limited Altered Expression [1179]
FUT6 OTBZUQ7F Limited Biomarker [1180]
GADD45G OT8V1J4M Limited Biomarker [1181]
GADD45GIP1 OT4IZ4TP Limited Biomarker [1182]
GADL1 OTJM4A0R Limited Biomarker [1111]
GDE1 OTU6FSBF Limited Altered Expression [1183]
GDF9 OTNTVKVU Limited Biomarker [1184]
GFRA1 OT3WBVYB Limited Biomarker [1185]
GINS1 OTVQZMMQ Limited Altered Expression [994]
GNRH2 OTORRM53 Limited Altered Expression [1186]
GOLM1 OTOZSV6O Limited Altered Expression [4]
GOLPH3 OTDLGYM3 Limited Altered Expression [1187]
GPR158 OTYOC1RQ Limited Biomarker [1188]
GPRC5A OTPOCWR7 Limited Altered Expression [1189]
GPX3 OT6PK94R Limited Biomarker [1190]
GTF2H2 OTK72L9I Limited Altered Expression [1191]
H1-0 OTRLJK4Z Limited Biomarker [1192]
H1-1 OTSS815G Limited Biomarker [1193]
HCLS1 OTX7WGYN Limited Altered Expression [640]
HES5 OTW7JEHV Limited Altered Expression [1194]
HIP1 OT7AKCFQ Limited Biomarker [1195]
HMGN5 OTUUAHVQ Limited Biomarker [1196]
HOOK3 OT0OE8SX Limited Altered Expression [1197]
HOXA1 OTMSOJ7D Limited Biomarker [1198]
HOXA10 OTB6GQ09 Limited Biomarker [1199]
HPR OTXSC9UB Limited Biomarker [1200]
HSF2 OTXNJIJ9 Limited Altered Expression [1201]
HSPA1L OTC2V1K6 Limited Genetic Variation [1202]
HSPBAP1 OTRYDAZX Limited Biomarker [1203]
ID4 OTPMJ39I Limited Altered Expression [1204]
IFI16 OT4SPU0U Limited Altered Expression [1205]
IGSF8 OTU22IKI Limited Biomarker [1206]
IL17RA OTVVI8ER Limited Biomarker [1207]
IL17RB OT0KDNSF Limited Biomarker [97]
IL17RD OTKD9XST Limited Biomarker [1208]
ING4 OT0VVG4V Limited Biomarker [1209]
INHA OT7HWCO3 Limited Altered Expression [1210]
IRF2 OTAZRUW3 Limited Altered Expression [1211]
IRF9 OTK4MYQJ Limited Biomarker [1212]
JAG1 OT3LGT6K Limited Biomarker [1213]
KAT8 OT5LPQTR Limited Genetic Variation [1214]
KDM3B OTZU5J5S Limited Genetic Variation [106]
KHSRP OTDHZARB Limited Altered Expression [640]
KIF2B OTLPAX4N Limited Genetic Variation [1215]
KIF3A OTMUBSSK Limited Altered Expression [1216]
KLF8 OTUC5CDB Limited Biomarker [1217]
KLK12 OTNYK59J Limited Altered Expression [1218]
KLK13 OT8LOD2U Limited Genetic Variation [1219]
KLK15 OT7BVG17 Limited Biomarker [1220]
KLLN OTV3FPH0 Limited Altered Expression [1221]
LAMB1 OT6J9LJR Limited Genetic Variation [3]
LGALS7 OTMSVI7R Limited Altered Expression [1222]
LMCD1 OT3AWE8O Limited Biomarker [38]
LPCAT1 OTCV7AGV Limited Altered Expression [1223]
LPCAT2 OT6NTBAA Limited Biomarker [1193]
LRP1B OT4YZG2N Limited Genetic Variation [3]
LRRC58 OTJ9JMKX Limited Biomarker [38]
LSAMP OTYXVQX2 Limited Genetic Variation [1224]
LYPD4 OTYNO8BS Limited Genetic Variation [1225]
MAN2C1 OT17VT8D Limited Biomarker [1226]
MAP2K4 OTZPZX11 Limited Altered Expression [1227]
MARCKSL1 OT13J2FM Limited Altered Expression [1228]
MARCO OT0NW2Q0 Limited Altered Expression [1229]
MB OTYWYL2D Limited Altered Expression [1230]
MBD1 OTD19VO6 Limited Altered Expression [1231]
MCM2 OTGGORIQ Limited Biomarker [1232]
MDC1 OTEUQH4J Limited Biomarker [1233]
MEAF6 OTAFDRYT Limited Altered Expression [1234]
MED15 OT0D0JVD Limited Altered Expression [1235]
MEIS1 OTH9DKAD Limited Biomarker [1236]
MEP1A OTY2Z48T Limited Altered Expression [1237]
MEX3D OTAUWRK7 Limited Genetic Variation [1109]
MFN1 OTCBXQZF Limited Biomarker [1238]
MMP26 OT9O89KU Limited Biomarker [1239]
MMS19 OTAXB34N Limited Biomarker [1240]
MNAT1 OTXLOYCB Limited Biomarker [94]
MNX1 OTXP9FH1 Limited Altered Expression [826]
MOB3B OTZJQG1D Limited Genetic Variation [1241]
MPC2 OT0GHXGG Limited Altered Expression [1242]
MS4A5 OTH6YQDX Limited Genetic Variation [106]
MSH3 OTD3YPVL Limited Genetic Variation [1243]
MSN OTZJ4J6G Limited Biomarker [78]
MT1B OTUA4FFH Limited Altered Expression [133]
MT1E OTXJKU4Y Limited Altered Expression [133]
MT1F OTZVUYG1 Limited Altered Expression [133]
MT1H OT0MVBM6 Limited Altered Expression [133]
MT1M OTVT8PLU Limited Altered Expression [133]
MUC2 OT3X4QVX Limited Biomarker [1244]
MUC6 OTPVL723 Limited Biomarker [1244]
MYDGF OT9HRPL6 Limited Biomarker [638]
MYH6 OT3YNCH1 Limited Biomarker [1245]
MYL9 OT6B22JB Limited Altered Expression [1246]
NAALADL2 OT2HOGPQ Limited Genetic Variation [1247]
NAB2 OTG4BDF3 Limited Posttranslational Modification [1248]
NAP1L1 OTI7WBZV Limited Genetic Variation [1249]
NBL1 OTT37U4O Limited Altered Expression [1250]
NCOR2 OTY917X0 Limited Biomarker [1251]
NDC80 OTS7D306 Limited Altered Expression [1252]
NEU1 OTH9BY8Y Limited Biomarker [1253]
NEU3 OTQ5PQOW Limited Biomarker [1254]
NEURL1 OT2C4P70 Limited Biomarker [1253]
NFIX OT1DPZAE Limited Biomarker [607]
NHS OTKE8QAT Limited Biomarker [1255]
NID1 OTKLBLS6 Limited Biomarker [1256]
NOX5 OTHTH59G Limited Altered Expression [1257]
NPL OTA7P0TO Limited Biomarker [1258]
NUMBL OTWMTMMH Limited Genetic Variation [106]
NUP62 OTMN63DH Limited Biomarker [198]
NUPR1 OT4FU8C0 Limited Altered Expression [1259]
NWD1 OT4JMFPH Limited Altered Expression [1260]
OAS1 OT8ZLOCY Limited Genetic Variation [1261]
OPRPN OT6K1ZD6 Limited Biomarker [175]
OPTN OT2UXWH9 Limited Genetic Variation [1249]
OSBPL10 OT0TFMBE Limited Biomarker [38]
OSCP1 OTZ4IFGJ Limited Biomarker [1262]
OSR1 OTB19LEQ Limited Genetic Variation [1263]
OXR1 OTPIDMT3 Limited Biomarker [976]
PAEP OTQA0NV4 Limited Biomarker [1264]
PAGE1 OT7SQGM8 Limited Biomarker [1265]
PAK6 OTAHPZTT Limited Biomarker [119]
PALB2 OT6DNDBG Limited Genetic Variation [471]
PBX1 OTORABGO Limited Biomarker [1266]
PBX3 OT8WMVM4 Limited Altered Expression [1267]
PCDH17 OTRK0M05 Limited Posttranslational Modification [1268]
PCLAF OTMVIOUU Limited Biomarker [1269]
PDCD5 OT6T2DDL Limited Biomarker [1270]
PDLIM7 OTAZVODU Limited Biomarker [1271]
PER2 OTU2B1DJ Limited Altered Expression [1272]
PFKFB4 OTQYEXL2 Limited Biomarker [1273]
PGK1 OT6V1ICH Limited Biomarker [1274]
PHF21B OTU5GLCQ Limited Altered Expression [1275]
PIAS3 OT3TWH9R Limited Altered Expression [935]
PKD1L3 OTQMYNOW Limited Genetic Variation [1247]
PKHD1 OTAH8SMF Limited Biomarker [1276]
PLPP4 OTH5EXZC Limited Genetic Variation [3]
PLRG1 OTIVZ5LL Limited Biomarker [175]
PLXNA1 OTN0BING Limited Altered Expression [1277]
POLR2A OTHJQ1DZ Limited Biomarker [1278]
PPP1R2 OTNLOUQR Limited Biomarker [1279]
PRDX6 OTS8KC8A Limited Altered Expression [1280]
PRKAR2A OTZ7P17Z Limited Biomarker [1281]
PRRT2 OTCJUBDO Limited Biomarker [166]
PRY OTO6GHZU Limited Posttranslational Modification [1118]
PSAP OTUOEKY7 Limited Biomarker [1282]
PSMB1 OTYRFBAH Limited Biomarker [1283]
PSMG1 OTZ5I6UM Limited Altered Expression [5]
PSPH OTV1PVAX Limited Biomarker [1117]
PSPN OT54LLZJ Limited Biomarker [1117]
PTOV1 OT94WT5X Limited Altered Expression [1284]
PTPRA OTZA82J1 Limited Altered Expression [1285]
PTPRK OTAP5AT3 Limited Altered Expression [1286]
PTTG1 OTIMYS4W Limited Altered Expression [448]
QKI OTTAUGLB Limited Biomarker [1287]
RAB27A OT9SQRWY Limited Altered Expression [1288]
RAB27B OTPF9D0K Limited Altered Expression [1288]
RAB5A OTFR2KM4 Limited Biomarker [1289]
RAD21 OTQS84ZF Limited Altered Expression [1290]
RARRES1 OTETUPP5 Limited Altered Expression [1291]
RASA2 OTL06RG2 Limited Biomarker [1292]
RBBP8 OTRHJ3GI Limited Altered Expression [1259]
RDX OTNSYUN6 Limited Biomarker [1293]
REPS2 OTSE3TRP Limited Altered Expression [1294]
RIDA OTW4098I Limited Biomarker [1117]
RNF14 OTWX0D0H Limited Biomarker [1295]
ROBO2 OTFJ9FQW Limited Genetic Variation [106]
RPL10 OTBHOZGC Limited Altered Expression [1277]
RPS2 OTSMTZVB Limited Altered Expression [1296]
RPS6 OTT4D1LN Limited Biomarker [1297]
RRAD OTW2O4GD Limited Biomarker [1298]
SAFB OTGRV2LW Limited Altered Expression [1299]
SCARB2 OTN929M8 Limited Altered Expression [1300]
SEC14L2 OTJST64D Limited Biomarker [1301]
SEC62 OTCWEL5F Limited Biomarker [1302]
SELENOP OT02B8IR Limited Altered Expression [1303]
SEM1 OTASLBM1 Limited Biomarker [1304]
SEMA3C OTEGUY7F Limited Biomarker [1305]
SEPTIN4 OTD16B30 Limited Biomarker [1306]
SERPINB2 OT72QLZB Limited Altered Expression [1307]
SETD5 OTRPAVEO Limited Biomarker [38]
SETDB1 OTWVUA1B Limited Biomarker [1308]
SFN OTLJCZ1U Limited Biomarker [1309]
SFRP5 OTLCVVSH Limited Altered Expression [1310]
SGK3 OTQ6QO99 Limited Biomarker [1045]
SH2B1 OTJZO2CI Limited Biomarker [1043]
SIGLEC7 OTNDLURR Limited Altered Expression [640]
SKA3 OTLHEVJD Limited Altered Expression [1311]
SKAP2 OTSF44KP Limited Biomarker [1042]
SKI OT4KJ8F6 Limited Altered Expression [1312]
SKIL OTNBXH32 Limited Biomarker [1313]
SLC35G1 OTKZUA8O Limited Genetic Variation [1150]
SMUG1 OT2YIOCQ Limited Biomarker [1314]
SMURF2 OT3TRVL7 Limited Biomarker [1315]
SNED1 OTBQVXY5 Limited Genetic Variation [3]
SNPH OTL6XBFA Limited Biomarker [1316]
SOAT1 OTB4Y5RJ Limited Biomarker [1317]
SOSTDC1 OTAKDNSM Limited Posttranslational Modification [1318]
SOX7 OTOZOFAG Limited Altered Expression [770]
SPAG11A OTNQ9UB0 Limited Biomarker [171]
SPAG5 OTCLJ56M Limited Altered Expression [1319]
SPATA6L OTCQ01F6 Limited Genetic Variation [3]
SPRED1 OTKX7P8G Limited Altered Expression [1320]
SPRED2 OTUX685J Limited Altered Expression [1320]
SRA1 OTYOGMTG Limited Biomarker [1321]
ST13 OTNML6UP Limited Altered Expression [1322]
STAP2 OTEB1VVI Limited Biomarker [1323]
STEAP3 OTS9GZK5 Limited Biomarker [1324]
STXBP3 OTTTYMAQ Limited Biomarker [1117]
SUCLG2 OT0KHLY2 Limited Genetic Variation [1151]
SUGP1 OT7W0EB8 Limited Biomarker [824]
SUMO1 OTJFD4P5 Limited Biomarker [1325]
SYNPO2 OTC3U0YH Limited Biomarker [1326]
TAC1 OTM842YW Limited Altered Expression [795]
TAFA4 OT0RHMNG Limited Biomarker [38]
TANC1 OTF6TZ8E Limited Genetic Variation [1327]
TAT OT2CJ91O Limited Altered Expression [1328]
TBX1 OTQLBPRA Limited Genetic Variation [1092]
TCTN1 OTG5KEV8 Limited Altered Expression [1329]
TFDP3 OTI4K6MN Limited Biomarker [1330]
TGM4 OTORRCG6 Limited Biomarker [1331]
TLCD3B OTM6EPUS Limited Altered Expression [1332]
TLK1 OTICTXI8 Limited Biomarker [727]
TMEFF2 OT1WZ2QO Limited Biomarker [1333]
TMEM79 OTEC6EFU Limited Biomarker [1090]
TMSB15A OTSBWCES Limited Biomarker [1334]
TP73 OT0LUO47 Limited Biomarker [1335]
TRIB1 OTPEO17G Limited Biomarker [450]
TRPC4AP OTNJ9IFS Limited Biomarker [1336]
APBB3 OTNUTR0N Disputed Biomarker [1337]
ARL8B OTD5TJIN Disputed Biomarker [1338]
BNIP3 OT4SO7J4 Disputed Posttranslational Modification [1339]
C17orf49 OTKPULAA Disputed Altered Expression [1340]
CXCL6 OTFTCQ4O Disputed Altered Expression [1341]
DUOX1 OTQ2AEW0 Disputed Biomarker [1342]
EVX1 OT4A84VD Disputed Biomarker [558]
FLAD1 OTY8R02L Disputed Biomarker [238]
FZD4 OTGLZIE0 Disputed Biomarker [235]
GAL3ST2 OTZT1PLE Disputed Biomarker [1343]
GPR4 OTIBF32I Disputed Altered Expression [1344]
GTPBP10 OTS82NCA Disputed Biomarker [1345]
HELLS OTVVV668 Disputed Altered Expression [1346]
IMPACT OTQ923OB Disputed Biomarker [1347]
ING2 OT6H0EWF Disputed Biomarker [1348]
LEF1 OTWS5I5H Disputed Altered Expression [1349]
LGR6 OTPZ1PWR Disputed Biomarker [235]
MT1G OTAV1OCR Disputed Altered Expression [133]
MT1X OT9AKFVS Disputed Altered Expression [133]
MYBBP1A OTIVEMIU Disputed Genetic Variation [1350]
NOLC1 OTKDZU0D Disputed Biomarker [1351]
PAGE4 OT2VLWT0 Disputed Biomarker [1352]
PEBP4 OTKDCVC6 Disputed Biomarker [1353]
PMEPA1 OTY8Z9UF Disputed Biomarker [1354]
POU2F1 OTK7ELJ0 Disputed Altered Expression [245]
PRDX1 OTZ3BEC4 Disputed Biomarker [1355]
PRMT6 OT5V3XIN Disputed Biomarker [1356]
RAB3GAP1 OT4DQ8F2 Disputed Biomarker [1351]
RAMP1 OT7UT2XB Disputed Biomarker [1357]
RAPSN OTGMSWDQ Disputed Biomarker [238]
RBAK OTYJ6EAU Disputed Altered Expression [984]
RBL2 OTBQSOE6 Disputed Biomarker [1351]
RHOU OTERIAD4 Disputed Altered Expression [779]
S100A16 OT3ERKQI Disputed Altered Expression [1358]
SALL4 OTC08PR5 Disputed Biomarker [1359]
SELENOF OT2JFB3S Disputed Genetic Variation [1360]
SERBP1 OTZVSU0X Disputed Biomarker [1361]
SFMBT2 OTZQT61Q Disputed Altered Expression [1362]
SHMT1 OTIINA3J Disputed Genetic Variation [1363]
SMAD2 OTC6VB4K Disputed Biomarker [234]
SMARCA1 OT0Y6PTU Disputed Biomarker [1364]
STK11 OT1YZSP3 Disputed Biomarker [1365]
TDRD1 OT0CBCI3 Disputed Altered Expression [1366]
THBS4 OTA1T9KK Disputed Altered Expression [1367]
TSC22D1 OTN4GFWD Disputed Altered Expression [1368]
ACACA OT5CQPZY moderate Biomarker [199]
ADAM15 OTZ7VLTP moderate Altered Expression [1369]
ADGRE2 OTUYJVYG moderate Altered Expression [1370]
ADGRE5 OTTSB84Q moderate Altered Expression [1370]
ADIPOR2 OT2HDTL8 moderate Genetic Variation [1371]
AIM2 OT86QUI8 moderate Biomarker [1372]
ALDH1A3 OT1C9NKQ moderate Altered Expression [1373]
ALDH7A1 OTV57BZD moderate Biomarker [1374]
AMFR OTQRX7LC moderate Biomarker [1375]
ANXA3 OTDD8OI7 moderate Biomarker [1376]
ARHGEF2 OTBQTFRT moderate Altered Expression [338]
ARVCF OT78DKOU moderate Biomarker [1377]
ASS1 OT4ZMG0Q moderate Biomarker [1378]
ASXL1 OTX931AW moderate Genetic Variation [1379]
ASXL2 OTNG4E2M moderate Biomarker [1379]
ATF2 OTNIZPEA moderate Biomarker [1380]
BCR OTCN76C1 moderate Biomarker [1381]
BHLHE40 OTITX14U moderate Biomarker [1382]
BMPR1A OTQOA4ZH moderate Genetic Variation [1383]
CAMK2N1 OTKCR5XL moderate Altered Expression [1384]
CAP1 OTYM8A2N moderate Biomarker [682]
CAPG OTJ86KI6 moderate Biomarker [1385]
CBFA2T2 OTNOIB23 moderate Altered Expression [1386]
CBX3 OTOP9RLD moderate Biomarker [1387]
CCDC181 OTPE3H8B moderate Biomarker [1388]
CCN3 OTOW5YL4 moderate Biomarker [1389]
CDK20 OTOLNN68 moderate Biomarker [268]
CDON OT81X593 moderate Altered Expression [1390]
CFHR3 OTYL8SDO moderate Biomarker [1391]
CHI3L1 OT2Z7VJH moderate Biomarker [637]
CLDN5 OTUX60YO moderate Biomarker [476]
CLDN7 OTNE0XHQ moderate Altered Expression [1392]
COL4A3 OT6SB8X5 moderate Biomarker [1393]
COL4A6 OTUREU5Z moderate Altered Expression [1394]
COX5A OTP0961M moderate Biomarker [1395]
COX8A OTU0NR39 moderate Biomarker [1395]
CPOX OTIAY121 moderate Biomarker [1395]
CPT2 OTIN6G20 moderate Biomarker [1131]
CREBRF OT2GK1HI moderate Altered Expression [1396]
CRYBG1 OTIPDI15 moderate Genetic Variation [16]
CTBP1 OTVYH2DH moderate Biomarker [1397]
CTBP2 OTGZGT87 moderate Biomarker [1398]
CTCF OT8ZB70U moderate Biomarker [1399]
CTRL OTB6NA5O moderate Biomarker [1400]
CUL4A OTTBV70J moderate Biomarker [1401]
CYGB OTX153DQ moderate Biomarker [1280]
CYP4F8 OT437NB2 moderate Altered Expression [278]
CYTH1 OTYH9NRJ moderate Biomarker [1402]
DCD OTV5PBGJ moderate Genetic Variation [1403]
DIAPH3 OTPOT23F moderate Biomarker [1404]
DLX1 OT7BH057 moderate Altered Expression [1405]
DOHH OTDRAT3F moderate Altered Expression [276]
DPYSL3 OTINJV20 moderate Posttranslational Modification [1406]
DSC2 OTODVH8K moderate Biomarker [1407]
DSC3 OTYG47F8 moderate Altered Expression [1407]
DVL2 OTMNYNCM moderate Biomarker [1408]
E2F8 OTQKZGFP moderate Biomarker [1409]
EFEMP1 OTZVUOOB moderate Biomarker [1410]
ELF3 OTUTLEQO moderate Biomarker [1411]
ELP1 OTYEWBF7 moderate Genetic Variation [1412]
EMP1 OTSZHUHQ moderate Biomarker [1413]
FAM110B OTLYN2T1 moderate Altered Expression [1414]
FBXW11 OT2A6RLR moderate Biomarker [1415]
FEN1 OT6QGG7O moderate Altered Expression [1416]
FOXA2 OTJOCVOY moderate Biomarker [1417]
FRS2 OTDMD800 moderate Biomarker [1418]
FRS3 OTTNP6H7 moderate Biomarker [1418]
FZD5 OTXFFY56 moderate Biomarker [1419]
FZD8 OTZ9IRFL moderate Altered Expression [1420]
G3BP2 OTAWW3KI moderate Biomarker [941]
GATM OTIJ4Z11 moderate Biomarker [1116]
GEMIN4 OTX7402E moderate Genetic Variation [1421]
GNA13 OTVDL515 moderate Altered Expression [1422]
GNB3 OTA6HYBA moderate Genetic Variation [1423]
GSTM3 OTLA2WJT moderate Genetic Variation [1424]
H2AX OT18UX57 moderate Biomarker [1425]
HEY2 OTU4J3ZI moderate Biomarker [1426]
HEYL OTN7BH79 moderate Biomarker [1426]
HOXC6 OTBCRAZV moderate Altered Expression [1405]
HSD17B6 OTSB55D2 moderate Biomarker [1427]
ID3 OTUULW5Z moderate Altered Expression [1428]
IL27 OTIS3OF8 moderate Biomarker [638]
INPP4B OTLROA7G moderate Altered Expression [1429]
IQGAP2 OTX2UA7P moderate Altered Expression [1430]
ISG20 OTCWRJJW moderate Altered Expression [1431]
KIDINS220 OTLBH2MA moderate Genetic Variation [1432]
KIF22 OTY6X6BL moderate Biomarker [1433]
KLF13 OTMIKHZ4 moderate Biomarker [1434]
KLRG2 OTBLEXSC moderate Genetic Variation [1435]
KRT13 OTTYSKGX moderate Altered Expression [1436]
LAT OTZC1XZ1 moderate Altered Expression [1437]
LCOR OT1K7DKB moderate Altered Expression [1438]
LIG4 OT40DNXU moderate Altered Expression [1439]
LILRA3 OTBNQCOS moderate Genetic Variation [1440]
LMLN OTQF0JPY moderate Biomarker [1441]
LPIN2 OTRRTMXX moderate Biomarker [1442]
LRRC26 OTXEFL76 moderate Biomarker [1443]
LRRC3B OT9VDGPR moderate Genetic Variation [1444]
LRWD1 OTHRVJQC moderate Biomarker [1445]
LYPD5 OTGP7UKA moderate Altered Expression [131]
LZTS2 OTQFSQEE moderate Altered Expression [1446]
MAGT1 OTQSAV5C moderate Biomarker [251]
MAP1S OT5WUD4C moderate Biomarker [1447]
MCCC2 OTQDHSMI moderate Altered Expression [1448]
MGAT4C OTQ2R629 moderate Altered Expression [1449]
MIB1 OT5C404P moderate Altered Expression [314]
MRPL41 OTG5URO4 moderate Biomarker [1450]
MYLIP OTL0PFGV moderate Biomarker [1451]
MYO6 OTJQYRC7 moderate Biomarker [1452]
NANOG OTUEY1FM moderate Altered Expression [1453]
NCOR1 OT04XNOU moderate Biomarker [1454]
NEU2 OTW76T35 moderate Altered Expression [1455]
NIPSNAP1 OTKXKUT8 moderate Biomarker [1442]
NRBP1 OTRWEJ65 moderate Altered Expression [1368]
NUP43 OTDF5K8Y moderate Biomarker [268]
OAS2 OT64CCTM moderate Genetic Variation [1261]
OAZ1 OTPT0PKZ moderate Altered Expression [1456]
OBI1 OTX62ZHW moderate Genetic Variation [1457]
PARD3 OTH5BPLO moderate Biomarker [281]
PBOV1 OT67PERT moderate Altered Expression [1458]
PCBP1 OTHN0TD7 moderate Biomarker [1459]
PDHA1 OTGEU8IK moderate Biomarker [1460]
PLAAT1 OTM3M6P4 moderate Biomarker [1461]
PLAC8 OT3SYRUJ moderate Biomarker [1462]
PLXNB1 OTCA7JIT moderate Biomarker [1463]
PPARGC1A OTHCDQ22 moderate Altered Expression [1464]
PPP1CB OTYFTYFR moderate Biomarker [329]
PPP1R12A OT4AVU95 moderate Biomarker [648]
PPP1R12C OT9Q86JO moderate Altered Expression [1386]
PPP1R13B OTC88VQO moderate Altered Expression [1386]
PPP1R1A OTGTAGCV moderate Biomarker [1465]
PPRC1 OT6GB3WR moderate Altered Expression [1466]
PRG2 OT0BCPQG moderate Biomarker [714]
PRKD3 OT987HJI moderate Biomarker [1467]
PRRX2 OT8UR4AU moderate Biomarker [1468]
PRSS3 OTN3S5YB moderate Biomarker [1469]
PSKH1 OTI9K58A moderate Biomarker [1470]
PSMC6 OTG8997V moderate Biomarker [268]
PSMD7 OT7PZZ4K moderate Altered Expression [338]
PVR OT3N91T7 moderate Biomarker [1471]
RAB3B OTZA4SXL moderate Biomarker [1472]
RACGAP1 OTQE8IEH moderate Biomarker [364]
RAD9A OTJ3AJQU moderate Biomarker [1473]
RAG2 OTG9UYTW moderate Biomarker [1474]
RAP2A OT0JB5S4 moderate Genetic Variation [1475]
RBM5 OTCBWHHV moderate Altered Expression [1476]
RBM6 OTI99KAZ moderate Biomarker [1477]
RFX6 OT8H77DL moderate Genetic Variation [1029]
RNF40 OTC8SDA3 moderate Biomarker [1478]
ROM1 OTE7H0YV moderate Altered Expression [1479]
RPL31 OTV9E1OE moderate Biomarker [1480]
RRM2B OTE8GBUR moderate Altered Expression [1481]
SCRIB OTW4N3FV moderate Biomarker [1482]
SEC14L1 OTA75FET moderate Biomarker [1165]
SEL1L OTC0FB7T moderate Biomarker [1483]
SELENOK OTKM7N7P moderate Biomarker [327]
SEMA3E OTD4S36H moderate Biomarker [1484]
SHOX2 OTLCZZJW moderate Biomarker [1485]
SMC4 OTEJE6AG moderate Biomarker [1443]
SMR3B OTL5HNM8 moderate Biomarker [331]
SNAI1 OTDPYAMC moderate Altered Expression [1486]
SPAG9 OT45AHMB moderate Altered Expression [1487]
SPANXA1 OTMK3QIS moderate Genetic Variation [1488]
SPATA19 OT47CHQR moderate Altered Expression [1489]
SRM OT4N5MDP moderate Biomarker [1490]
SWAP70 OTPHT2QD moderate Biomarker [1491]
TACC2 OTW4M7HI moderate Biomarker [1492]
TBP OT6C0S52 moderate Biomarker [1493]
TBPL1 OT4I143E moderate Altered Expression [349]
TBX5 OT70PISV moderate Biomarker [1415]
TEAD1 OTK6971C moderate Altered Expression [654]
TFG OT2KJENI moderate Altered Expression [1494]
THBS2 OTXET551 moderate Biomarker [1495]
TLK2 OTZ09CG8 moderate Biomarker [1496]
TM4SF1 OTY0ECQN moderate Altered Expression [1497]
TMBIM4 OT8712PP moderate Biomarker [1498]
TMED3 OTNOPHHC moderate Biomarker [1499]
TMPRSS13 OTMAOAP3 moderate Biomarker [1441]
TP53I3 OTSCM68G moderate Biomarker [1450]
TRAF2 OT1MEZZN moderate Altered Expression [1500]
TRAP1 OTNG0L8J moderate Biomarker [1501]
TRIM36 OT37JQ8Y moderate Biomarker [1502]
A2M OTFTX90K Strong Biomarker [1503]
ABCG4 OT2XJIOG Strong Biomarker [1504]
ABI1 OT5H4M62 Strong Biomarker [1505]
ABR OTZQK8JF Strong Biomarker [1506]
ACCS OTHIHI9D Strong Biomarker [1060]
ACOX3 OTZEPVGF Strong Altered Expression [1507]
ACSL3 OT3MWER1 Strong Biomarker [1508]
ACSL4 OTI71MUJ Strong Biomarker [1509]
ACTC1 OTJU04B1 Strong Altered Expression [1510]
ACTL6A OT0EC5BQ Strong Altered Expression [1511]
ADAM2 OT62YCDZ Strong Biomarker [1512]
ADAM28 OT3GBVHL Strong Biomarker [1513]
ADAR OTQNOHR8 Strong Genetic Variation [1514]
ADGRG1 OTQBB8NT Strong Genetic Variation [348]
ADI1 OT8IOD03 Strong Biomarker [1515]
ADIRF OTTJP8D4 Strong Biomarker [1516]
ADRM1 OTOU4EY6 Strong Genetic Variation [1517]
AFAP1 OTR473H8 Strong Altered Expression [1518]
AFM OTPOR8IO Strong Genetic Variation [348]
AGFG1 OTI8ZKC4 Strong Biomarker [1519]
AGFG2 OTXQZHCR Strong Biomarker [1520]
AGO2 OT4JY32Q Strong Biomarker [1521]
AHSA1 OTC7AFHT Strong Altered Expression [386]
AIP OTDJ3OSV Strong Biomarker [1522]
AIRE OTA7G1Y1 Strong Biomarker [1523]
AJUBA OTNW7YPK Strong Biomarker [1524]
AK6 OT84OHHP Strong Biomarker [1132]
AKAP1 OTIIB2JB Strong Biomarker [829]
AKAP13 OTOZAR14 Strong Biomarker [829]
AKT1S1 OT4JHN4Y Strong Biomarker [732]
ALKBH1 OTADGU5D Strong Biomarker [1525]
ALKBH3 OTS1CD9Z Strong Biomarker [1526]
ALKBH7 OTJVS8CF Strong Genetic Variation [1525]
ALOXE3 OT76J52A Strong Biomarker [1527]
ALPP OTZU4G9W Strong Biomarker [412]
AMBRA1 OTY0YGT9 Strong Biomarker [1528]
AMELX OTIN26MM Strong Altered Expression [1529]
AMOTL1 OT40G45S Strong Biomarker [1530]
AMPD1 OTU17BCI Strong Biomarker [1531]
ANKRD22 OT6CRQ67 Strong Altered Expression [1532]
ANKS4B OT1MREUS Strong Biomarker [1061]
ANP32A OTRHPFO2 Strong Biomarker [1533]
ANP32D OTAGQSQ6 Strong Biomarker [1534]
ANXA6 OT9KIQ0Y Strong Altered Expression [1045]
APBB1IP OTN02KUV Strong Altered Expression [1535]
APMAP OT1P2GJA Strong Biomarker [1536]
APOBEC3A OTYO6F5P Strong Genetic Variation [1537]
APOC1 OTA58CED Strong Biomarker [1538]
APOD OTT77XW8 Strong Altered Expression [1539]
APOLD1 OTGJ4X9N Strong Genetic Variation [1029]
APPBP2 OTLNFV4J Strong Genetic Variation [864]
APPL1 OT8VR95S Strong Altered Expression [1540]
AQP5 OT77GBY8 Strong Altered Expression [1541]
AQP8 OT99JKME Strong Altered Expression [1542]
ARFGAP3 OT2G3KCG Strong Genetic Variation [1543]
ARHGAP21 OT6XY8Y9 Strong Biomarker [1544]
ARHGAP24 OTCQCEZS Strong Biomarker [1545]
ARHGAP6 OTNVXXFX Strong Genetic Variation [348]
ARHGEF1 OTXU4HBW Strong Biomarker [1546]
ARHGEF5 OTUVGFT9 Strong Biomarker [1547]
ARHGEF7 OT9BPJCL Strong Altered Expression [1386]
ARID4A OT1XKBZ0 Strong Altered Expression [1548]
ARID4B OTYLPILE Strong Biomarker [1549]
ARID5B OTUQ4CQY Strong Altered Expression [1550]
ARMC2 OTMCC01T Strong Genetic Variation [348]
ARMH1 OTTJC0D6 Strong Altered Expression [338]
ARRDC3 OTAKW7R9 Strong Altered Expression [1551]
ASAP1 OT4DLRYY Strong Genetic Variation [1552]
ASB2 OTF9LV7L Strong Biomarker [1553]
ASCL1 OTI4X44G Strong Biomarker [1554]
ASF1B OTKXX12I Strong Biomarker [1555]
ASPM OTKXQMNA Strong Biomarker [1556]
ATE1 OT3QNM39 Strong Biomarker [1557]
ATF6 OTAFHAVI Strong Altered Expression [1558]
ATG12 OTJRO09Y Strong Genetic Variation [1559]
ATG16L1 OTEOYC5D Strong Biomarker [1559]
ATG4B OTQ4RNRM Strong Biomarker [1560]
ATG5 OT4T5SMS Strong Biomarker [755]
ATL1 OTR2788Y Strong Altered Expression [351]
ATN1 OTNZFLKY Strong Biomarker [1561]
ATP2A3 OTFYDEES Strong Biomarker [1562]
ATP5F1A OT3FZDLX Strong Altered Expression [1563]
ATP5F1B OTLFZUQK Strong Biomarker [1564]
ATP6AP2 OT0IABVV Strong Altered Expression [1565]
ATP6V1F OTSTT8JG Strong Biomarker [1566]
ATRNL1 OTY5JUX2 Strong Biomarker [412]
AXIN1 OTRGZGZ5 Strong Genetic Variation [1567]
AXIN2 OTRMGQNU Strong Altered Expression [1568]
B3GAT1 OTXFP98E Strong Genetic Variation [348]
B3GNT2 OTE69HV8 Strong Genetic Variation [503]
BABAM1 OTCFPER6 Strong Genetic Variation [417]
BACH2 OT17GS18 Strong Biomarker [1569]
BAD OT63ERYM Strong Posttranslational Modification [1570]
BASP1 OTF4VS5G Strong Biomarker [1227]
BBS2 OTPF9JIB Strong Altered Expression [1571]
BCAR1 OTKT2C2N Strong Biomarker [1572]
BCL10 OT47MCLI Strong Altered Expression [1573]
BCL2L10 OTYXQJ3I Strong Altered Expression [1574]
BCL2L11 OTNQQWFJ Strong Genetic Variation [348]
BCL2L14 OT87E7HW Strong Altered Expression [1575]
BCO2 OTP1L0BZ Strong Genetic Variation [1576]
BEST1 OTWHE1ZC Strong Biomarker [1577]
BGLAP OTK1YLWQ Strong Biomarker [1578]
BHLHE22 OTZUQY5L Strong Altered Expression [1579]
BHLHE41 OTY9GJ1Y Strong Biomarker [1382]
BICRA OTDTPGW0 Strong Altered Expression [1580]
BID OTOSHSHU Strong Altered Expression [1581]
BIK OTTH1T3D Strong Altered Expression [1582]
BIN1 OTK8O0X8 Strong Altered Expression [1583]
BLM OTEJOAJX Strong Genetic Variation [1584]
BMP3 OTCTI0UW Strong Altered Expression [1585]
BMPR1B OTGFN0OD Strong Genetic Variation [1586]
BMS1 OTEGQ8ZO Strong Biomarker [199]
BRF1 OTQC6DMG Strong Altered Expression [1587]
BRMS1 OTV5A6LL Strong Altered Expression [1588]
BRMS1L OTJIW47U Strong Biomarker [1588]
BST1 OTAV5SE7 Strong Altered Expression [1589]
BTF3 OT5ZZFJL Strong Biomarker [1590]
BUB3 OTU91HAU Strong Genetic Variation [448]
BUD31 OTN3HZYF Strong Biomarker [1591]
C1GALT1 OT2ZSZ6P Strong Biomarker [1592]
C1orf116 OTPYEXDM Strong Altered Expression [1593]
C1orf52 OT8RQW3W Strong Altered Expression [1594]
C1QTNF3 OTOJMWW0 Strong Biomarker [1595]
CACUL1 OT6P1ZVP Strong Biomarker [1596]
CADM1 OTRWG9QS Strong Biomarker [1597]
CADM4 OT0TFMFE Strong Biomarker [1598]
CAMKMT OTLJBRUW Strong Biomarker [1599]
CANT1 OT1TPWQR Strong Biomarker [1600]
CAPN3 OTCHG3YK Strong Biomarker [1601]
CAPNS1 OT95EBBD Strong Altered Expression [1602]
CAPRIN1 OTEJAMS3 Strong Genetic Variation [1603]
CAPZB OTF1A4N0 Strong Genetic Variation [1604]
CASZ1 OTWJ2OR8 Strong Biomarker [1605]
CAVIN1 OTFO915U Strong Biomarker [1606]
CBLIF OTNE20WU Strong Altered Expression [1607]
CBX5 OT8VYY84 Strong Altered Expression [1608]
CCAR2 OTLUDG5T Strong Biomarker [1609]
CCDC115 OT04AZNZ Strong Biomarker [1610]
CCDC6 OTXRQDYG Strong Altered Expression [944]
CCHCR1 OT22C116 Strong Genetic Variation [348]
CCL25 OTLWJ8CJ Strong Biomarker [1611]
CCL27 OTUZYC61 Strong Biomarker [412]
CCN4 OT69BER9 Strong Biomarker [1612]
CCN6 OTRFHQ2Z Strong Biomarker [620]
CCNA1 OTX4HD45 Strong Altered Expression [1613]
CCNG1 OT17IA9L Strong Biomarker [1614]
CCNK OTZ7JBPK Strong Biomarker [1615]
CCT2 OTW1VV4E Strong Biomarker [628]
CCT3 OTL6EOS1 Strong Genetic Variation [1616]
CCT4 OT5D452X Strong Biomarker [1617]
CD164 OTZ7FIU8 Strong Biomarker [1618]
CD177 OTS79FNF Strong Altered Expression [1619]
CD1D OT3ROU4J Strong Biomarker [1620]
CD226 OT4UG0KB Strong Biomarker [452]
CD302 OTX580VU Strong Altered Expression [1621]
CD48 OT83ZNPP Strong Biomarker [1622]
CD81 OTQFXNAZ Strong Biomarker [1126]
CD99 OTPUZ5DE Strong Altered Expression [1623]
CDC5L OTTPFUU5 Strong Biomarker [1624]
CDC73 OT6JASZ1 Strong Biomarker [388]
CDCA5 OTZLCQ5U Strong Biomarker [94]
CDCA7L OT1FFWKC Strong Altered Expression [1625]
CDCP1 OTD7RRWK Strong Biomarker [1626]
CDH10 OTK3D5WP Strong Altered Expression [1627]
CDK14 OT385ZH1 Strong Altered Expression [1628]
CDK2AP1 OTNFOHDJ Strong Altered Expression [1629]
CDKAL1 OTA0SGNE Strong Genetic Variation [1630]
CDKN3 OTBE3H07 Strong Biomarker [1631]
CDT1 OTVY53VG Strong Biomarker [1632]
CDY1 OTQVDS8D Strong Altered Expression [1118]
CELSR3 OT8P6QNJ Strong Biomarker [829]
CEMIP OTK80FYN Strong Altered Expression [1633]
CENPA OT0NEJ4X Strong Biomarker [460]
CENPU OTQ4TZRS Strong Altered Expression [1634]
CEP55 OTGSG2PA Strong Altered Expression [1635]
CEP70 OTMY5KAE Strong Biomarker [1636]
CETN1 OTGQ8JOZ Strong Biomarker [1637]
CFAP97 OT0RSQO4 Strong Biomarker [1638]
CFHR1 OT72R16T Strong Biomarker [1639]
CFL1 OTT6D5MH Strong Biomarker [1640]
CFL2 OTE2W0DH Strong Altered Expression [1641]
CHAD OT7PF813 Strong Biomarker [1642]
CHD1 OT9R9G0H Strong Genetic Variation [1643]
CHD3 OTDBU4F3 Strong Genetic Variation [348]
CHD8 OTS7A6AF Strong Biomarker [1644]
CHMP4C OT5X8A3O Strong Biomarker [1645]
CIP2A OTVS2GXA Strong Biomarker [1646]
CIRBP OTXWTPBL Strong Biomarker [1647]
CISH OT8T5NYL Strong Altered Expression [254]
CITED2 OT812TV7 Strong Biomarker [722]
CKS1B OTNUPLUJ Strong Biomarker [1648]
CLCA2 OTF191LZ Strong Biomarker [1649]
CLDN1 OT27KV99 Strong Altered Expression [1392]
CLDN8 OT7IIWXG Strong Altered Expression [1650]
CLEC10A OTD8HQT6 Strong Altered Expression [1651]
CLEC3B OTFD29NF Strong Biomarker [29]
CLGN OTEWVFQV Strong Genetic Variation [1652]
CLSTN1 OTQN35G2 Strong Biomarker [1653]
CMAS OTFQJG3C Strong Biomarker [673]
CMPK2 OTOG90R0 Strong Altered Expression [1067]
CNNM1 OTHRSSGH Strong Altered Expression [1654]
CNOT8 OT6CMCS0 Strong Biomarker [1512]
CNPY2 OTGY8ESX Strong Biomarker [1451]
COBLL1 OTQFN1TC Strong Altered Expression [1655]
COL11A2 OT3BQUBH Strong Biomarker [754]
COL12A1 OTHLTV53 Strong Biomarker [1656]
COL23A1 OTYE0N3I Strong Genetic Variation [348]
COMMD1 OT7WUD5R Strong Altered Expression [1657]
COMMD3 OT1UTJH4 Strong Biomarker [1658]
COMP OTS2FPMI Strong Biomarker [1659]
COPB1 OT50CV12 Strong Biomarker [1660]
COPB2 OT82JIGC Strong Biomarker [1660]
COPS3 OTZWPJ24 Strong Biomarker [386]
CORO1C OTXDF9T3 Strong Biomarker [1661]
COX14 OTQ378WN Strong Altered Expression [1662]
CPNE1 OTH5YKSL Strong Altered Expression [1663]
CPT1A OTI862QH Strong Biomarker [1131]
CRABP2 OTY01V9G Strong Biomarker [1664]
CREB3L4 OTSGQGT2 Strong Biomarker [1665]
CREB5 OTJDUJPI Strong Biomarker [1666]
CREM OTJIJ5AL Strong Altered Expression [1667]
CRISP3 OTBSWMPL Strong Altered Expression [1668]
CRKL OTOYSD1R Strong Biomarker [1669]
CRX OTH435SV Strong Biomarker [1670]
CRYGD OTW29JC4 Strong Altered Expression [557]
CST6 OTZVHJTF Strong Posttranslational Modification [1671]
CTAG1B OTIQGW6U Strong Genetic Variation [487]
CTHRC1 OTV88X2G Strong Biomarker [1672]
CTNNBL1 OT6KLHPA Strong Biomarker [957]
CTNND1 OTUMPSHR Strong Biomarker [1673]
CTSZ OTSCX2LL Strong Biomarker [1674]
CXCL14 OTM189TA Strong Biomarker [1675]
CXCL17 OTRCEVIZ Strong Biomarker [1676]
CXCL3 OTSL94KH Strong Biomarker [1677]
CXCL5 OTZOUPCA Strong Altered Expression [1678]
CYREN OT5ZL00R Strong Biomarker [1679]
DAB2 OTRMQTMZ Strong Biomarker [1680]
DAB2IP OTF456VC Strong Genetic Variation [1681]
DACH1 OTMKNAGG Strong Genetic Variation [1682]
DACT2 OTNLCC0K Strong Altered Expression [1683]
DAPK2 OTWODUQG Strong Altered Expression [945]
DBI OT884QY9 Strong Biomarker [749]
DBN1 OTZVKG8A Strong Biomarker [1684]
DCAF1 OT3ZDVOE Strong Biomarker [1519]
DCAF12 OT24XM7T Strong Biomarker [1685]
DCAF6 OT3EYK1J Strong Biomarker [1401]
DCC OT2C1SHW Strong Altered Expression [1686]
DCDC2 OTSUFH1H Strong Biomarker [1687]
DCLRE1C OTW3KB1I Strong Biomarker [1688]
DCUN1D1 OT8UJLZU Strong Altered Expression [1596]
DDB1 OTTR2L3Z Strong Biomarker [1401]
DDB2 OTO8HVVB Strong Biomarker [1401]
DDIT3 OTI8YKKE Strong Altered Expression [1689]
DDOST OT39PDMS Strong Biomarker [412]
DDX20 OT6G8YF3 Strong Altered Expression [1690]
DDX39A OT0Z6E1K Strong Genetic Variation [1691]
DDX39B OTEVCFVU Strong Altered Expression [1691]
DDX3X OTDO4TRX Strong Biomarker [1692]
DDX52 OTZ7KMEY Strong Biomarker [1693]
DDX56 OTGURA53 Strong Altered Expression [1694]
DEFB1 OT5SV0E4 Strong Altered Expression [1695]
DEFB104A OTLQZR6K Strong Genetic Variation [1696]
DENR OTXP9HOY Strong Altered Expression [945]
DEPDC1B OTMVFOT1 Strong Altered Expression [1697]
DESI2 OTHUOKOC Strong Biomarker [1698]
DEUP1 OTXLM86J Strong Biomarker [1699]
DGCR8 OT62LXE4 Strong Biomarker [1700]
DHDDS OTVLYBUS Strong Biomarker [1701]
DHRS11 OTU3J0ZL Strong Biomarker [621]
DHX15 OT4F98TK Strong Altered Expression [1702]
DIDO1 OT9PB547 Strong Altered Expression [1703]
DIO2 OTGPNSLH Strong Biomarker [1704]
DIRAS3 OT3XHLQA Strong Altered Expression [1705]
DKC1 OTX7DJR6 Strong Altered Expression [1706]
DLC1 OTP8LMCR Strong Altered Expression [1707]
DLGAP5 OTWCN39U Strong Altered Expression [1708]
DLST OTBDF9HJ Strong Genetic Variation [1709]
DMTN OTDTKPBW Strong Biomarker [1710]
DNAAF3 OT3OHO0O Strong Biomarker [1711]
DNAH5 OTC21RUS Strong Biomarker [1711]
DNAI1 OTF6C65Q Strong Biomarker [1711]
DNER OT2GH2E5 Strong Biomarker [432]
DNM1L OTXK1Q1G Strong Altered Expression [945]
DOC2A OT5G9V94 Strong Biomarker [1712]
DOCK2 OTZTS3PA Strong Genetic Variation [348]
DPYS OTLTUIVL Strong Biomarker [1713]
DPYSL5 OT6F9T6F Strong Altered Expression [1714]
DRG1 OTIFYMI3 Strong Biomarker [1715]
DSPP OT1TYNDN Strong Biomarker [1716]
DSTN OTMXO4YB Strong Genetic Variation [1512]
DUSP16 OTK7S078 Strong Altered Expression [1575]
DUSP22 OTEZ3U85 Strong Altered Expression [1717]
DVL1 OTD67RF1 Strong Altered Expression [1718]
DVL3 OTPRROHJ Strong Biomarker [1556]
DYM OTQ670WI Strong Biomarker [1676]
E2F5 OT1XWING Strong Altered Expression [1719]
EAF1 OTN27MJW Strong Altered Expression [1160]
EBAG9 OTTQLQCP Strong Biomarker [1720]
EBF2 OTFWZE51 Strong Genetic Variation [348]
EBNA1BP2 OTBRVMZH Strong Altered Expression [338]
ECI2 OT2TP4IX Strong Altered Expression [1721]
ECM1 OT1K65VW Strong Biomarker [1722]
ECT2 OTQDUCT6 Strong Altered Expression [1723]
EDEM3 OT4GJX9R Strong Altered Expression [1724]
EEF1A1 OT00THXS Strong Biomarker [1725]
EEF1A2 OT9Z23K5 Strong Altered Expression [1726]
EEF2 OTZ7SZ39 Strong Biomarker [1727]
EEFSEC OTJ4KKOO Strong Genetic Variation [348]
EFEMP2 OT0I2B4J Strong Biomarker [1166]
EFNA5 OTOH4DRR Strong Genetic Variation [1512]
EFNB1 OT7JJW8P Strong Biomarker [1728]
EGR3 OTGPJIRA Strong Biomarker [1729]
EHF OTY6TPWD Strong Altered Expression [1730]
EIF1 OTB4GZ0V Strong Biomarker [881]
EIF3A OTFABY9G Strong Biomarker [162]
EIF3B OTF67VPH Strong Altered Expression [1731]
EIF3L OTECHRQO Strong Biomarker [1732]
ELF1 OTV5LKIA Strong Altered Expression [1733]
ELF5 OTLRU8YF Strong Altered Expression [1734]
ELL OTCBN5LF Strong Altered Expression [1735]
ELL2 OTZJRTFM Strong Biomarker [1736]
ELOVL3 OTH70U4Z Strong Biomarker [1737]
ELOVL5 OT375W1Z Strong Biomarker [1738]
ELOVL7 OT89NYVC Strong Biomarker [1739]
EMD OTR8ZANE Strong Biomarker [1740]
EMSY OTBQ3KQE Strong Genetic Variation [348]
EN2 OT7EZCM2 Strong Biomarker [1741]
ENDOG OT5IM7B3 Strong Biomarker [1742]
ENTPD5 OTFH05B9 Strong Biomarker [1743]
EPB41L3 OTS6CHG2 Strong Altered Expression [1744]
EPB41L4B OT2K30P7 Strong Biomarker [1745]
EPHX3 OTU7LW2F Strong Biomarker [1746]
ERCC1 OTNPYQHI Strong Altered Expression [1747]
ERCC3 OTVAW3P1 Strong Altered Expression [1748]
ERCC4 OTFIOPG1 Strong Genetic Variation [737]
ERGIC2 OT3MEGIU Strong Biomarker [1749]
ESCO1 OTZ9P12A Strong Biomarker [1750]
ESM1 OT331Y8V Strong Biomarker [1751]
ESS2 OTZ08VCZ Strong Biomarker [1752]
ETV2 OTP5URZ8 Strong Biomarker [1753]
ETV3 OTEN03BM Strong Biomarker [1754]
ETV4 OT8C98UZ Strong Altered Expression [1755]
EXO5 OTIN7L7I Strong Biomarker [1756]
FAM13C OTVAGUOV Strong Altered Expression [1757]
FAM3B OTC2S91N Strong Biomarker [1758]
FAM3C OTBR6U9G Strong Biomarker [1759]
FAM83F OTGGJRO7 Strong Genetic Variation [1760]
FARP2 OTNRQIMK Strong Genetic Variation [348]
FBL OTRODIE5 Strong Altered Expression [1618]
FBLN1 OT5MHHOP Strong Biomarker [1761]
FBP1 OTQBANEP Strong Biomarker [1762]
FBRSL1 OT4BPXGG Strong Genetic Variation [348]
FCGBP OT63T6XQ Strong Altered Expression [1763]
FCN2 OTTHJBKZ Strong Biomarker [94]
FERMT2 OTZNPWWX Strong Genetic Variation [348]
FEV OTYEC4IR Strong Genetic Variation [177]
FGD4 OTYXJQCW Strong Altered Expression [1764]
FGF13 OTHNNVSG Strong Biomarker [1765]
FGF17 OTAQSFZ2 Strong Altered Expression [1766]
FGF6 OTRJ679P Strong Altered Expression [1767]
FH OTEQWU6Q Strong Biomarker [1768]
FHL2 OT0OAYWT Strong Altered Expression [1769]
FKBP9 OTGRFVKZ Strong Altered Expression [1770]
FLACC1 OTZN9TZV Strong Genetic Variation [417]
FLI1 OT0EV3LX Strong Biomarker [1771]
FLII OT7G9JG6 Strong Altered Expression [1772]
FLNC OT3F8J6Y Strong Altered Expression [1773]
FLOT2 OTZ0QR5L Strong Biomarker [1774]
FLT3LG OTU0YGC4 Strong Altered Expression [1531]
FMOD OT9EJ5H8 Strong Altered Expression [1775]
FNDC3A OTUX3S2I Strong Biomarker [1776]
FOSB OTW6C05J Strong Altered Expression [569]
FOXA1 OTEBY0TD Strong Genetic Variation [1777]
FOXB2 OTJE3RRR Strong Biomarker [1778]
FOXD1 OT80PRHS Strong Altered Expression [1779]
FOXD2 OTAF63YV Strong Altered Expression [1779]
FOXF1 OT2CJZ5K Strong Altered Expression [1779]
FOXF2 OTV20NGX Strong Altered Expression [1779]
FOXJ1 OT7LLBZ7 Strong Altered Expression [1780]
FOXK1 OTLZGS7J Strong Biomarker [1781]
FOXO3 OTHXQG4P Strong Biomarker [1782]
FOXO4 OT90X9LN Strong Altered Expression [1783]
FOXP4 OTHCGIEZ Strong Genetic Variation [1029]
FRG1 OTEJ8HSD Strong Biomarker [1784]
FRY OT74IAG2 Strong Genetic Variation [417]
FSTL1 OT6KEZUD Strong Altered Expression [1785]
FTL OTYQA8A6 Strong Biomarker [574]
FUT1 OTODG57A Strong Biomarker [1786]
FUT7 OTJF6BSN Strong Altered Expression [575]
FUT8 OTJJCVG1 Strong Altered Expression [1787]
FXR1 OTEMQ1SR Strong Biomarker [810]
FXYD3 OT9PPRHE Strong Altered Expression [1566]
FZD1 OTZATHVS Strong Biomarker [1788]
FZD2 OT952ML1 Strong Biomarker [1789]
FZD6 OTBCPII8 Strong Altered Expression [1790]
FZR1 OT0WGWZS Strong Genetic Variation [1791]
GAB1 OTQKE6V4 Strong Altered Expression [1792]
GABARAPL1 OT4U7SBG Strong Biomarker [1793]
GABBR1 OTU5A52J Strong Biomarker [1794]
GABPA OT9YB2SA Strong Biomarker [729]
GADD45A OTDRV63V Strong Genetic Variation [1795]
GAGE7 OTF8BTR9 Strong Biomarker [1796]
GALNT3 OT7M67WT Strong Altered Expression [1797]
GALNT4 OT6WKC13 Strong Altered Expression [1798]
GATA2 OTBP2QQ2 Strong Biomarker [1799]
GATAD2B OTJL128N Strong Biomarker [1694]
GBP1 OTUM7RPJ Strong Altered Expression [1800]
GBX1 OTLJ8UR9 Strong Altered Expression [1801]
GBX2 OTW0ZI4D Strong Biomarker [1802]
GCHFR OTEOT8GI Strong Biomarker [94]
GDF10 OTEVXGJ7 Strong Biomarker [213]
GDF7 OTNZY74B Strong Genetic Variation [348]
GEN1 OT1XFQXF Strong Biomarker [1803]
GFI1 OT9HB9H8 Strong Biomarker [1804]
GGNBP2 OT7K9YZV Strong Biomarker [1805]
GGPS1 OTVEHG28 Strong Biomarker [1806]
GHRH OT94U6MO Strong Biomarker [1807]
GIT1 OTHO92S5 Strong Genetic Variation [1808]
GKN2 OTR9DOYG Strong Biomarker [1809]
GLYATL1 OTS8JSRY Strong Altered Expression [1810]
GNA12 OT3IRZH3 Strong Altered Expression [1811]
GNB2 OT3JPRCQ Strong Biomarker [4]
GNL3 OTILGYO4 Strong Altered Expression [1311]
GNL3L OTZYEFST Strong Altered Expression [1812]
GNMT OT0O2OQO Strong Genetic Variation [1813]
GOLGA2 OT5S9KYM Strong Biomarker [515]
GOLPH3L OTT2K3LQ Strong Genetic Variation [348]
GORASP1 OTQS91S7 Strong Biomarker [952]
GPC1 OTQKRSSV Strong Altered Expression [1814]
GPC5 OT8NR7GC Strong Biomarker [1815]
GPLD1 OTUUQOVY Strong Altered Expression [1816]
GPR151 OT7EACU6 Strong Biomarker [235]
GPR160 OTMXJT73 Strong Altered Expression [750]
GPR162 OTK4LT3K Strong Biomarker [1817]
GPR42 OTEB0ROY Strong Altered Expression [372]
GPR68 OT1NXSMN Strong Biomarker [1818]
GPSM1 OTA0SJBG Strong Altered Expression [1819]
GRAP2 OTS5NIZ3 Strong Altered Expression [386]
GRB10 OTCKXGRC Strong Biomarker [1820]
GREB1 OTU6ZA26 Strong Biomarker [1821]
GRHL1 OTZ4MNEW Strong Genetic Variation [348]
GRP OT8JDFNI Strong Biomarker [1822]
GSTM2 OTG4WT05 Strong Posttranslational Modification [1823]
GSTM5 OTMMBFY8 Strong Biomarker [1824]
GTF2H1 OTCRXC6B Strong Biomarker [198]
GTF2H3 OT87W5QJ Strong Altered Expression [1748]
GTF2H4 OTPD1DIU Strong Altered Expression [1748]
GTF2H5 OTRL219S Strong Altered Expression [1748]
GTF3A OTVROUVQ Strong Altered Expression [1825]
GZMM OTEC5CWT Strong Biomarker [1826]
H2AZ1 OT3KJJNQ Strong Biomarker [1827]
HACD1 OTEC7EP7 Strong Biomarker [682]
HADHA OTO557N2 Strong Biomarker [1828]
HADHB OT4Y1I62 Strong Biomarker [1828]
HAS3 OTPM8IL8 Strong Altered Expression [1829]
HAUS6 OT7ZVR57 Strong Genetic Variation [348]
HAVCR2 OTOL603T Strong Altered Expression [1780]
HBP1 OTDPGGDV Strong Biomarker [1830]
HCFC1 OT0UCK62 Strong Biomarker [1831]
HEPACAM OT1MJ51D Strong Altered Expression [1832]
HERPUD1 OT9EROL6 Strong Biomarker [1833]
HES6 OTWO5SCF Strong Biomarker [990]
HHEX OTLIUVYX Strong Altered Expression [1834]
HHIP OT77RQYS Strong Altered Expression [825]
HIC1 OTI9TWY4 Strong Biomarker [1835]
HIPK1 OTSEA8RS Strong Biomarker [477]
HIVEP1 OT7CAG4A Strong Biomarker [1166]
HJURP OTWMV16B Strong Altered Expression [1836]
HMGB3 OTCJ2EZY Strong Altered Expression [1837]
HMMR OT4M0JTZ Strong Altered Expression [1838]
HNRNPAB OTUKPFOK Strong Biomarker [1839]
HNRNPK OTNPRM8U Strong Biomarker [1840]
HNRNPL OT0DJX74 Strong Biomarker [1841]
HNRNPM OTFU3OEZ Strong Altered Expression [1842]
HOOK2 OTPO4NQV Strong Biomarker [650]
HOPX OTBSR6C9 Strong Altered Expression [1322]
HOXA9 OTKNK5H0 Strong Biomarker [1843]
HOXB7 OTC7WYU8 Strong Biomarker [1844]
HOXC8 OTJUYU8J Strong Biomarker [1845]
HOXD10 OT0NOWU2 Strong Biomarker [1846]
HOXD3 OTBUZ35T Strong Biomarker [1847]
HPS5 OTLO2374 Strong Biomarker [1687]
HRK OTR4GWJ0 Strong Posttranslational Modification [1848]
HSDL1 OTPDMCC4 Strong Altered Expression [1849]
HSPA14 OTZCA5LK Strong Biomarker [1850]
HSPA2 OTSDET7B Strong Biomarker [749]
HSPA4 OT5HR0AR Strong Altered Expression [1322]
HSPA6 OTH4S7WB Strong Genetic Variation [1851]
HSPB2 OTS01646 Strong Altered Expression [626]
HTN1 OTH3W1RR Strong Biomarker [1852]
HTRA2 OTC7616F Strong Altered Expression [1853]
HUWE1 OTFH6BJS Strong Biomarker [1854]
HYAL1 OT2SJN0X Strong Biomarker [1855]
HYOU1 OTBGBSOV Strong Biomarker [1856]
ICAM4 OT1BI27E Strong Genetic Variation [1857]
ICAM5 OTDGGAFH Strong Genetic Variation [1857]
IFI44 OTOKSZVA Strong Altered Expression [1191]
IFIT3 OTPGHZB9 Strong Biomarker [1547]
IFIT5 OTYTSO77 Strong Biomarker [347]
IGF2BP1 OT9G360P Strong Altered Expression [1858]
IGFBP4 OT2HZRBD Strong Altered Expression [1859]
IKZF5 OTJN51OC Strong Genetic Variation [1860]
IL10RA OTOX3D1D Strong Genetic Variation [26]
IL17B OTS86H50 Strong Biomarker [1861]
IL17RC OTEFOBSS Strong Biomarker [1207]
ILF3 OTKMZ5K5 Strong Biomarker [1862]
IMMT OTBDSLE7 Strong Biomarker [1863]
INCENP OT9HFRYK Strong Genetic Variation [348]
INF2 OT8ZM13C Strong Genetic Variation [1864]
ING1 OTEZBRKW Strong Altered Expression [1865]
ING3 OTDIJXFP Strong Altered Expression [1866]
ING5 OTRNNSFM Strong Biomarker [1867]
INO80B OTSHV8JF Strong Biomarker [1868]
INSL3 OT7KUNTE Strong Altered Expression [1869]
INSM1 OTG8RV8E Strong Altered Expression [1870]
INSRR OT3F75WA Strong Genetic Variation [1871]
INTS7 OT7ZG99E Strong Altered Expression [258]
IREB2 OT747D24 Strong Biomarker [1872]
IRF6 OTKJ44EV Strong Biomarker [886]
IRF7 OTC1A2PQ Strong Altered Expression [1873]
IRX5 OT05J514 Strong Altered Expression [1874]
ISYNA1 OT49ONSE Strong Biomarker [1875]
ITGA3 OTBCH21D Strong Altered Expression [297]
ITGA9 OTHN1IKA Strong Biomarker [1876]
ITGBL1 OTJDHE17 Strong Biomarker [1877]
JARID2 OT14UM8H Strong Biomarker [1878]
JPT1 OT6CRZEU Strong Genetic Variation [1517]
JTB OT314JB6 Strong Altered Expression [1879]
JUNB OTG2JXV5 Strong Altered Expression [569]
JUND OTNKACJD Strong Altered Expression [569]
KAT2A OTN0W2SW Strong Biomarker [1880]
KATNAL1 OTBUZ7KA Strong Biomarker [1612]
KCNH4 OTHJ8WTU Strong Altered Expression [1881]
KCNH8 OT3I5FLB Strong Altered Expression [1881]
KCTD11 OT64DFBU Strong Altered Expression [1882]
KDM4B OT5P1UPY Strong Altered Expression [1883]
KDM4D OTN6KAE6 Strong Biomarker [1753]
KDM5D OTEKG0KD Strong Biomarker [1884]
KDM6A OTZM3MJJ Strong Biomarker [1885]
KDM8 OTCN5ST8 Strong Biomarker [154]
KHDC4 OTBVAMSP Strong Altered Expression [1886]
KIF14 OTXHT4JM Strong Altered Expression [1887]
KIF18A OTSMBJ24 Strong Biomarker [1888]
KIF20A OTXOQHE0 Strong Biomarker [460]
KIF2A OT2WQ6QD Strong Biomarker [1889]
KIF4A OT3UWL7D Strong Biomarker [1890]
KIF7 OT1J6NAW Strong Biomarker [1891]
KIFC1 OTNQDS00 Strong Biomarker [1892]
KLF12 OTVH4KD4 Strong Biomarker [1893]
KLF5 OT1ABI9N Strong Altered Expression [1894]
KLF9 OTBFEJRQ Strong Biomarker [1895]
KLK10 OTD573EL Strong Altered Expression [1896]
KLK11 OT5PKX7Y Strong Biomarker [1897]
KMT2D OTTVHCLY Strong Biomarker [1898]
KNL1 OT4Q3LHV Strong Genetic Variation [348]
KPNA1 OTEMVAJ6 Strong Biomarker [1899]
KPNA2 OTU7FOE6 Strong Biomarker [1900]
KPNA4 OTP0EX18 Strong Biomarker [1901]
KPNA6 OTJ3OX6P Strong Biomarker [1899]
KRIT1 OT58AP1I Strong Biomarker [1599]
KRT16 OTGA0EQN Strong Altered Expression [759]
KRT18 OTVLQFIP Strong Biomarker [1902]
KRT8 OTTM4X11 Strong Altered Expression [1903]
LARGE2 OT5BZS3J Strong Altered Expression [1904]
LARP4B OT2HI0QE Strong Altered Expression [1905]
LARP6 OTUQ9QS9 Strong Genetic Variation [1906]
LBH OT87AT1X Strong Altered Expression [1907]
LBR OT1HG3HG Strong Altered Expression [1589]
LDAH OTXRU9XQ Strong Biomarker [1908]
LDHB OT9B1CT3 Strong Biomarker [1909]
LDLRAD1 OTG1GL9H Strong Genetic Variation [547]
LEMD1 OTII3FTO Strong Altered Expression [1910]
LGALS3BP OT9AGQKH Strong Biomarker [1043]
LGALS4 OTKQCG0H Strong Biomarker [1592]
LGALS8 OT71LJ8T Strong Biomarker [1911]
LIMA1 OTONPC9R Strong Biomarker [1912]
LIN28B OTVWP0FN Strong Altered Expression [1913]
LITAF OTT5JX1F Strong Biomarker [1914]
LMNB1 OT100T3P Strong Biomarker [364]
LMTK2 OT93MVIC Strong Genetic Variation [348]
LPXN OTUNV3CK Strong Biomarker [1915]
LRATD1 OT65IL83 Strong Biomarker [1713]
LRATD2 OTEZBUUL Strong Biomarker [1461]
LRIG1 OTY5HZN5 Strong Biomarker [1916]
LRIG3 OT6TKZTU Strong Biomarker [1917]
LRPPRC OTXSK5LP Strong Altered Expression [1918]
LRRC4 OT7XJ70N Strong Altered Expression [1594]
LRRC59 OT6BQJ5E Strong Biomarker [1919]
LXN OTZQ2M6Y Strong Biomarker [1920]
LY6E OTMG16BZ Strong Biomarker [1921]
LYPLA1 OTENU47T Strong Biomarker [1922]
MACIR OTPSW8Y8 Strong Biomarker [1923]
MACROH2A1 OTV2DQDD Strong Altered Expression [1924]
MAEA OTPA2FDE Strong Biomarker [1925]
MAGEA11 OTLT6Q3G Strong Altered Expression [695]
MAGEB6 OTOTV1FU Strong Genetic Variation [1926]
MAGI2 OTXDDKZS Strong Altered Expression [1927]
MAK16 OTD546E5 Strong Biomarker [810]
MAP1LC3B OTUYHB84 Strong Biomarker [1928]
MAP9 OTZD5099 Strong Biomarker [1929]
MARCHF1 OTI2EYO6 Strong Genetic Variation [1930]
MARCHF6 OTBTA03N Strong Biomarker [1931]
MASP1 OTWWCNZP Strong Biomarker [1932]
MAU2 OTALDF8Q Strong Genetic Variation [1933]
MAX OTKZ0YKM Strong Biomarker [1934]
MBD2 OTUQPP0R Strong Biomarker [1935]
MBNL1 OTOV7J85 Strong Genetic Variation [348]
MBTD1 OT2P6943 Strong Altered Expression [1936]
MCC OTQVI1EM Strong Genetic Variation [1937]
MCF2L OTEURA8N Strong Biomarker [412]
MCM10 OTV0O3JN Strong Altered Expression [1938]
MCM3 OTOOHQPM Strong Altered Expression [1939]
MCM5 OTAHLB62 Strong Altered Expression [1940]
MCM8 OTC93H3S Strong Altered Expression [1941]
MDH2 OT7364GY Strong Biomarker [1768]
MECOM OTP983W8 Strong Genetic Variation [348]
MED1 OTOO24C4 Strong Biomarker [1942]
MED12 OTQZ4D2X Strong Genetic Variation [1943]
MED19 OTT9RT5N Strong Biomarker [1944]
MED28 OTEDM1L5 Strong Altered Expression [1945]
MED9 OT59OKEJ Strong Biomarker [1946]
MEIS2 OTG4ADLM Strong Biomarker [1947]
MEOX1 OTJEMT2D Strong Altered Expression [1948]
METTL3 OTSXP1M3 Strong Altered Expression [1949]
MGAT5 OTU4DD4G Strong Biomarker [1950]
MICA OTPEIEAR Strong Biomarker [1951]
MICAL2 OT04OQQJ Strong Genetic Variation [1952]
MID1 OTWN1PGU Strong Biomarker [1953]
MIIP OT79EXZ7 Strong Biomarker [1954]
MINDY4 OTBZ2SZB Strong Altered Expression [406]
MLC1 OTCNZLSP Strong Biomarker [1955]
MLH3 OT91PPBI Strong Genetic Variation [1956]
MLIP OTMT7AII Strong Biomarker [1132]
MLXIP OT30UNI7 Strong Biomarker [1957]
MLXIPL OTR9MLLW Strong Biomarker [1958]
MMRN1 OT7ZNYHT Strong Biomarker [1959]
MOAP1 OTVF3LUG Strong Biomarker [1932]
MOB2 OTMBE0NS Strong Genetic Variation [348]
MPC1 OT6DYFUO Strong Biomarker [1960]
MRE11 OTGU8TZM Strong Altered Expression [1961]
MRGPRX3 OTRKCCDS Strong Biomarker [235]
MRGPRX4 OTOBHZVA Strong Biomarker [235]
MRI1 OTOP49DM Strong Genetic Variation [1962]
MRTFA OTCVXASM Strong Biomarker [1963]
MSH6 OT46FP09 Strong Biomarker [471]
MSMP OT20VCWP Strong Biomarker [1964]
MST1 OTOC4UNG Strong Biomarker [1441]
MTFMT OT1OIVJL Strong Biomarker [1965]
MTO1 OT7HCZ1D Strong Altered Expression [1966]
MTUS1 OTBPALMU Strong Biomarker [397]
MTX1 OTLSDNZO Strong Genetic Variation [417]
MUC4 OTLT11V1 Strong Biomarker [1967]
MUC5B OTPW6K5C Strong Altered Expression [1968]
MVP OTJGHJRB Strong Genetic Variation [1969]
MXD1 OTS5CTHX Strong Biomarker [1531]
MXI1 OTUQ9E0D Strong Genetic Variation [1970]
MYH11 OTVNVWY3 Strong Genetic Variation [1971]
MYO1B OTGZUJ0I Strong Biomarker [1972]
MYO1C OT69L39Y Strong Altered Expression [1973]
MYO1E OTM9YSIZ Strong Altered Expression [1973]
MYO5A OTMWLP3E Strong Altered Expression [1974]
MYO9B OTQ94R5K Strong Genetic Variation [348]
MYRF OTKF6AEB Strong Biomarker [1975]
MYSM1 OTO73N00 Strong Biomarker [1976]
MZB1 OT071TET Strong Altered Expression [5]
MZF1 OTMVZCPW Strong Biomarker [265]
NAA10 OTYB9R6I Strong Biomarker [1977]
NAA16 OTWMA7LK Strong Genetic Variation [865]
NAIP OTLA925F Strong Altered Expression [1978]
NBEAL2 OTMCAXWR Strong Biomarker [1979]
NBN OT73B5MD Strong Genetic Variation [1980]
NCAM2 OT8LBJN8 Strong Genetic Variation [1512]
NCAPD3 OTOZY2UL Strong Altered Expression [1981]
NCAPH OTXOS97C Strong Biomarker [1982]
NCOA6 OTOMIGTV Strong Genetic Variation [1983]
ND6 OTG47B7B Strong Biomarker [1984]
NDRG1 OTVO66BO Strong Biomarker [891]
NDRG2 OT5L6KD7 Strong Altered Expression [1985]
NDRG3 OTJTJCHD Strong Biomarker [1986]
NDRG4 OTJBOTD8 Strong Genetic Variation [954]
NECTIN2 OTIE0W6O Strong Altered Expression [452]
NEK10 OTN0JAYL Strong Genetic Variation [417]
NEK3 OTKWD5FY Strong Biomarker [1987]
NELFB OTCFH88S Strong Biomarker [1988]
NELL2 OTS4MJZ7 Strong Altered Expression [1989]
NEUROD1 OTZQ7QJ2 Strong Altered Expression [1990]
NFATC1 OT4TMERS Strong Altered Expression [1991]
NIBAN1 OTYOLI12 Strong Biomarker [413]
NKX2-1 OTCMEJTA Strong Biomarker [1992]
NKX2-5 OTS1SAWM Strong Altered Expression [1993]
NLK OT2LETFS Strong Altered Expression [741]
NLRP12 OTGR132Z Strong Biomarker [1994]
NLRP2 OTJA81JU Strong Genetic Variation [1995]
NOB1 OTW0YNSL Strong Altered Expression [1996]
NOC2L OTNT7R33 Strong Biomarker [1997]
NOG OTGRHHPG Strong Biomarker [1998]
NOL3 OT1K0L0D Strong Biomarker [1999]
NOL8 OT6RZLH3 Strong Biomarker [2000]
NOP53 OTA2YKO6 Strong Biomarker [1547]
NOX1 OTZPJQCC Strong Genetic Variation [1342]
NPAS2 OTMRT2TS Strong Genetic Variation [2001]
NPBWR1 OTN8NRXK Strong Biomarker [1746]
NPRL2 OTOB10MO Strong Altered Expression [2002]
NR2C1 OTJEL7WT Strong Biomarker [2003]
NR2E1 OTW47GKM Strong Altered Expression [58]
NR2F2 OTJFS67N Strong Biomarker [2004]
NR6A1 OTFZOOQ9 Strong Altered Expression [2005]
NSD2 OTQ6SW4R Strong Altered Expression [2006]
NSMCE1 OTZJTA5X Strong Biomarker [1713]
NSUN4 OTY6O37Z Strong Genetic Variation [669]
NT5C3A OT67KZJA Strong Genetic Variation [2007]
NTS OTPGDNQS Strong Biomarker [143]
NUCB2 OTHO6JWN Strong Altered Expression [2008]
NUDCD1 OT8DS3CX Strong Biomarker [2009]
NUMB OTMB586Q Strong Altered Expression [2010]
NUP153 OTCAS0AR Strong Biomarker [2011]
NUSAP1 OT85HIJ5 Strong Biomarker [2012]
NXF1 OTEFHXG6 Strong Biomarker [1301]
OBP2A OTBIJ5TI Strong Biomarker [2013]
ODF4 OTP9AMYG Strong Biomarker [2014]
OMP OT7JH0DY Strong Biomarker [2015]
ONECUT2 OTHUE5YY Strong Biomarker [2016]
OPN1LW OTFNUZ7O Strong Biomarker [480]
OR51E1 OTB7Q65H Strong Biomarker [2017]
ORAI3 OTUP3OH3 Strong Biomarker [2018]
OVOL2 OTFM1GKF Strong Altered Expression [2019]
P2RX5 OTLBR20R Strong Altered Expression [742]
P3H4 OTZPXYSH Strong Biomarker [2020]
PA2G4 OT7IG7HT Strong Biomarker [2021]
PACC1 OTKBS8CC Strong Altered Expression [2022]
PADI2 OTT40K94 Strong Biomarker [2023]
PAG1 OTFOJUIQ Strong Biomarker [480]
PAGR1 OTXR5PQ8 Strong Altered Expression [579]
PAICS OTMZN747 Strong Genetic Variation [2024]
PAK3 OT80M3BV Strong Biomarker [1012]
PANK2 OTFBW889 Strong Biomarker [1061]
PAQR7 OTIWX5AM Strong Genetic Variation [2025]
PARM1 OTDNK7EX Strong Biomarker [2026]
PARP9 OT7K4494 Strong Biomarker [2027]
PATE1 OTTTPGG2 Strong Altered Expression [2028]
PAX9 OT25J0F7 Strong Genetic Variation [348]
PCBD1 OTDSRUD5 Strong Biomarker [1711]
PCBP4 OTDLL4NB Strong Biomarker [480]
PCDH7 OTP091X8 Strong Biomarker [2029]
PCDH8 OTDDOQM2 Strong Biomarker [2030]
PCDH9 OTX3BFV4 Strong Biomarker [2031]
PCDHA8 OTH6A6BV Strong Biomarker [1530]
PCDHB9 OT9S1QXZ Strong Biomarker [2032]
PCGF2 OTIY1J5L Strong Altered Expression [2033]
PCK2 OTJ8LX4N Strong Altered Expression [2034]
PCNT OTW4Z65J Strong Altered Expression [2035]
PDCD4 OTZ6NXUX Strong Altered Expression [2036]
PDGFRL OTJPRECT Strong Genetic Variation [2037]
PDIA3 OTHPQ0Q3 Strong Biomarker [1427]
PDIK1L OTISF4KG Strong Altered Expression [2038]
PDK4 OTCMHMBZ Strong Biomarker [2039]
PDLIM3 OTVXQC81 Strong Biomarker [412]
PDLIM4 OT23LZYY Strong Altered Expression [2040]
PDLIM5 OTLQVV22 Strong Genetic Variation [348]
PDS5B OT3U3X8Z Strong Biomarker [2041]
PDZD2 OTPPVRGY Strong Biomarker [2042]
PEG10 OTWD2278 Strong Biomarker [2043]
PELI1 OTMLBCLC Strong Biomarker [1490]
PELP1 OTVXQNOT Strong Genetic Variation [1350]
PER3 OTVKYVJA Strong Altered Expression [2044]
PEX14 OT98BZHE Strong Genetic Variation [348]
PF4V1 OT2CXM6L Strong Biomarker [2045]
PGAM1 OTZ5DB06 Strong Biomarker [2046]
PHB2 OTCAX3AW Strong Altered Expression [9]
PHF21A OTU3FFG4 Strong Altered Expression [2047]
PHLPP1 OTIFXW8D Strong Altered Expression [2048]
PHLPP2 OTXB1OUI Strong Biomarker [2049]
PI16 OTJY2N6U Strong Altered Expression [2050]
PIAS1 OTZVAHZI Strong Biomarker [2051]
PICK1 OT8QE6EU Strong Biomarker [2052]
PIEZO1 OTBG1FU4 Strong Biomarker [2053]
PIF1 OTUHKKVP Strong Biomarker [2054]
PIK3C2B OTY2PROB Strong Altered Expression [2055]
PIK3R1 OT5BZ1J9 Strong Altered Expression [1386]
PIK3R2 OTZSUQK5 Strong Altered Expression [1386]
PIK3R3 OTXGJ8N1 Strong Biomarker [2056]
PIP OTH719AH Strong Altered Expression [1026]
PITX1 OTA0UN4C Strong Biomarker [1749]
PITX2 OTWMXAOY Strong Posttranslational Modification [2057]
PKD1 OT5ALRZ5 Strong Altered Expression [2058]
PKD2 OTIXBU8H Strong Biomarker [799]
PKIB OT7C8GFN Strong Biomarker [796]
PLA2G10 OTRZ2L5A Strong Biomarker [777]
PLA2G15 OT6VJTPA Strong Biomarker [1060]
PLA2G6 OT5FL0WU Strong Altered Expression [2059]
PLAAT3 OTVXXJ5K Strong Posttranslational Modification [2060]
PLB1 OTZ6TTYV Strong Biomarker [155]
PLCL1 OTJL2C79 Strong Biomarker [2061]
PLEKHF1 OT9OL16U Strong Altered Expression [2062]
PLIN5 OTV8G50L Strong Genetic Variation [864]
PLK3 OT19CT2Z Strong Biomarker [2063]
PMAIP1 OTXEE550 Strong Biomarker [686]
PNO1 OT010GIS Strong Biomarker [810]
PNPLA2 OTR3ERMR Strong Biomarker [2064]
PODXL OTPNQXF3 Strong Altered Expression [2065]
POLD3 OTEQEFQ2 Strong Biomarker [1694]
POLDIP2 OT8SZSJ6 Strong Altered Expression [386]
POLI OTBA4DCE Strong Genetic Variation [1750]
POLL OTZ24QGM Strong Biomarker [2066]
POLR2E OTH5IL2A Strong Genetic Variation [2067]
POLR3G OTU3TGQ9 Strong Biomarker [2068]
POM121 OTIA7ZOQ Strong Biomarker [1520]
POP4 OTN0XJZJ Strong Biomarker [1512]
POP5 OTCZTDJC Strong Genetic Variation [1512]
POP7 OTKC7SG5 Strong Genetic Variation [1512]
POPDC2 OTDAZSY5 Strong Biomarker [1512]
POPDC3 OTN4FJ5J Strong Genetic Variation [1512]
POTED OTAUSTUK Strong Biomarker [2069]
POTEF OTV3WXYE Strong Biomarker [16]
POU3F2 OT30NFOC Strong Biomarker [2070]
POU3F3 OT6BBXPD Strong Biomarker [2071]
POU4F1 OTMHYGWQ Strong Altered Expression [2072]
POU4F3 OTILD0XS Strong Altered Expression [2072]
POU5F1 OTDHHN7O Strong Biomarker [2073]
POU5F1B OT0FKQ51 Strong Genetic Variation [1029]
PPFIA2 OT34BLXJ Strong Altered Expression [2074]
PPIG OTZ8BTTM Strong Genetic Variation [2075]
PPL OTTM4WDO Strong Biomarker [1824]
PPP1R14A OTQODWZB Strong Genetic Variation [2076]
PPP1R8 OTH5KB2P Strong Biomarker [1977]
PPP2R2A OT9297OG Strong Biomarker [2077]
PPP2R2C OTXK0SDM Strong Biomarker [2078]
PRAC1 OT7MCG86 Strong Genetic Variation [1417]
PRAC2 OT56IBFQ Strong Genetic Variation [1417]
PRAP1 OT48QD82 Strong Genetic Variation [2079]
PRDM2 OT8L7CGX Strong Biomarker [2080]
PRDM6 OTKY12D9 Strong Biomarker [1490]
PRDX2 OTLWCY9T Strong Biomarker [1468]
PRDX3 OTLB2WEU Strong Biomarker [165]
PREX1 OTUTPVA9 Strong Altered Expression [2081]
PRKAA1 OT7TNF0L Strong Biomarker [2082]
PRKAA2 OTU1KZPV Strong Biomarker [2082]
PRKAB1 OT1OG4QZ Strong Biomarker [2082]
PRLH OTJBP360 Strong Altered Expression [1834]
PRM3 OT6574BF Strong Genetic Variation [2083]
PROK1 OT8S7RUG Strong Biomarker [2084]
PROM2 OTT8IVS7 Strong Biomarker [2085]
PRPF8 OTU39JZI Strong Biomarker [2086]
PRUNE2 OTGW2974 Strong Biomarker [2087]
PSG1 OT1U4ZZW Strong Biomarker [2088]
PSG2 OT2EIXAI Strong Biomarker [2088]
PSG7 OT1IXGBX Strong Biomarker [2088]
PSG8 OT00UZBM Strong Biomarker [2088]
PSMA5 OT38E6Y1 Strong Biomarker [2089]
PSMD14 OTJWHMZ5 Strong Altered Expression [2090]
PSME3 OTSTC4YY Strong Biomarker [2091]
PTCD3 OTHTOLE0 Strong Altered Expression [2092]
PTGES3 OTPPQWI0 Strong Altered Expression [463]
PTGFRN OTBG4SA2 Strong Genetic Variation [2093]
PTHLH OTI1JF13 Strong Altered Expression [2094]
PTMA OT2W4T1M Strong Altered Expression [2095]
PTPA OTRGFOI7 Strong Biomarker [2077]
PTPN12 OT5WA666 Strong Biomarker [2096]
PTPRN2 OTL6SH28 Strong Genetic Variation [2097]
PTPRT OTV5TXNN Strong Biomarker [2098]
PXDN OTFGGM9R Strong Biomarker [2099]
PXMP4 OTNDYSHU Strong Posttranslational Modification [2100]
PXN OTVMMUOF Strong Biomarker [2101]
PYCR1 OTQHB52T Strong Altered Expression [2102]
PYDC2 OTRWKIYY Strong Biomarker [1512]
PYGO2 OTZHB2OI Strong Altered Expression [2103]
QRFPR OT31N14I Strong Altered Expression [2104]
QRSL1 OTJDU2UG Strong Altered Expression [2105]
RAB11FIP5 OTNA33DE Strong Biomarker [2106]
RAB23 OTBAKFBR Strong Altered Expression [2107]
RAB25 OTW0W6NP Strong Altered Expression [2108]
RAB40B OTCA9ZF5 Strong Biomarker [2109]
RAB6A OTLS86J5 Strong Biomarker [2110]
RABEPK OTCZSREH Strong Altered Expression [338]
RABGAP1L OT7QO47I Strong Altered Expression [2111]
RAC2 OTAOHFNH Strong Biomarker [254]
RAD23B OT0PGOG3 Strong Biomarker [138]
RAD50 OTYMU9G1 Strong Biomarker [2112]
RAG1 OTV131E4 Strong Biomarker [2113]
RALA OT734R7X Strong Biomarker [2114]
RALGDS OTG36NI7 Strong Biomarker [127]
RALY OT78NNWY Strong Genetic Variation [417]
RAN OT2TER5M Strong Genetic Variation [2115]
RAP1A OT5RH6TI Strong Biomarker [1656]
RAP1GDS1 OTH70UHD Strong Altered Expression [2116]
RARRES2 OT1BJE8K Strong Biomarker [2117]
RASAL3 OTPALJBY Strong Altered Expression [2118]
RASGRF1 OTNWJ7EN Strong Biomarker [459]
RASSF1 OTEZIPB7 Strong Biomarker [2119]
RASSF10 OTGB7EBG Strong Altered Expression [2120]
RASSF3 OT4V9SRK Strong Genetic Variation [348]
RBM25 OTVOUOAG Strong Biomarker [1530]
RBM3 OTAJ7R31 Strong Biomarker [2121]
RBMS3 OTFSC9MR Strong Biomarker [810]
RBP1 OTRP1MFC Strong Altered Expression [2122]
RBX1 OTYA1UIO Strong Biomarker [2123]
RCBTB2 OTECBF4R Strong Biomarker [2124]
RCC1 OT25AGMB Strong Altered Expression [2124]
RCCD1 OT60N06L Strong Genetic Variation [669]
RCHY1 OTAE7504 Strong Altered Expression [2125]
RCN1 OT3JBGAG Strong Altered Expression [2126]
RECQL4 OT59LSW7 Strong Genetic Variation [2127]
REST OTLL92LQ Strong Altered Expression [2128]
RFX7 OTKFNW3A Strong Genetic Variation [348]
RGN OTD04KB1 Strong Biomarker [2129]
RGPD2 OTMUZ0HX Strong Biomarker [1520]
RGS17 OT5RVUDS Strong Biomarker [2130]
RHBDL1 OTSCUCQV Strong Biomarker [2131]
RHEB OTFLTSEC Strong Altered Expression [2132]
RHOBTB1 OTGE8K45 Strong Biomarker [2133]
RHPN2 OTTYWMF6 Strong Biomarker [2134]
RING1 OTCWTAX0 Strong Biomarker [2135]
RIT1 OTVNOGOH Strong Biomarker [2136]
RLN2 OTY3OG71 Strong Biomarker [2137]
RMC1 OT7K8MTJ Strong Altered Expression [2138]
RMDN1 OTE1NB6U Strong Biomarker [1932]
RMDN2 OTK5WSFI Strong Biomarker [1932]
RMDN3 OTKO7AUM Strong Altered Expression [2139]
RMI1 OT1ZVTFL Strong Genetic Variation [1750]
RNASEH2B OT8KHYFY Strong Biomarker [1514]
RNASEH2C OTJL9ZRN Strong Altered Expression [1819]
RNASEK OT1QS1KM Strong Biomarker [2140]
RNF149 OT6SBKQV Strong Altered Expression [1610]
RNF19A OTKWCV80 Strong Altered Expression [386]
RNF2 OTFPLOIN Strong Biomarker [2141]
RNF20 OT9NK6ZT Strong Biomarker [2142]
RNGTT OT59E0KX Strong Biomarker [2143]
RNLS OTVP2WJM Strong Genetic Variation [348]
RNPS1 OT7G4COD Strong Altered Expression [346]
RPAIN OTBMXAYK Strong Biomarker [1519]
RPL13 OTFKNTD6 Strong Biomarker [2144]
RPL19 OT33LM66 Strong Biomarker [2145]
RPL22 OTVCN8K0 Strong Biomarker [2146]
RPL22L1 OTNWGF5C Strong Biomarker [2146]
RPL29 OTUFIBJL Strong Altered Expression [825]
RPS21 OT6P58W6 Strong Biomarker [2146]
RPS24 OTSNKIL5 Strong Biomarker [2147]
RPS27A OTIIGGZ2 Strong Biomarker [936]
RPS7 OTIK25WI Strong Altered Expression [2148]
RRAS OTBBF28C Strong Altered Expression [463]
RRBP1 OT4ZTPTM Strong Biomarker [2131]
RREB1 OT62460U Strong Altered Expression [2149]
RRS1 OTTNCZN6 Strong Biomarker [2150]
RTL10 OTHGB81W Strong Biomarker [2151]
RWDD4 OTH18ZIC Strong Altered Expression [1634]
RXFP2 OT7SAT9U Strong Altered Expression [1869]
S100A11 OTI57KDN Strong Altered Expression [2152]
S100A2 OTTGHJ1H Strong Biomarker [839]
S100A7 OTJFVJRF Strong Altered Expression [2153]
SAG OTDNS3ZQ Strong Biomarker [2154]
SALL1 OTYYZGLH Strong Biomarker [2155]
SAMD5 OT95NRVS Strong Altered Expression [2156]
SAP30L OTI15CY4 Strong Biomarker [2157]
SARAF OTH5JIFE Strong Biomarker [1512]
SARDH OTQ49Q27 Strong Biomarker [739]
SARM1 OTEP4I5O Strong Biomarker [2158]
SARS1 OTFKXQ1O Strong Biomarker [2159]
SARS2 OTU4T99W Strong Biomarker [2159]
SART3 OTC1AM7S Strong Biomarker [2160]
SCAF1 OT16TM3N Strong Biomarker [2161]
SCAND1 OTRG0AGH Strong Biomarker [265]
SCARA3 OT46I38Y Strong Altered Expression [2162]
SCGN OTGD7SKH Strong Biomarker [2163]
SCIN OT6U09OL Strong Biomarker [2164]
SCTR OTC80IMR Strong Biomarker [2165]
SDCBP OTS3NCC5 Strong Biomarker [2166]
SDF4 OTQ7WFYW Strong Biomarker [1637]
SDHAF2 OT0UG9H5 Strong Altered Expression [2167]
SDHC OTC8G2MX Strong Biomarker [2168]
SEC23A OTBRNIJ3 Strong Altered Expression [2169]
SEMA3B OTCZCPMS Strong Genetic Variation [2170]
SEMA3F OTQFMS8S Strong Altered Expression [2171]
SEMA4B OT1Y3YZD Strong Altered Expression [651]
SEMA4F OTVP97ZV Strong Biomarker [2172]
SEMA6A OTDQ7QAW Strong Biomarker [2173]
SEMG1 OT6Z4BPQ Strong Biomarker [2174]
SENP6 OT05LLF4 Strong Biomarker [2175]
SEPTIN9 OT1VMRFQ Strong Biomarker [1899]
SERPINA2 OT7UW9HA Strong Biomarker [2176]
SERPINA3 OT9BP2S0 Strong Biomarker [960]
SERPINA5 OTTZXPGD Strong Altered Expression [2177]
SERPINB1 OT5RDUFO Strong Biomarker [2178]
SERPINB6 OT7G55IK Strong Biomarker [682]
SERPINI1 OTUJHIJW Strong Altered Expression [2179]
SERTAD1 OTBHKZQP Strong Biomarker [2180]
SESN2 OT889IXY Strong Biomarker [2181]
SET OTGYYQJO Strong Biomarker [2182]
SETX OTG3JNOQ Strong Biomarker [1600]
SF3B2 OTNW2U4Y Strong Altered Expression [2183]
SFRP1 OT0U9G41 Strong Biomarker [2184]
SFRP2 OT8GZ0CA Strong Biomarker [1275]
SFTPA2 OT6SFOMU Strong Biomarker [2185]
SFXN1 OTL66767 Strong Genetic Variation [2186]
SGSM3 OTIB1P8A Strong Biomarker [711]
SH2B2 OTEDHHDH Strong Genetic Variation [2187]
SH3BGRL OTUOCTMT Strong Altered Expression [258]
SH3BP4 OTVIRKW7 Strong Biomarker [2188]
SH3GLB1 OTAZ5OP8 Strong Genetic Variation [2189]
SH3GLB2 OTF7BB9S Strong Altered Expression [2190]
SHARPIN OTU1J2KH Strong Biomarker [2191]
SHBG OTPWU5IW Strong Biomarker [2192]
SHC1 OT1J5IRN Strong Altered Expression [2193]
SHROOM2 OTZ2FJ7Q Strong Genetic Variation [348]
SIAH2 OTKED2XN Strong Altered Expression [2194]
SIDT1 OTJM5S74 Strong Genetic Variation [348]
SIGLEC1 OTNWSQA9 Strong Altered Expression [2195]
SIM2 OT0QWHK4 Strong Biomarker [2196]
SIN3B OTFB59FK Strong Biomarker [2197]
SIRT7 OT5M4OT4 Strong Biomarker [2198]
SIT1 OT7MDF09 Strong Genetic Variation [2199]
SIX1 OT70YYWM Strong Posttranslational Modification [2200]
SKA1 OTDYJ12A Strong Biomarker [2201]
SLC12A9 OTR7VRAK Strong Biomarker [1341]
SLC16A4 OT1YXBKC Strong Biomarker [859]
SLC26A8 OTNCW8RJ Strong Biomarker [1014]
SLC2A4RG OTW3LX8D Strong Biomarker [2202]
SLPI OTUNFUU8 Strong Biomarker [607]
SMAD4 OTWQWCKG Strong Biomarker [2203]
SMARCA5 OT5GR4Z2 Strong Biomarker [2204]
SMARCAL1 OTTKXLUZ Strong Biomarker [1061]
SMARCE1 OTAX4ITH Strong Altered Expression [2205]
SMC1A OT9ZMRK9 Strong Biomarker [2206]
SMC3 OTWGFRHD Strong Biomarker [1066]
SMS OT8JYKNH Strong Biomarker [2207]
SNRNP70 OTP52YZ3 Strong Genetic Variation [2208]
SNRPN OTQB1ID1 Strong Biomarker [370]
SNW1 OTKWG3PS Strong Altered Expression [2209]
SOCS2 OTBPNKJQ Strong Altered Expression [2210]
SOCS6 OT2O5ZBK Strong Altered Expression [2211]
SOD3 OTIOZQAB Strong Biomarker [2212]
SORBS1 OTWH8762 Strong Biomarker [682]
SOS1 OTTCWXC3 Strong Altered Expression [2213]
SOX11 OT4LG7LA Strong Posttranslational Modification [2214]
SOX15 OTTB37I1 Strong Genetic Variation [2215]
SOX18 OTPUMHWA Strong Altered Expression [290]
SOX4 OTSS40SS Strong Biomarker [2216]
SOX6 OTT0W0LE Strong Biomarker [2217]
SOX9 OTVDJFGN Strong Biomarker [2218]
SPACA9 OTVRFX49 Strong Biomarker [2219]
SPAM1 OTMPOB4E Strong Biomarker [2220]
SPANXB1 OTLMGC9T Strong Genetic Variation [1488]
SPARCL1 OT74DWMV Strong Biomarker [2221]
SPATA2 OTOA45GL Strong Biomarker [2222]
SPC25 OTCAS0OH Strong Altered Expression [2223]
SPEN OT37A2MD Strong Biomarker [2224]
SPG21 OTMKJSYS Strong Biomarker [2219]
SPINT2 OTQV7BKQ Strong Genetic Variation [2225]
SPOCK2 OTXSVTSA Strong Biomarker [714]
SPON2 OTE7JLNM Strong Altered Expression [2226]
SPRY2 OTH0CRCZ Strong Biomarker [2227]
SRCAP OT82P6CN Strong Altered Expression [2228]
SRF OTW18FQN Strong Biomarker [240]
SRL OT7IEBWZ Strong Biomarker [739]
SRPX OT5B9LXS Strong Altered Expression [1553]
SRPX2 OT6A63TX Strong Biomarker [2229]
SRRM2 OTSIMMC9 Strong Biomarker [810]
SRRM4 OTALUISN Strong Altered Expression [2230]
SRSF5 OTC5WP98 Strong Genetic Variation [2231]
SRY OT516T6D Strong Biomarker [318]
SSBP2 OTYG1G80 Strong Altered Expression [2232]
SSX2 OT2Z6RLL Strong Altered Expression [2233]
ST3GAL1 OTFCO8QX Strong Biomarker [1592]
ST3GAL3 OTOORKUE Strong Biomarker [2234]
ST6GAL1 OT7US3NO Strong Biomarker [2235]
ST6GALNAC3 OTLAQ14Q Strong Biomarker [1388]
STAG1 OT564IX4 Strong Altered Expression [2236]
STAMBPL1 OTI4CYTF Strong Biomarker [955]
STARD13 OTB4U1HY Strong Biomarker [2237]
STARD3 OTSTC5B5 Strong Altered Expression [2238]
STARD8 OTY9IAKW Strong Altered Expression [2239]
STAT5A OTBSJGN3 Strong Biomarker [2240]
STAT5B OTZVPEBT Strong Biomarker [2240]
STEAP4 OTFTLAEZ Strong Biomarker [2241]
STIL OT9799VN Strong Biomarker [2082]
STIM1 OT8CLQ1W Strong Biomarker [2242]
STING1 OTDAP4G0 Strong Biomarker [912]
STIP1 OT7TXLOX Strong Altered Expression [1322]
STK24 OTGUHOIL Strong Biomarker [2243]
STK26 OTW4QE0D Strong Biomarker [2243]
STUB1 OTSUYI9A Strong Biomarker [2244]
STX1A OTSBUZB4 Strong Biomarker [2245]
STX6 OTC5F5M6 Strong Biomarker [2246]
SUGCT OTA8L0TN Strong Genetic Variation [348]
SUOX OTEJQ9FC Strong Altered Expression [2247]
SV2B OTAO5WIU Strong Altered Expression [2248]
SYBU OT3FQV7N Strong Biomarker [1932]
SYNE1 OTSBSLUH Strong Biomarker [2249]
SYP OTFJKMO4 Strong Altered Expression [2250]
SYT1 OTVTPOI6 Strong Biomarker [952]
SYT7 OTBWAOWY Strong Altered Expression [2251]
TAL1 OTX4K6QZ Strong Altered Expression [964]
TANGO2 OTT9UI89 Strong Genetic Variation [1642]
TBATA OTGDMAAL Strong Biomarker [2252]
TBC1D3 OT1GW0K2 Strong Biomarker [2110]
TBC1D3B OTIXDB15 Strong Biomarker [2110]
TBC1D3D OTIOU5HX Strong Biomarker [2110]
TBC1D3E OTNBQN47 Strong Biomarker [2110]
TBC1D9 OTSSCTB5 Strong Biomarker [2253]
TBX15 OTAZ9QDX Strong Altered Expression [2254]
TBX2 OTTOT7A9 Strong Biomarker [2255]
TCAF1 OTSQQ37P Strong Biomarker [828]
TCF12 OTZVONNU Strong Altered Expression [2256]
TCF21 OT393IMA Strong Posttranslational Modification [2257]
TCF7 OT1ID822 Strong Biomarker [2258]
TCN1 OTW6A49Y Strong Biomarker [2259]
TENT5B OTO2P28B Strong Altered Expression [2260]
TERF2IP OT3M5P3G Strong Altered Expression [1535]
TES OTL8PP6V Strong Genetic Variation [2261]
TEX11 OTJDBGSS Strong Biomarker [1024]
TFAM OTXXV5V7 Strong Genetic Variation [2262]
TFEB OTJUJJQY Strong Altered Expression [940]
TFIP11 OT7NVSWU Strong Biomarker [2263]
TGFBR3 OTQOOUC4 Strong Altered Expression [2264]
TGIF2LX OTLBWKZA Strong Altered Expression [2265]
THADA OTYZQX0F Strong Genetic Variation [1029]
THY1 OTVONVTB Strong Biomarker [2266]
TIMM8A OTDX9687 Strong Biomarker [783]
TIMP4 OT8A68SW Strong Altered Expression [2267]
TLE3 OTR9PH95 Strong Biomarker [2268]
TLE5 OTEH0BFG Strong Biomarker [2269]
TLR10 OTQ1KVJO Strong Genetic Variation [906]
TM7SF2 OTILU5S7 Strong Altered Expression [396]
TMC5 OTO5D86M Strong Altered Expression [2270]
TMED10 OTUXSHH7 Strong Altered Expression [463]
TMED9 OTYGAQS0 Strong Biomarker [94]
TMEM135 OT63ZT3X Strong Biomarker [1699]
TMEM17 OTEU00OH Strong Genetic Variation [1029]
TMEM30A OTR6N5J2 Strong Biomarker [1512]
TMEM41B OTW0B0KS Strong Biomarker [1027]
TMEM45B OTVQCO8N Strong Biomarker [2271]
TMF1 OT7JY7UF Strong Biomarker [2272]
TMPO OTL68EL4 Strong Biomarker [1828]
TMPRSS4 OTCCGY2K Strong Altered Expression [2273]
TNFAIP8 OT1G9297 Strong Altered Expression [2274]
TNFRSF10C OTVHOL9B Strong Altered Expression [2275]
TNFRSF10D OTOSRDJT Strong Altered Expression [2276]
TNFSF9 OTV9L89D Strong Altered Expression [2277]
TNIP1 OTRAOTEW Strong Altered Expression [2278]
TNRC6B OTGVT0SH Strong Genetic Variation [348]
TNS3 OTPG2D8Z Strong Genetic Variation [348]
TOPORS OT1ERFFQ Strong Biomarker [2279]
TP63 OT0WOOKQ Strong Biomarker [2280]
TPD52 OTPKSK43 Strong Biomarker [2281]
TPD52L2 OTTOG0NK Strong Biomarker [2282]
TPM2 OTA1L0P8 Strong Genetic Variation [2283]
TPPP OTCFMSUF Strong Biomarker [94]
TRA2B OTZYQW52 Strong Altered Expression [346]
TRAF1 OTTLM5RU Strong Altered Expression [2284]
TRAF4 OTJLRVMC Strong Biomarker [730]
TRIAP1 OTEAUJXN Strong Biomarker [2285]
TRIB2 OTHSX3MX Strong Altered Expression [2286]
TRIM11 OTMD6IM2 Strong Biomarker [2287]
TRIM16 OTLRXYOZ Strong Biomarker [2288]
TRIM23 OTVIGJ4T Strong Biomarker [1977]
TRIM25 OT35SG1R Strong Altered Expression [2289]
TRIM31 OT7VW6RP Strong Genetic Variation [348]
TRIM33 OT0KS4J7 Strong Altered Expression [2290]
TRIM44 OT0B1T2B Strong Biomarker [2291]
TRIM68 OTHMDMOG Strong Altered Expression [2292]
TRIM8 OTS6JFR0 Strong Genetic Variation [348]
TRIP13 OTFM3TI9 Strong Biomarker [2293]
TRIP4 OTA8OASA Strong Posttranslational Modification [1030]
TROAP OTC8CE0R Strong Altered Expression [2294]
TRPS1 OT7XPPEL Strong Altered Expression [2295]
TSHZ3 OTAN7RY5 Strong Posttranslational Modification [2296]
TSPAN1 OTZQPIYK Strong Biomarker [2297]
TSPY1 OTPY57X4 Strong Biomarker [2298]
TSPY3 OTQK3AKI Strong Biomarker [2298]
TSPYL5 OT7QEI2X Strong Altered Expression [2299]
TTC28 OTFOOYC3 Strong Genetic Variation [348]
TTC7A OTDHLPQM Strong Genetic Variation [2093]
TTLL12 OTJQ8RF4 Strong Biomarker [2300]
ABHD2 OTCRUOCS Definitive Altered Expression [2301]
ACOT7 OT7C68YV Definitive Biomarker [960]
ACTBL2 OTD6B81U Definitive Biomarker [960]
ACTG2 OTRDWUO0 Definitive Biomarker [960]
ADAM19 OTH88TXU Definitive Altered Expression [2302]
ADGRA2 OTBT4W36 Definitive Genetic Variation [1036]
AFAP1L2 OTJBI0VN Definitive Biomarker [2303]
ANGPTL2 OTB6JG41 Definitive Altered Expression [1091]
ANXA7 OTLMD0TK Definitive Altered Expression [2304]
AP1S2 OTZHJFYI Definitive Biomarker [2305]
ARSF OTC0L12N Definitive Altered Expression [2306]
ATOX1 OT05LF59 Definitive Altered Expression [2307]
ATRIP OT78O9LF Definitive Biomarker [1036]
BIRC6 OTCQJAB0 Definitive Altered Expression [18]
BRD8 OTIKS3PC Definitive Biomarker [2308]
BTNL2 OTTTEMZA Definitive Genetic Variation [2309]
CAPS OTC9GZ2M Definitive Genetic Variation [2310]
CBX2 OTOQ5WS4 Definitive Biomarker [2311]
CCL18 OT7JYSK9 Definitive Altered Expression [2312]
CCL19 OTQ2UJMH Definitive Altered Expression [2313]
CCNH OTKDU3SR Definitive Biomarker [1240]
CCS OTXHT3QO Definitive Altered Expression [2307]
CDO1 OTLG1P77 Definitive Posttranslational Modification [2314]
CEBPD OTNBIPMY Definitive Altered Expression [2315]
CERS2 OTRAHYYP Definitive Altered Expression [1108]
CLEC2D OTVRLKPM Definitive Biomarker [2316]
CSH1 OT33HTRR Definitive Genetic Variation [1240]
CSH2 OTW8JVAN Definitive Genetic Variation [1240]
CTBS OT135K92 Definitive Altered Expression [987]
CTDSPL OTZJ0CZK Definitive Biomarker [38]
DIXDC1 OT87DXEG Definitive Altered Expression [2317]
DLD OT378CU9 Definitive Biomarker [2318]
DNAJB7 OT4BOECZ Definitive Biomarker [2319]
DSG2 OTJPB2TO Definitive Biomarker [2320]
DSP OTB2MOP8 Definitive Biomarker [2321]
EFNA2 OTEAUKRX Definitive Biomarker [2322]
EHBP1 OTMNUJ15 Definitive Genetic Variation [348]
ERCC6 OT2QZKSF Definitive Genetic Variation [1240]
FABP9 OTTAEGAN Definitive Biomarker [2323]
FHL5 OT6C00Z1 Definitive Biomarker [960]
FLRT2 OTGD8TID Definitive Biomarker [2324]
FRK OTEKV1SC Definitive Genetic Variation [1171]
GATA1 OTX1R7O1 Definitive Altered Expression [2325]
GCNT1 OTF6OC66 Definitive Altered Expression [2326]
GLCE OTPRSHX5 Definitive Altered Expression [2327]
GLUD1 OTXKOCUH Definitive Altered Expression [2328]
GPX2 OTXI2NTI Definitive Biomarker [2329]
GPX4 OTRAFFX2 Definitive Genetic Variation [2330]
HEY1 OTJQL0I3 Definitive Biomarker [2331]
HIP1R OTIPKEJC Definitive Altered Expression [2332]
HNRNPC OT47AK4C Definitive Biomarker [1321]
HNRNPDL OTB3BFCV Definitive Biomarker [1321]
HNRNPH1 OTFRWOLM Definitive Biomarker [1321]
HSPA1A OTKGIE76 Definitive Biomarker [979]
IARS1 OT9WXH5N Definitive Altered Expression [2333]
INTS6 OT6GDV46 Definitive Biomarker [2334]
IRX4 OT0TV6WK Definitive Altered Expression [2335]
KLRB1 OTQ2959Y Definitive Biomarker [2316]
LAMC1 OTIG527N Definitive Biomarker [2336]
LCP1 OTK61F2A Definitive Genetic Variation [2337]
LZTS1 OTXXL864 Definitive Biomarker [966]
MAD2L2 OT24ZO59 Definitive Biomarker [981]
MAL OTBM30SW Definitive Biomarker [2338]
MARCHF8 OTH7PNN2 Definitive Biomarker [1957]
MCAT OTH07FIW Definitive Altered Expression [967]
MCTS1 OT7SAOJP Definitive Altered Expression [967]
MLPH OT7ADCXL Definitive Genetic Variation [2339]
MLST8 OT8DNJSD Definitive Altered Expression [2340]
MSC OTBRPZL5 Definitive Biomarker [2341]
MSH5 OTDARQT3 Definitive Genetic Variation [2342]
MX1 OT6X8G5T Definitive Altered Expression [2343]
NANS OTMQ2FUH Definitive Biomarker [2319]
NKAIN2 OTI4H30Z Definitive Altered Expression [2344]
NLGN4Y OT7E1S57 Definitive Biomarker [2345]
OPCML OT93PQ6Y Definitive Biomarker [2324]
PCDH10 OT2GIT0E Definitive Posttranslational Modification [2346]
PDCD10 OTCHJTSF Definitive Biomarker [2347]
PDLIM2 OTEURRPD Definitive Biomarker [2348]
PENK OT8P3HMP Definitive Biomarker [2349]
PEX6 OTFAK5EF Definitive Genetic Variation [2350]
PFN1 OTHTGA1H Definitive Altered Expression [2351]
PKP1 OT9HSQ8F Definitive Altered Expression [2352]
PLEKHH3 OTREOQBO Definitive Biomarker [1036]
POTEM OT7L2HGH Definitive Biomarker [960]
PPFIBP2 OTXQO55Y Definitive Genetic Variation [348]
PPP1R13L OTNCPLWE Definitive Altered Expression [2353]
PRC1 OTHD0XS0 Definitive Altered Expression [2354]
PRIMA1 OT9ITT3P Definitive Biomarker [2355]
PROX1 OT68R6IO Definitive Biomarker [2356]
PSMA1 OTNBVM2U Definitive Biomarker [995]
PSMD4 OTH1VZTM Definitive Altered Expression [2306]
RABGEF1 OTWC3Z3R Definitive Altered Expression [2357]
RAD51B OTCJVRMY Definitive Genetic Variation [348]
RASGRP3 OTEMEV3P Definitive Altered Expression [2358]
RB1CC1 OTZK8PFX Definitive Altered Expression [1095]
RBBP5 OT12W2MK Definitive Biomarker [2359]
RBL1 OTDEBFYC Definitive Altered Expression [2360]
RLN1 OTL6QNHG Definitive Altered Expression [2361]
RNASE3 OTVE2XD1 Definitive Altered Expression [2362]
RNF41 OTN1DQOY Definitive Biomarker [2363]
SGTA OTKOJ3JB Definitive Altered Expression [2364]
SHISA2 OT4GMTML Definitive Biomarker [2365]
SMURF1 OT5UIZR8 Definitive Altered Expression [2366]
SND1 OTT734JN Definitive Biomarker [2367]
SPINT1 OT1CLR5L Definitive Altered Expression [978]
SRSF1 OTF61HOV Definitive Altered Expression [2306]
SUN2 OT2IQJUC Definitive Genetic Variation [1029]
TCF4 OTB9ASTK Definitive Biomarker [2368]
TET1 OTZDHT1D Definitive Altered Expression [2369]
THOC1 OTVABJ4Z Definitive Biomarker [85]
TMOD4 OTXLGJ4R Definitive Biomarker [2370]
TNFAIP8L2 OTII0RM0 Definitive Biomarker [2371]
TP53AIP1 OT1XVNDP Definitive Genetic Variation [2372]
TP53INP1 OT2363Z9 Definitive Biomarker [2373]
TPR OTUBBA4W Definitive Genetic Variation [2374]
TRIM29 OT2DNESG Definitive Altered Expression [2375]
TRRAP OT68OI2Y Definitive Genetic Variation [2376]
TSPAN13 OTCS9BZY Definitive Biomarker [2377]
TSPAN31 OT8WQ83R Definitive Biomarker [2319]
TSPAN8 OT1F68WQ Definitive Biomarker [2378]
TTF1 OT4K90WD Definitive Biomarker [2318]
------------------------------------------------------------------------------------
⏷ Show the Full List of 1858 DOT(s)

References

1 Metformin FDA Label
2 Simvastatin FDA Label
3 Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy.J Natl Cancer Inst. 2020 Feb 1;112(2):179-190. doi: 10.1093/jnci/djz075.
4 Identification of potential diagnostic and prognostic biomarkers for prostate cancer.Oncol Lett. 2019 Oct;18(4):4237-4245. doi: 10.3892/ol.2019.10765. Epub 2019 Aug 16.
5 PAC1-R null isoform expression in human prostate cancer tissue.Prostate. 2006 Apr 1;66(5):514-21. doi: 10.1002/pros.20356.
6 MiR-203 over-expression promotes prostate cancer cell apoptosis and reduces ADM resistance.Eur Rev Med Pharmacol Sci. 2018 Jun;22(12):3734-3741. doi: 10.26355/eurrev_201806_15253.
7 Cross-talk between alpha1D-adrenoceptors and transient receptor potential vanilloid type 1 triggers prostate cancer cell proliferation.BMC Cancer. 2014 Dec 7;14:921. doi: 10.1186/1471-2407-14-921.
8 Expression of autotaxin and acylglycerol kinase in prostate cancer: association with cancer development and progression.Cancer Sci. 2009 Sep;100(9):1631-8. doi: 10.1111/j.1349-7006.2009.01234.x. Epub 2009 May 31.
9 Prohibitin-2 negatively regulates AKT2 expression to promote prostate cancer cell migration.Int J Mol Med. 2018 Feb;41(2):1147-1155. doi: 10.3892/ijmm.2017.3307. Epub 2017 Dec 4.
10 Angiogenin mediates androgen-stimulated prostate cancer growth and enables castration resistance.Mol Cancer Res. 2013 Oct;11(10):1203-14. doi: 10.1158/1541-7786.MCR-13-0072. Epub 2013 Jul 12.
11 Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF- signaling.Cell Death Dis. 2018 Jun 13;9(6):703. doi: 10.1038/s41419-018-0735-2.
12 Design, synthesis and biological evaluation of new -carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors.Eur J Med Chem. 2018 Jan 1;143:1563-1577. doi: 10.1016/j.ejmech.2017.10.054. Epub 2017 Oct 23.
13 Validation of HB-EGF and amphiregulin as targets for human cancer therapy.Biochem Biophys Res Commun. 2008 Jan 18;365(3):555-61. doi: 10.1016/j.bbrc.2007.11.015. Epub 2007 Nov 20.
14 Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer. PLoS One. 2010 Aug 11;5(8):e12107.
15 Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5(+)CK8(+) epithelial cells.Oncogene. 2016 Jul 7;35(27):3555-64. doi: 10.1038/onc.2015.417. Epub 2015 Nov 2.
16 Purification and Functional Characterization of the C-Terminal Domain of the -Actin-Binding Protein AIM1 In Vitro.Molecules. 2018 Dec 11;23(12):3281. doi: 10.3390/molecules23123281.
17 AZGP1 is androgen responsive and involved in AR-induced prostate cancer cell proliferation and metastasis.J Cell Physiol. 2019 Aug;234(10):17444-17458. doi: 10.1002/jcp.28366. Epub 2019 Feb 28.
18 The BIRC6 gene as a novel target for therapy of prostate cancer: dual targeting of inhibitors of apoptosis.Oncotarget. 2014 Aug 30;5(16):6896-908. doi: 10.18632/oncotarget.2229.
19 CACNA2D2 promotes tumorigenesis by stimulating cell proliferation and angiogenesis.Oncogene. 2015 Oct 16;34(42):5383-94. doi: 10.1038/onc.2014.467. Epub 2015 Jan 26.
20 Improvement of prostate cancer detection combining a computer-aided diagnostic system with TRUS-MRI targeted biopsy.Abdom Radiol (NY). 2019 Jan;44(1):264-271. doi: 10.1007/s00261-018-1712-z.
21 Design, Synthesis and Biological Evaluation of 4-Aryl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one Derivatives as a PI3K Inhibitor.Biol Pharm Bull. 2019;42(6):1013-1018. doi: 10.1248/bpb.b19-00080.
22 The gastrin/cholecystokinin-B receptor on prostate cells--a novel target for bifunctional prostate cancer imaging.Eur J Pharm Sci. 2014 Feb 14;52:69-76. doi: 10.1016/j.ejps.2013.10.013. Epub 2013 Nov 6.
23 Infiltrating CD4+ T cells attenuate chemotherapy sensitivity in prostate cancer via CCL5 signaling.Prostate. 2019 Jun;79(9):1018-1031. doi: 10.1002/pros.23810. Epub 2019 Apr 24.
24 Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic.Oncotarget. 2015 May 10;6(13):10712-27. doi: 10.18632/oncotarget.3544.
25 Suppressive Role of Androgen/Androgen Receptor Signaling via Chemokines on Prostate Cancer Cells.J Clin Med. 2019 Mar 13;8(3):354. doi: 10.3390/jcm8030354.
26 Inflammation polymorphisms and prostate cancer risk in Jamaican men: Role of obesity/body size.Gene. 2017 Dec 15;636:96-102. doi: 10.1016/j.gene.2017.09.016. Epub 2017 Sep 10.
27 Tumor necrosis factor- induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation.Cancer Sci. 2018 May;109(5):1524-1531. doi: 10.1111/cas.13586. Epub 2018 Apr 29.
28 TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients.Clin Cancer Res. 2015 Aug 15;21(16):3771-82. doi: 10.1158/1078-0432.CCR-14-3145. Epub 2015 May 12.
29 iTRAQ-based Comparative Serum Proteomic Analysis of Prostate Cancer Patients with or without Bone Metastasis.J Cancer. 2019 Jul 10;10(18):4165-4177. doi: 10.7150/jca.33497. eCollection 2019.
30 Effect of genetic variants in cell adhesion pathways on the biochemical recurrence in prostate cancer patients with radical prostatectomy.Cancer Med. 2019 Jun;8(6):2777-2783. doi: 10.1002/cam4.2163. Epub 2019 Apr 16.
31 Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications.Int J Mol Sci. 2019 Aug 9;20(16):3881. doi: 10.3390/ijms20163881.
32 Increased mediator complex subunit CDK19 expression associates with aggressive prostate cancer.Int J Cancer. 2020 Jan 15;146(2):577-588. doi: 10.1002/ijc.32551. Epub 2019 Jul 19.
33 CCAAT enhancer binding protein promotes tumor growth and inhibits apoptosis in prostate cancer by methylating estrogen receptor .Neoplasma. 2018;65(1):34-41. doi: 10.4149/neo_2018_161205N620.
34 Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation.Prostate. 2015 Aug 1;75(11):1197-205. doi: 10.1002/pros.23002. Epub 2015 Apr 15.
35 Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus.Radiother Oncol. 2019 Nov;140:131-142. doi: 10.1016/j.radonc.2019.06.023. Epub 2019 Jul 2.
36 CGA gene (coding for the alpha subunit of glycoprotein hormones) overexpression in ER alpha-positive prostate tumors.Eur Urol. 2002 Mar;41(3):335-41. doi: 10.1016/s0302-2838(02)00020-9.
37 Targeting IB Kinase /NF-B Signaling in Human Prostate Cancer by a Novel IB Kinase Inhibitor CmpdA.Mol Cancer Ther. 2016 Jul;15(7):1504-14. doi: 10.1158/1535-7163.MCT-15-0999. Epub 2016 Apr 8.
38 Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis.Dis Markers. 2015;2015:241301. doi: 10.1155/2015/241301. Epub 2015 Sep 28.
39 Chloride intracellular channel 1 regulates prostate cancer cell proliferation and migration through the MAPK/ERK pathway.Cancer Biother Radiopharm. 2014 Oct;29(8):339-44. doi: 10.1089/cbr.2014.1666.
40 Neural Cell Adhesion Protein CNTN1 Promotes the Metastatic Progression of Prostate Cancer.Cancer Res. 2016 Mar 15;76(6):1603-14. doi: 10.1158/0008-5472.CAN-15-1898. Epub 2016 Jan 21.
41 Investigating the Multi-Target Pharmacological Mechanism of Hedyotis diffusa Willd Acting on Prostate Cancer: A Network Pharmacology Approach.Biomolecules. 2019 Oct 9;9(10):591. doi: 10.3390/biom9100591.
42 Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study.Cancer Res. 2009 Dec 15;69(24):9315-22. doi: 10.1158/0008-5472.CAN-09-0648.
43 NAD(P)H:quinone oxidoreductase 1 (NQO1) P187S polymorphism and prostate cancer risk in Caucasians.Int J Mol Sci. 2012;13(9):10959-10969. doi: 10.3390/ijms130910959. Epub 2012 Jul 26.
44 Targeting CK2 for cancer therapy.Anticancer Drugs. 2005 Nov;16(10):1037-43. doi: 10.1097/00001813-200511000-00001.
45 CXXC5 expression in prostate cancer: implications for cancer progression.Int J Exp Pathol. 2017 Aug;98(4):234-243. doi: 10.1111/iep.12241.
46 Dietary lipids and environmental xenobiotics as risk factors for prostate cancer: The role of cytochrome P450.Pharmacol Rep. 2019 Oct;71(5):826-832. doi: 10.1016/j.pharep.2019.04.011. Epub 2019 Apr 15.
47 Activation of AKT negatively regulates the pro-apoptotic function of death-associated protein kinase 3 (DAPK3) in prostate cancer.Cancer Lett. 2016 Jul 28;377(2):134-9. doi: 10.1016/j.canlet.2016.04.028. Epub 2016 Apr 25.
48 Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein.Biochim Biophys Acta. 2014 Sep;1842(9):1350-63. doi: 10.1016/j.bbadis.2014.04.018. Epub 2014 Apr 27.
49 DKK1 and Kremen Expression Predicts the Osteoblastic Response to Bone Metastasis.Transl Oncol. 2018 Aug;11(4):873-882. doi: 10.1016/j.tranon.2018.04.013. Epub 2018 May 15.
50 The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase.Mol Cancer Res. 2015 May;13(5):913-22. doi: 10.1158/1541-7786.MCR-14-0680. Epub 2015 Mar 16.
51 Autoregulatory feedback loop of EZH2/miR-200c/E2F3 as a driving force for prostate cancer development.Biochim Biophys Acta. 2014 Sep;1839(9):858-65. doi: 10.1016/j.bbagrm.2014.07.001. Epub 2014 Jul 10.
52 p-mTOR, p-4EBP-1 and eIF4E expression in canine prostatic carcinoma.Res Vet Sci. 2019 Feb;122:86-92. doi: 10.1016/j.rvsc.2018.11.006. Epub 2018 Nov 16.
53 Low frequency of ESRRA-C11orf20 fusion gene in ovarian carcinomas.PLoS Biol. 2014 Feb 4;12(2):e1001784. doi: 10.1371/journal.pbio.1001784. eCollection 2014 Feb.
54 Increased expression of EphA1 protein in prostate cancers correlates with high Gleason score.Int J Clin Exp Pathol. 2013 Aug 15;6(9):1854-60. eCollection 2013.
55 Downregulation of EphA5 by promoter methylation in human prostate cancer.BMC Cancer. 2015 Jan 22;15:18. doi: 10.1186/s12885-015-1025-3.
56 EphA6 promotes angiogenesis and prostate cancer metastasis and is associated with human prostate cancer progression.Oncotarget. 2015 Sep 8;6(26):22587-97. doi: 10.18632/oncotarget.4088.
57 Upregulation of erythropoietin and erythropoietin receptor in castration-resistant progression of prostate cancer.Asian J Androl. 2020 Jul-Aug;22(4):422-426. doi: 10.4103/aja.aja_80_19.
58 Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription.Oncogene. 2018 Jun;37(25):3340-3355. doi: 10.1038/s41388-018-0198-z. Epub 2018 Mar 20.
59 Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer.Neoplasia. 2017 Jun;19(6):451-459. doi: 10.1016/j.neo.2017.04.005. Epub 2017 May 7.
60 Androgen receptor dampens tissue factor expression via nuclear factor-B and early growth response protein 1.J Thromb Haemost. 2018 Apr;16(4):749-758. doi: 10.1111/jth.13971. Epub 2018 Mar 13.
61 Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response.JAMA Oncol. 2015 Jul;1(4):466-74. doi: 10.1001/jamaoncol.2015.1313.
62 FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis.Oncogene. 2019 Jun;38(26):5265-5280. doi: 10.1038/s41388-019-0791-9. Epub 2019 Mar 26.
63 Endocrine fibroblast growth factor FGF19 promotes prostate cancer progression.Cancer Res. 2013 Apr 15;73(8):2551-62. doi: 10.1158/0008-5472.CAN-12-4108. Epub 2013 Feb 25.
64 Delineation of human prostate cancer evolution identifies chromothripsis as a polyclonal event and FKBP4 as a potential driver of castration resistance.J Pathol. 2018 May;245(1):74-84. doi: 10.1002/path.5052. Epub 2018 Apr 2.
65 Modulation of Premetastatic Niche by the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor Pazopanib in Localized High-Risk Prostate Cancer Followed by Radical Prostatectomy: A Phase II Randomized Trial.Oncologist. 2018 Dec;23(12):1413-e151. doi: 10.1634/theoncologist.2018-0652. Epub 2018 Nov 1.
66 Regulated expression of the TP isoform of the human T prostanoid receptor by the tumour suppressors FOXP1 and NKX3.1: Implications for the role of thromboxane in prostate cancer.Biochim Biophys Acta Mol Basis Dis. 2017 Dec;1863(12):3153-3169. doi: 10.1016/j.bbadis.2017.09.005. Epub 2017 Sep 8.
67 Loss of FOXP3 and TSC1 Accelerates Prostate Cancer Progression through Synergistic Transcriptional and Posttranslational Regulation of c-MYC.Cancer Res. 2019 Apr 1;79(7):1413-1425. doi: 10.1158/0008-5472.CAN-18-2049. Epub 2019 Feb 7.
68 Association of type 2 diabetes susceptibility variants with advanced prostate cancer risk in the Breast and Prostate Cancer Cohort Consortium.Am J Epidemiol. 2012 Dec 15;176(12):1121-9. doi: 10.1093/aje/kws191. Epub 2012 Nov 28.
69 The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies.Eur Urol. 2019 Apr;75(4):582-590. doi: 10.1016/j.eururo.2018.11.040. Epub 2018 Dec 3.
70 The roles and mechanisms of G3BP1 in tumour promotion. J Drug Target. 2019 Mar;27(3):300-305.
71 The influence of PSA-RNA yield on the analysis of expressed prostatic secretions (EPS) for prostate cancer diagnosis.Can J Urol. 2013 Feb;20(1):6597-602.
72 Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer Cells in the Bone Marrow.Mol Cancer Res. 2017 Dec;15(12):1644-1655. doi: 10.1158/1541-7786.MCR-17-0132. Epub 2017 Aug 16.
73 Retreatment for Local Recurrence of Prostatic Carcinoma After Prior Therapeutic Irradiation: Efficacy and Toxicity of HDR-Like SBRT.Int J Radiat Oncol Biol Phys. 2020 Feb 1;106(2):291-299. doi: 10.1016/j.ijrobp.2019.10.014. Epub 2019 Oct 17.
74 A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model.Oncogene. 2005 Jul 7;24(29):4736-40. doi: 10.1038/sj.onc.1208572.
75 Limited short-term effects on human prostate cancer xenograft growth and epidermal growth factor receptor gene expression by the ghrelin receptor antagonist [D-Lys(3)]-GHRP-6.Endocrine. 2019 May;64(2):393-405. doi: 10.1007/s12020-018-1796-9. Epub 2018 Nov 2.
76 GLI pathogenesis-related 1 functions as a tumor-suppressor in lung cancer.Mol Cancer. 2016 Mar 18;15:25. doi: 10.1186/s12943-016-0508-4.
77 Preclinical evaluation of new GnRH-I receptor radionuclide therapy with (177) Lu-peptide tracer.J Labelled Comp Radiopharm. 2019 Jun 15;62(7):310-320. doi: 10.1002/jlcr.3742. Epub 2019 Jun 13.
78 G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer.Cancer Res. 2014 Jul 1;74(13):3489-500. doi: 10.1158/0008-5472.CAN-13-2708. Epub 2014 Apr 22.
79 Methylation of PITX2, HOXD3, RASSF1 and TDRD1 predicts biochemical recurrence in high-risk prostate cancer.J Cancer Res Clin Oncol. 2014 Nov;140(11):1849-61. doi: 10.1007/s00432-014-1738-8. Epub 2014 Jun 18.
80 LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling.PLoS One. 2011;6(11):e27720. doi: 10.1371/journal.pone.0027720. Epub 2011 Nov 16.
81 The orexin type 1 receptor is overexpressed in advanced prostate cancer with a neuroendocrine differentiation, and mediates apoptosis.Eur J Cancer. 2014 Aug;50(12):2126-33. doi: 10.1016/j.ejca.2014.05.008. Epub 2014 Jun 5.
82 HMBA is a putative HSP70 activator stimulating HEXIM1 expression that is down-regulated by estrogen.J Steroid Biochem Mol Biol. 2017 Apr;168:91-101. doi: 10.1016/j.jsbmb.2017.02.008. Epub 2017 Feb 14.
83 Circulating Levels of Omentin, Leptin, VEGF, and HGF and Their Clinical Relevance with PSA Marker in Prostate Cancer.Dis Markers. 2018 Aug 16;2018:3852401. doi: 10.1155/2018/3852401. eCollection 2018.
84 The RNA-binding protein hnRNPA2 regulates -catenin protein expression and is overexpressed in prostate cancer.RNA Biol. 2014;11(6):755-65. doi: 10.4161/rna.28800. Epub 2014 Apr 24.
85 VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription.Epigenetics. 2015;10(1):40-9. doi: 10.4161/15592294.2014.989088. Epub 2015 Jan 29.
86 The HDL receptor SR-BI is associated with human prostate cancer progression and plays a possible role in establishing androgen independence.Reprod Biol Endocrinol. 2015 Aug 7;13:88. doi: 10.1186/s12958-015-0087-z.
87 17-Hydroxysteroid dehydrogenases (17-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development.J Steroid Biochem Mol Biol. 2011 May;125(1-2):66-82. doi: 10.1016/j.jsbmb.2010.12.013. Epub 2010 Dec 28.
88 Differential tumor expression of inhibitor of differentiation-1 in prostate cancer patients with extreme clinical phenotypes and prognostic implications.Clin Genitourin Cancer. 2014 Apr;12(2):87-93. doi: 10.1016/j.clgc.2013.08.007. Epub 2013 Oct 12.
89 PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells.Prostate. 2019 Jun;79(9):969-979. doi: 10.1002/pros.23808. Epub 2019 Apr 18.
90 NAC1 promotes the migration of prostate cancer cells and participates in osteoclastogenesis by negatively regulating IFN.Oncol Lett. 2018 Mar;15(3):2921-2928. doi: 10.3892/ol.2017.7670. Epub 2017 Dec 20.
91 Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis.Cancer Causes Control. 2017 Jun;28(6):497-528. doi: 10.1007/s10552-017-0883-1. Epub 2017 Mar 30.
92 Castration-induced up-regulation of insulin-like growth factor binding protein-5 potentiates insulin-like growth factor-I activity and accelerates progression to androgen independence in prostate cancer models.Cancer Res. 2000 Jun 1;60(11):3058-64.
93 Detection of novel amplicons in prostate cancer by comprehensive genomic profiling of prostate cancer cell lines using oligonucleotide-based arrayCGH.PLoS One. 2007 Aug 22;2(8):e769. doi: 10.1371/journal.pone.0000769.
94 Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis.J Biol Chem. 2004 Jul 9;279(28):29302-7. doi: 10.1074/jbc.M403664200. Epub 2004 Apr 30.
95 Prostate cancer cells enhance interleukin-15-mediated expansion of NK cells.BJU Int. 2020 Jan;125(1):89-102. doi: 10.1111/bju.14893. Epub 2019 Aug 7.
96 Vaccination with tumor cells expressing IL-15 and IL-15R inhibits murine breast and prostate cancer.Gene Ther. 2014 Apr;21(4):393-401. doi: 10.1038/gt.2014.10. Epub 2014 Feb 27.
97 Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: comparison with polyp and cystitis.BMC Immunol. 2016 Oct 3;17(1):36. doi: 10.1186/s12865-016-0174-8.
98 Human adrenomedullin up-regulates interleukin-13 receptor alpha2 chain in prostate cancer in vitro and in vivo: a novel approach to sensitize prostate cancer to anticancer therapy.Cancer Res. 2008 Nov 15;68(22):9311-7. doi: 10.1158/0008-5472.CAN-08-2810.
99 Differential expressions of integrin-linked kinase, -parvin and cofilin 1 in high-fat diet induced prostate cancer progression in a transgenic mouse model.Oncol Lett. 2018 Oct;16(4):4945-4952. doi: 10.3892/ol.2018.9276. Epub 2018 Aug 7.
100 Prognostic value of tissue and circulating levels of IMP3 in prostate cancer.Int J Cancer. 2014 Oct 1;135(7):1596-604. doi: 10.1002/ijc.28808. Epub 2014 Mar 4.
101 A 36-gene signature predicts clinical progression in a subgroup of ERG-positive prostate cancers.Eur Urol. 2013 Dec;64(6):941-50. doi: 10.1016/j.eururo.2013.02.039. Epub 2013 Mar 7.
102 Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease.Carcinogenesis. 2018 Dec 31;39(12):1431-1437. doi: 10.1093/carcin/bgy112.
103 IRS-2 deubiquitination by USP9X maintains anchorage-independent cell growth via Erk1/2 activation in prostate carcinoma cell line.Oncotarget. 2018 Sep 21;9(74):33871-33883. doi: 10.18632/oncotarget.26049. eCollection 2018 Sep 21.
104 Upregulation of Circular RNA Itchy E3 Ubiquitin Protein Ligase Inhibits Cell Proliferation and Promotes Cell Apoptosis Through Targeting MiR-197 in Prostate Cancer.Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819886867. doi: 10.1177/1533033819886867.
105 Methylation of Integrin 4 and E-Cadherin Genes in Human Prostate Cancer.Pathol Oncol Res. 2015 Sep;21(4):921-7. doi: 10.1007/s12253-015-9917-8. Epub 2015 Mar 6.
106 Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.EBioMedicine. 2016 Aug;10:150-63. doi: 10.1016/j.ebiom.2016.07.022. Epub 2016 Jul 20.
107 Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel.Cancer Lett. 2020 Jan 1;468:88-101. doi: 10.1016/j.canlet.2019.10.006. Epub 2019 Oct 5.
108 Endoplasmic reticulum Ca(2+) content decrease by PKA-dependent hyperphosphorylation of type 1 IP3 receptor contributes to prostate cancer cell resistance to androgen deprivation.Cell Calcium. 2015 Apr;57(4):312-20. doi: 10.1016/j.ceca.2015.02.004. Epub 2015 Feb 18.
109 KAT5 and KAT6B are in positive regulation on cell proliferation of prostate cancer through PI3K-AKT signaling.Int J Clin Exp Pathol. 2013 Nov 15;6(12):2864-71. eCollection 2013.
110 A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity.Radiother Oncol. 2014 May;111(2):178-85. doi: 10.1016/j.radonc.2014.02.012. Epub 2014 Apr 28.
111 A Rhodium(III)-Based Inhibitor of Lysine-Specific Histone Demethylase 1 as an Epigenetic Modulator in Prostate Cancer Cells.J Med Chem. 2017 Mar 23;60(6):2597-2603. doi: 10.1021/acs.jmedchem.7b00133. Epub 2017 Mar 1.
112 MiR-10a functions as a tumor suppressor in prostate cancer via targeting KDM4A.J Cell Biochem. 2019 Apr;120(4):4987-4997. doi: 10.1002/jcb.27774. Epub 2018 Oct 9.
113 Potential Prognostic Role for SPOP, DAXX, RARRES1, and LAMP2 as an Autophagy Related Genes in Prostate Cancer.Urol J. 2020 Mar 16;17(2):156-163. doi: 10.22037/uj.v0i0.4935.
114 miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression.Oncotarget. 2015 Mar 20;6(8):6092-104. doi: 10.18632/oncotarget.3341.
115 MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer.Int J Oncol. 2015 Aug;47(2):710-8. doi: 10.3892/ijo.2015.3043. Epub 2015 Jun 10.
116 Targeting Galectin-1 Impairs Castration-Resistant Prostate Cancer Progression and Invasion.Clin Cancer Res. 2018 Sep 1;24(17):4319-4331. doi: 10.1158/1078-0432.CCR-18-0157. Epub 2018 Apr 17.
117 Effects of luteinizing hormone receptor signaling in prostate cancer cells.Prostate. 2015 Feb;75(2):141-50. doi: 10.1002/pros.22899. Epub 2014 Nov 12.
118 Phosphorylation of LIFR promotes prostate cancer progression by activating the AKT pathway.Cancer Lett. 2019 Jun 1;451:110-121. doi: 10.1016/j.canlet.2019.02.042. Epub 2019 Mar 6.
119 Downregulation of microRNA-23a suppresses prostate cancer metastasis by targeting the PAK6-LIMK1 signaling pathway.Oncotarget. 2015 Feb 28;6(6):3904-17. doi: 10.18632/oncotarget.2880.
120 Regulation of SRC kinases by microRNA-3607 located in a frequently deleted locus in prostate cancer.Mol Cancer Ther. 2014 Jul;13(7):1952-63. doi: 10.1158/1535-7163.MCT-14-0017. Epub 2014 May 9.
121 Mannose-6-phosphate receptor: a target for theranostics of prostate cancer.Angew Chem Int Ed Engl. 2015 May 11;54(20):5952-6. doi: 10.1002/anie.201500286. Epub 2015 Mar 20.
122 Total anatomical reconstruction during robot-assisted radical prostatectomy: focus on urinary continence recovery and related complications after 1000 procedures.BJU Int. 2019 Sep;124(3):477-486. doi: 10.1111/bju.14716. Epub 2019 Mar 15.
123 Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.J Cancer Res Clin Oncol. 2018 Sep;144(9):1685-1699. doi: 10.1007/s00432-018-2696-3. Epub 2018 Jun 29.
124 Mixed lineage kinase 3 modulates -catenin signaling in cancer cells.J Biol Chem. 2011 Oct 28;286(43):37470-82. doi: 10.1074/jbc.M111.298943. Epub 2011 Aug 31.
125 MicroRNA-188 inhibits proliferation migration and invasion of prostate carcinoma by targeting at MARCKS.Am J Transl Res. 2019 Aug 15;11(8):5019-5028. eCollection 2019.
126 Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis.Prostate. 2009 May 15;69(7):727-36. doi: 10.1002/pros.20920.
127 MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway.J Exp Clin Cancer Res. 2019 Sep 5;38(1):391. doi: 10.1186/s13046-019-1374-x.
128 Ultraviolet radiation: effects on risks of prostate cancer and other internal cancers.Mutat Res. 2005 Apr 1;571(1-2):207-19. doi: 10.1016/j.mrfmmm.2004.09.015. Epub 2005 Jan 28.
129 Metastatic Prostate Cancer: Effects of Genetic Testing on Care.Clin J Oncol Nurs. 2019 Feb 1;23(1):32-35. doi: 10.1188/19.CJON.32-35.
130 AGE-modified basement membrane cooperates with Endo180 to promote epithelial cell invasiveness and decrease prostate cancer survival.J Pathol. 2015 Mar;235(4):581-92. doi: 10.1002/path.4485. Epub 2014 Dec 24.
131 MTA1-Dependent Anticancer Activity of Gnetin C in Prostate Cancer.Nutrients. 2019 Sep 4;11(9):2096. doi: 10.3390/nu11092096.
132 The targeting of MTDH by miR?45?p or miR?45?p is associated with prognosis and regulates the growth and metastasis of prostate cancer cells.Int J Oncol. 2019 Jun;54(6):1955-1968. doi: 10.3892/ijo.2019.4782. Epub 2019 Apr 12.
133 Melatonin MT1 receptor-induced transcriptional up-regulation of p27(Kip1) in prostate cancer antiproliferation is mediated via inhibition of constitutively active nuclear factor kappa B (NF-B): potential implications on prostate cancer chemoprevention and therapy.J Pineal Res. 2013 Jan;54(1):69-79. doi: 10.1111/j.1600-079X.2012.01026.x. Epub 2012 Aug 1.
134 A single-nucleotide polymorphism (rs1805087) in the methionine synthase (METH) gene increases the risk of prostate cancer.Aging (Albany NY). 2018 Oct 18;10(10):2741-2754. doi: 10.18632/aging.101584.
135 CD151 is associated with prostate cancer cell invasion and lymphangiogenesis in vivo.Oncol Rep. 2014 Jan;31(1):241-7. doi: 10.3892/or.2013.2823. Epub 2013 Oct 29.
136 Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness.Mol Cell Proteomics. 2014 Jul;13(7):1753-68. doi: 10.1074/mcp.M114.038273. Epub 2014 Apr 16.
137 Oncogenic non-coding RNA NEAT1 promotes the prostate cancer cell growth through the SRC3/IGF1R/AKT pathway.Int J Biochem Cell Biol. 2018 Jan;94:125-132. doi: 10.1016/j.biocel.2017.12.005. Epub 2017 Dec 7.
138 Upregulation of GRIM-19 augments the sensitivity of prostate cancer cells to docetaxel by targeting Rad23b.Clin Exp Pharmacol Physiol. 2020 Jan;47(1):76-84. doi: 10.1111/1440-1681.13179. Epub 2019 Oct 22.
139 Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells.Cancers (Basel). 2019 Jun 6;11(6):784. doi: 10.3390/cancers11060784.
140 C-type natriuretic peptide and its precursor: potential markers in human prostate cancer.Biomark Med. 2015;9(4):319-26. doi: 10.2217/bmm.14.74.
141 Expression of neuregulin 4 splice variants in normal human tissues and prostate cancer and their effects on cell motility.Endocr Relat Cancer. 2010 Dec 13;18(1):39-49. doi: 10.1677/ERC-10-0112. Print 2011 Feb.
142 Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.Colloids Surf B Biointerfaces. 2018 Mar 1;163:225-235. doi: 10.1016/j.colsurfb.2017.12.036. Epub 2017 Dec 24.
143 Neurotensin and its receptors mediate neuroendocrine transdifferentiation in prostate cancer.Oncogene. 2019 Jun;38(24):4875-4884. doi: 10.1038/s41388-019-0750-5. Epub 2019 Feb 15.
144 Olfactomedin 4 downregulation is associated with tumor initiation, growth and progression in human prostate cancer.Int J Cancer. 2020 Mar 1;146(5):1346-1358. doi: 10.1002/ijc.32535. Epub 2019 Jul 9.
145 Oligophrenin-1 is associated with cell adhesion and migration in prostate cancer.Pathobiology. 2014;81(4):190-8. doi: 10.1159/000363345. Epub 2014 Aug 27.
146 P2Y2 receptor promotes cell invasion and metastasis in prostate cancer cells.Br J Cancer. 2013 Sep 17;109(6):1666-75. doi: 10.1038/bjc.2013.484. Epub 2013 Aug 22.
147 A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.Cancer Res. 2009 Oct 1;69(19):7689-95. doi: 10.1158/0008-5472.CAN-08-2472. Epub 2009 Sep 22.
148 Inhibition of PCSK9 protects against radiation-induced damage of prostate cancer cells.Onco Targets Ther. 2017 Apr 12;10:2139-2146. doi: 10.2147/OTT.S129413. eCollection 2017.
149 The cAMP phosphodiesterase-4D7 (PDE4D7) is downregulated in androgen-independent prostate cancer cells and mediates proliferation by compartmentalising cAMP at the plasma membrane of VCaP prostate cancer cells.Br J Cancer. 2014 Mar 4;110(5):1278-87. doi: 10.1038/bjc.2014.22. Epub 2014 Feb 11.
150 Single-cell genetic analysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor prognosis.Am J Pathol. 2014 Oct;184(10):2671-86. doi: 10.1016/j.ajpath.2014.06.030. Epub 2014 Aug 14.
151 Meta-Analysis of steroid-converting enzymes and related receptors in prostate cancer suggesting novel combined therapies.J Steroid Biochem Mol Biol. 2020 Apr;198:105559. doi: 10.1016/j.jsbmb.2019.105559. Epub 2019 Nov 26.
152 Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.ACS Nano. 2017 Mar 28;11(3):2618-2627. doi: 10.1021/acsnano.6b07195. Epub 2017 Mar 3.
153 A novel cross-talk between CXCR4 and PI4KIII in prostate cancer cells.Oncogene. 2019 Jan;38(3):332-344. doi: 10.1038/s41388-018-0448-0. Epub 2018 Aug 15.
154 KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC.Oncogene. 2019 Jan;38(1):17-32. doi: 10.1038/s41388-018-0414-x. Epub 2018 Aug 2.
155 Phospholipase A2-Responsive Phosphate Micelle-Loaded UCNPs for Bioimaging of Prostate Cancer Cells.Sci Rep. 2017 Nov 22;7(1):16073. doi: 10.1038/s41598-017-16136-4.
156 Increased expression of p21Waf1/Cip1 and JNK with costimulation of prostate cancer cell activation by an siRNA Egr-1 inhibitor.Oncol Rep. 2013 Aug;30(2):911-6. doi: 10.3892/or.2013.2503. Epub 2013 May 28.
157 Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells.Cancer Biol Ther. 2009 Dec;8(23):2286-96. doi: 10.4161/cbt.8.23.10138. Epub 2009 Dec 19.
158 The malignancy index in plasma samples as a prostate cancer biomarker.Discov Med. 2018 May;25(139):235-242.
159 Polymeric Nanoparticles Based on Tyrosine-Modified, Low Molecular Weight Polyethylenimines for siRNA Delivery.Pharmaceutics. 2019 Nov 12;11(11):600. doi: 10.3390/pharmaceutics11110600.
160 CAND1 promotes PLK4-mediated centriole overduplication and is frequently disrupted in prostate cancer.Neoplasia. 2012 Sep;14(9):799-806. doi: 10.1593/neo.12580.
161 An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.Nat Genet. 2018 Feb;50(2):206-218. doi: 10.1038/s41588-017-0027-2. Epub 2018 Jan 15.
162 Pre-diagnostic metabolite concentrations and prostate cancer risk in 1077 cases and 1077 matched controls in the European Prospective Investigation into Cancer and Nutrition.BMC Med. 2017 Jul 5;15(1):122. doi: 10.1186/s12916-017-0885-6.
163 Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death.Cancer Res. 2007 Apr 15;67(8):3654-62. doi: 10.1158/0008-5472.CAN-06-1759.
164 PPP5C promotes cell proliferation and survival in human prostate cancer by regulating of the JNK and ERK1/2 phosphorylation.Onco Targets Ther. 2018 Sep 12;11:5797-5809. doi: 10.2147/OTT.S161280. eCollection 2018.
165 Peroxiredoxins 3 and 4 are overexpressed in prostate cancer tissue and affect the proliferation of prostate cancer cells in vitro.J Proteome Res. 2012 Apr 6;11(4):2452-66. doi: 10.1021/pr201172n. Epub 2012 Mar 28.
166 The role of PKC and PKD in CXCL12 directed prostate cancer migration.Biochem Biophys Res Commun. 2019 Oct 29;519(1):86-92. doi: 10.1016/j.bbrc.2019.08.134. Epub 2019 Aug 30.
167 Activation of nuclear factor B (NF-B) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon).J Biol Chem. 2012 Oct 26;287(44):37570-82. doi: 10.1074/jbc.M112.398925. Epub 2012 Sep 6.
168 Pleiotropic Impact of DNA-PK in Cancer and Implications for Therapeutic Strategies.Clin Cancer Res. 2019 Sep 15;25(18):5623-5637. doi: 10.1158/1078-0432.CCR-18-2207. Epub 2019 Jul 2.
169 High Glucose Induces VEGF-C Expression via the LPA1/3-Akt-ROS-LEDGF Signaling Axis in Human Prostate Cancer PC-3 Cells.Cell Physiol Biochem. 2018;50(2):597-611. doi: 10.1159/000494177. Epub 2018 Oct 12.
170 COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins.Prostate. 2014 Jul;74(10):999-1011. doi: 10.1002/pros.22815. Epub 2014 May 7.
171 Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation.J Pharmacol Exp Ther. 2013 Feb;344(2):360-7. doi: 10.1124/jpet.112.200444. Epub 2012 Nov 28.
172 Significance of divergent expression of prostaglandin EP4 and EP3 receptors in human prostate cancer.Mol Cancer Res. 2013 Apr;11(4):427-39. doi: 10.1158/1541-7786.MCR-12-0464. Epub 2013 Jan 30.
173 Protein tyrosine kinase 7 (PTK7) as a predictor of lymph node metastases and a novel prognostic biomarker in patients with prostate cancer.Int J Mol Sci. 2014 Jul 1;15(7):11665-77. doi: 10.3390/ijms150711665.
174 Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia.Prostate. 2011 Feb 15;71(3):305-17. doi: 10.1002/pros.21244. Epub 2010 Sep 1.
175 Identification of PRL1 as a novel diagnostic and therapeutic target for castration-resistant prostate cancer by the Escherichia coli ampicillin secretion trap (CAST) method.Urol Oncol. 2014 Aug;32(6):769-78. doi: 10.1016/j.urolonc.2014.03.007. Epub 2014 Jun 23.
176 Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin.Food Chem Toxicol. 2019 Feb;124:273-279. doi: 10.1016/j.fct.2018.12.014. Epub 2018 Dec 12.
177 Prostatic carcinoma with neuroendocrine differentiation harboring the EWSR1-FEV fusion transcript in a man with the WRN G327X germline mutation: A new variant of prostatic carcinoma or a member of the Ewing sarcoma family of tumors?.Pathol Res Pract. 2020 Feb;216(2):152758. doi: 10.1016/j.prp.2019.152758. Epub 2019 Nov 22.
178 Class IIb HDAC Inhibition Enhances the Inhibitory Effect of Am80, a Synthetic Retinoid, in Prostate Cancer.Biol Pharm Bull. 2019;42(3):448-452. doi: 10.1248/bpb.b18-00782.
179 The association between histone 3 lysine 27 trimethylation (H3K27me3) and prostate cancer: relationship with clinicopathological parameters.BMC Cancer. 2014 Dec 23;14:994. doi: 10.1186/1471-2407-14-994.
180 Ring finger protein 6 promotes breast cancer cell proliferation by stabilizing estrogen receptor alpha.Oncotarget. 2017 Mar 21;8(12):20103-20112. doi: 10.18632/oncotarget.15384.
181 Rho-Associated Protein Kinase (ROCK) Promotes Proliferation and Migration of PC-3 and DU145 Prostate Cancer Cells by Targeting LIM Kinase 1 (LIMK1) and Matrix Metalloproteinase-2 (MMP-2).Med Sci Monit. 2019 Apr 26;25:3090-3099. doi: 10.12659/MSM.912098.
182 A ROS-responsive polymeric prodrug nanosystem with self-amplified drug release for PSMA (-) prostate cancer specific therapy.J Nanobiotechnology. 2019 Aug 26;17(1):91. doi: 10.1186/s12951-019-0521-z.
183 Inhibition of RSK/YB-1 signaling enhances the anti-cancer effect of enzalutamide in prostate cancer.Prostate. 2014 Jun;74(9):959-69. doi: 10.1002/pros.22813. Epub 2014 Apr 17.
184 A Novel Mechanism Driving Poor-Prognosis Prostate Cancer: Overexpression of the DNA Repair Gene, Ribonucleotide Reductase Small Subunit M2 (RRM2).Clin Cancer Res. 2019 Jul 15;25(14):4480-4492. doi: 10.1158/1078-0432.CCR-18-4046. Epub 2019 Apr 17.
185 Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and-Independent Mechanisms.Cancers (Basel). 2018 Jul 23;10(7):239. doi: 10.3390/cancers10070239.
186 Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy.Neoplasia. 2019 Sep;21(9):872-881. doi: 10.1016/j.neo.2019.07.003. Epub 2019 Aug 2.
187 Extrinsic sphingosine 1-phosphate activates S1P5 and induces autophagy through generating endoplasmic reticulum stress in human prostate cancer PC-3 cells.Cell Signal. 2014 Mar;26(3):611-8. doi: 10.1016/j.cellsig.2013.11.024. Epub 2013 Dec 11.
188 Development and Preliminary Clinical Application of Circulating Tumor Cell Detection System for Prostate Cancer.J Biomed Nanotechnol. 2019 Mar 1;15(3):612-620. doi: 10.1166/jbn.2019.2706.
189 Uteroglobin: a potential novel tumor suppressor and molecular therapeutic for prostate cancer.Clin Prostate Cancer. 2002 Sep;1(2):118-24. doi: 10.3816/cgc.2002.n.014.
190 Circulating syndecan-1 is associated with chemotherapy-resistance in castration-resistant prostate cancer.Urol Oncol. 2018 Jun;36(6):312.e9-312.e15. doi: 10.1016/j.urolonc.2018.03.010. Epub 2018 Apr 5.
191 SENP1 Interacts with HIF1 to Regulate Glycolysis of Prostatic Carcinoma Cells.Int J Biol Sci. 2019 Jan 1;15(2):395-403. doi: 10.7150/ijbs.27256. eCollection 2019.
192 MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer.Sci Rep. 2014 Dec 18;4:7546. doi: 10.1038/srep07546.
193 Radiation-induced glucocorticoid receptor promotes CD44+ prostate cancer stem cell growth through activation of SGK1-Wnt/-catenin signaling.J Mol Med (Berl). 2019 Aug;97(8):1169-1182. doi: 10.1007/s00109-019-01807-8. Epub 2019 Jun 11.
194 Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer.Mol Cancer Res. 2015 Apr;13(4):620-635. doi: 10.1158/1541-7786.MCR-13-0182-T. Epub 2014 Dec 29.
195 Sphingosine Kinase-1 Involves the Inhibitory Action of HIF-1 by Chlorogenic Acid in Hypoxic DU145 Cells.Int J Mol Sci. 2017 Feb 4;18(2):325. doi: 10.3390/ijms18020325.
196 The Sphingosine Kinase 2 Inhibitor ABC294640 Reduces the Growth of Prostate Cancer Cells and Results in Accumulation of Dihydroceramides In Vitro and In Vivo.Mol Cancer Ther. 2015 Dec;14(12):2744-52. doi: 10.1158/1535-7163.MCT-15-0279. Epub 2015 Oct 22.
197 Delineation of TMPRSS2-ERG splice variants in prostate cancer.Clin Cancer Res. 2008 Aug 1;14(15):4719-25. doi: 10.1158/1078-0432.CCR-08-0531.
198 Adipocyte p62/SQSTM1 Suppresses Tumorigenesis through Opposite Regulations of Metabolism in Adipose Tissue and Tumor.Cancer Cell. 2018 Apr 9;33(4):770-784.e6. doi: 10.1016/j.ccell.2018.03.001.
199 Lipid pathway deregulation in advanced prostate cancer.Pharmacol Res. 2018 May;131:177-184. doi: 10.1016/j.phrs.2018.02.022. Epub 2018 Feb 18.
200 Enhanced expression of SRPK2 contributes to aggressive progression and metastasis in prostate cancer.Biomed Pharmacother. 2018 Jun;102:531-538. doi: 10.1016/j.biopha.2018.03.079. Epub 2018 Mar 26.
201 Characterization and sub-cellular localization of SS1R, SS2R, and SS5R in human late-stage prostate cancer cells: effect of mono- and bi-specific somatostatin analogs on cell growth.Mol Cell Endocrinol. 2014 Feb 15;382(2):860-70. doi: 10.1016/j.mce.2013.10.027. Epub 2013 Nov 5.
202 IGF2 increases de novo steroidogenesis in prostate cancer cells.Endocr Relat Cancer. 2013 Mar 22;20(2):173-86. doi: 10.1530/ERC-12-0250. Print 2013 Apr.
203 Stanniocalcin-1 protein expression profile and mechanisms in proliferation and cell death pathways in prostate cancer.Mol Cell Endocrinol. 2020 Feb 15;502:110659. doi: 10.1016/j.mce.2019.110659. Epub 2019 Dec 7.
204 miR-34a Regulates Expression of the Stathmin-1 Oncoprotein and Prostate Cancer Progression.Mol Cancer Res. 2018 Jul;16(7):1125-1137. doi: 10.1158/1541-7786.MCR-17-0230. Epub 2017 Oct 12.
205 Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts.Oncotarget. 2015 Jun 10;6(16):14318-28. doi: 10.18632/oncotarget.3960.
206 Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer.Cell Tissue Res. 2010 Feb;339(2):337-47. doi: 10.1007/s00441-009-0902-y. Epub 2009 Dec 11.
207 TBK1 regulates prostate cancer dormancy through mTOR inhibition.Neoplasia. 2013 Sep;15(9):1064-74. doi: 10.1593/neo.13402.
208 Erratum: CRIPTO overexpression promotes mesenchymal differentiation in prostate carcinoma cells through parallel regulation of AKT and FGFR activities.Oncotarget. 2019 Jun 25;10(41):4247-4248. doi: 10.18632/oncotarget.27038. eCollection 2019 Jun 25.
209 Gamma-Tocotrienol Induces Apoptosis in Prostate Cancer Cells by Targeting the Ang-1/Tie-2 Signalling Pathway.Int J Mol Sci. 2019 Mar 7;20(5):1164. doi: 10.3390/ijms20051164.
210 Therapeutic efficacy of intravenously administered transferrin-conjugated dendriplexes on prostate carcinomas.Nanomedicine (Lond). 2014 Apr;9(4):421-34. doi: 10.2217/NNM.13.25.
211 PPAR Elicits Ligand-Independent Repression of Trefoil Factor Family to Limit Prostate Cancer Growth.Cancer Res. 2018 Jan 15;78(2):399-409. doi: 10.1158/0008-5472.CAN-17-0908. Epub 2017 Nov 29.
212 MicroRNA-124 regulates TGF--induced epithelial-mesenchymal transition in human prostate cancer cells.Int J Oncol. 2014 Sep;45(3):1225-31. doi: 10.3892/ijo.2014.2506. Epub 2014 Jun 19.
213 Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFRIII-p38MAPK-pS249/T252RB Pathway.Cancer Res. 2018 Jun 1;78(11):2911-2924. doi: 10.1158/0008-5472.CAN-17-1051. Epub 2018 Mar 7.
214 Co-expression of TLR-9 and MMP-13 is associated with the degree of tumour differentiation in prostate cancer.Int J Exp Pathol. 2019 Apr;100(2):123-132. doi: 10.1111/iep.12314. Epub 2019 May 14.
215 The influence of matriptase-2 on prostate cancer in vitro: a possible role for -catenin.Oncol Rep. 2012 Oct;28(4):1491-7. doi: 10.3892/or.2012.1945. Epub 2012 Aug 2.
216 Tetrandrine (TET) Induces Death Receptors Apo Trail R1 (DR4) and Apo Trail R2 (DR5) and Sensitizes Prostate Cancer Cells to TRAIL-Induced Apoptosis.Mol Cancer Ther. 2018 Jun;17(6):1217-1228. doi: 10.1158/1535-7163.MCT-17-1157. Epub 2018 Mar 16.
217 Characterization of a novel topoisomerase I mutation from a camptothecin-resistant human prostate cancer cell line.Cancer Res. 2001 Mar 1;61(5):1964-9.
218 UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction.Cancer Lett. 2011 Mar 28;302(2):128-35. doi: 10.1016/j.canlet.2011.01.006.
219 Expression of the Bcl-2 family genes and complexes involved in the mitochondrial transport in prostate cancer cells.Int J Oncol. 2014 Oct;45(4):1489-96. doi: 10.3892/ijo.2014.2576.
220 Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation: a comprehensive database mining study.J Hematol Oncol. 2017 Mar 23;10(1):74. doi: 10.1186/s13045-017-0440-0.
221 Novel WWP2 ubiquitin ligase isoforms as potential prognostic markers and molecular targets in cancer.Biochim Biophys Acta. 2013 Dec;1832(12):2127-35. doi: 10.1016/j.bbadis.2013.08.001. Epub 2013 Aug 9.
222 Relation between Ku80 and microRNA-99a expression and late rectal bleeding after radiotherapy for prostate cancer.Radiother Oncol. 2015 May;115(2):235-9. doi: 10.1016/j.radonc.2015.04.008. Epub 2015 Apr 30.
223 MicroRNA-200c-3p/ZEB2 loop plays a crucial role in the tumor progression of prostate carcinoma.Ann Transl Med. 2019 Apr;7(7):141. doi: 10.21037/atm.2019.02.40.
224 Integrated Bioinformatics Analysis of Potential Biomarkers for Prostate Cancer.Pathol Oncol Res. 2019 Apr;25(2):455-460. doi: 10.1007/s12253-017-0346-8. Epub 2017 Dec 19.
225 Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex.Prostate. 2013 Apr;73(5):455-66. doi: 10.1002/pros.22587. Epub 2012 Oct 4.
226 The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer.Clinics (Sao Paulo). 2013 May;68(5):652-7. doi: 10.6061/clinics/2013(05)12.
227 Characterization of hydrogen sulfide and its synthases, cystathionine -synthase and cystathionine -lyase, in human prostatic tissue and cells.Urology. 2012 Feb;79(2):483.e1-5. doi: 10.1016/j.urology.2011.10.013.
228 Expressional profiling of prostate cancer risk SNPs at 11q13.5 identifies DGAT2 as a new target gene.Genes Chromosomes Cancer. 2016 Aug;55(8):661-73. doi: 10.1002/gcc.22368. Epub 2016 May 24.
229 The prognosis value of EphA3 and the androgen receptor in prostate cancer treated with radical prostatectomy.J Clin Lab Anal. 2019 Jun;33(5):e22871. doi: 10.1002/jcla.22871. Epub 2019 Apr 8.
230 Ezrin mediates c-Myc actions in prostate cancer cell invasion.Oncogene. 2010 Mar 11;29(10):1531-42. doi: 10.1038/onc.2009.442. Epub 2009 Dec 14.
231 Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production.Oncotarget. 2017 Dec 4;8(67):111780-111794. doi: 10.18632/oncotarget.22908. eCollection 2017 Dec 19.
232 Docetaxel/cabazitaxel and fatty acid binding protein 5 inhibitors produce synergistic inhibition of prostate cancer growth.Prostate. 2020 Jan;80(1):88-98. doi: 10.1002/pros.23921. Epub 2019 Oct 29.
233 A genetic variant of FcRIIIa is strongly associatedwith humoral immunity to cyclin B1 in African American patients with prostate cancer.Immunogenetics. 2013 Feb;65(2):91-6. doi: 10.1007/s00251-012-0660-y. Epub 2012 Nov 1.
234 Androgen receptor reverses the oncometabolite R-2-hydroxyglutarate-induced prostate cancer cell invasion via suppressing the circRNA-51217/miRNA-646/TGF1/p-Smad2/3 signaling.Cancer Lett. 2020 Mar 1;472:151-164. doi: 10.1016/j.canlet.2019.12.014. Epub 2019 Dec 14.
235 Activation of PSGR with -ionone suppresses prostate cancer progression by blocking androgen receptor nuclear translocation.Cancer Lett. 2019 Jul 1;453:193-205. doi: 10.1016/j.canlet.2019.03.044. Epub 2019 Mar 27.
236 Activation of the leukotriene B4 receptor 2-reactive oxygen species (BLT2-ROS) cascade following detachment confers anoikis resistance in prostate cancer cells.J Biol Chem. 2013 Oct 18;288(42):30054-30063. doi: 10.1074/jbc.M113.481283. Epub 2013 Aug 28.
237 Suppression of miR-4735-3p in androgen receptor-expressing prostate cancer cells increases cell death during chemotherapy.Am J Transl Res. 2017 Aug 15;9(8):3714-3722. eCollection 2017.
238 Impact of Genetic and Epigenetic Variations Within the FADS Cluster on the Composition and Metabolism of Polyunsaturated Fatty Acids in Prostate Cancer.Prostate. 2016 Sep;76(13):1182-91. doi: 10.1002/pros.23205. Epub 2016 May 16.
239 ANP-NPRA signaling pathway--a potential therapeutic target for the treatment of malignancy.Crit Rev Eukaryot Gene Expr. 2013;23(2):93-101. doi: 10.1615/critreveukargeneexpr.2013006641.
240 Protein Kinase N1 control of androgen-responsive serum response factor action provides rationale for novel prostate cancer treatment strategy.Oncogene. 2019 Jun;38(23):4496-4511. doi: 10.1038/s41388-019-0732-7. Epub 2019 Feb 11.
241 Peroxisome proliferator-activated receptor gamma controls prostate cancer cell growth through AR-dependent and independent mechanisms.Prostate. 2020 Feb;80(2):162-172. doi: 10.1002/pros.23928. Epub 2019 Nov 26.
242 Association between methylation of SHP-1 isoform I and SSTR2A promoter regions with breast and prostate carcinoma development.Cancer Invest. 2015 Mar;33(3):61-9. doi: 10.3109/07357907.2014.1001892. Epub 2015 Jan 30.
243 In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.PLoS One. 2013;8(1):e53795. doi: 10.1371/journal.pone.0053795. Epub 2013 Jan 16.
244 Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway.Oncol Lett. 2017 Dec;14(6):7970-7976. doi: 10.3892/ol.2017.7254. Epub 2017 Oct 23.
245 Targeting Oct1 genomic function inhibits androgen receptor signaling and castration-resistant prostate cancer growth.Oncogene. 2016 Dec 8;35(49):6350-6358. doi: 10.1038/onc.2016.171. Epub 2016 Jun 6.
246 Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin.Mol Cancer Res. 2012 Jun;10(6):821-33. doi: 10.1158/1541-7786.MCR-11-0615. Epub 2012 Mar 27.
247 Frequent down-regulation of ABC transporter genes in prostate cancer. BMC Cancer. 2015 Oct 12;15:683.
248 Significantly altered expression of miR-511-3p and its target AKT3 has negative prognostic value in human prostate cancer.Biochimie. 2017 Sep;140:66-72. doi: 10.1016/j.biochi.2017.06.007. Epub 2017 Jun 15.
249 Case-only gene-environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer.Prostate. 2014 May;74(6):637-46. doi: 10.1002/pros.22781. Epub 2014 Feb 5.
250 Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination.Oncotarget. 2019 Oct 29;10(59):6362-6377. doi: 10.18632/oncotarget.27279. eCollection 2019 Oct 29.
251 Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients.PLoS One. 2017 Oct 5;12(10):e0183122. doi: 10.1371/journal.pone.0183122. eCollection 2017.
252 AXL Is a Putative Tumor Suppressor and Dormancy Regulator in Prostate Cancer.Mol Cancer Res. 2019 Feb;17(2):356-369. doi: 10.1158/1541-7786.MCR-18-0718. Epub 2018 Oct 5.
253 Structural Analysis of Small-Molecule Binding to the BAZ2A and BAZ2B Bromodomains.ChemMedChem. 2018 Jul 18;13(14):1479-1487. doi: 10.1002/cmdc.201800234. Epub 2018 Jun 21.
254 Nonconserved miR-608 suppresses prostate cancer progression through RAC2/PAK4/LIMK1 and BCL2L1/caspase-3 pathways by targeting the 3'-UTRs of RAC2/BCL2L1 and the coding region of PAK4.Cancer Med. 2019 Sep;8(12):5716-5734. doi: 10.1002/cam4.2455. Epub 2019 Aug 7.
255 Monoamine oxidase-A targeting probe for prostate cancer imaging and inhibition of metastasis.Chem Commun (Camb). 2019 Oct 31;55(88):13267-13270. doi: 10.1039/c9cc07009e.
256 Rare germline mutations in African American men diagnosed with early-onset prostate cancer.Prostate. 2018 Apr;78(5):321-326. doi: 10.1002/pros.23464. Epub 2018 Jan 21.
257 BMX-Mediated Regulation of Multiple Tyrosine Kinases Contributes to Castration Resistance in Prostate Cancer.Cancer Res. 2018 Sep 15;78(18):5203-5215. doi: 10.1158/0008-5472.CAN-17-3615. Epub 2018 Jul 16.
258 Comparative Proteome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteogenomics.Cancer Genomics Proteomics. 2019 Jul-Aug;16(4):273-286. doi: 10.21873/cgp.20132.
259 Association of caspases with an increased prostate cancer risk in north Indian population.DNA Cell Biol. 2012 Jan;31(1):67-73. doi: 10.1089/dna.2011.1285. Epub 2011 Jun 13.
260 Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer.Cancer Res. 2011 Nov 1;71(21):6738-6748. doi: 10.1158/0008-5472.CAN-11-1882. Epub 2011 Sep 7.
261 CCR1/CCL5 interaction promotes invasion of taxane-resistant PC3 prostate cancer cells by increasing secretion of MMPs 2/9 and by activating ERK and Rac signaling.Cytokine. 2013 Oct;64(1):251-7. doi: 10.1016/j.cyto.2013.06.313. Epub 2013 Jul 19.
262 Eotaxin-1 promotes prostate cancer cell invasion via activation of the CCR3-ERK pathway and upregulation of MMP-3 expression.Oncol Rep. 2014 May;31(5):2049-54. doi: 10.3892/or.2014.3060. Epub 2014 Mar 5.
263 Boolean analysis identifies CD38 as a biomarker of aggressive localized prostate cancer.Oncotarget. 2018 Jan 5;9(5):6550-6561. doi: 10.18632/oncotarget.23973. eCollection 2018 Jan 19.
264 Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens.Mol Cancer Ther. 2012 Dec;11(12):2664-73. doi: 10.1158/1535-7163.MCT-12-0042. Epub 2012 Oct 5.
265 MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer.Cancers (Basel). 2019 Jun 8;11(6):792. doi: 10.3390/cancers11060792.
266 Caffeic acid phenethyl ester suppresses androgen receptor signaling and stability via inhibition of phosphorylation on Ser81 and Ser213.Cell Commun Signal. 2019 Aug 20;17(1):100. doi: 10.1186/s12964-019-0404-9.
267 Androgen Receptor Interaction with Mediator Complex Is Enhanced in Castration-Resistant Prostate Cancer by CDK7 Phosphorylation of MED1.Cancer Discov. 2019 Nov;9(11):1490-1492. doi: 10.1158/2159-8290.CD-19-1028.
268 Novel identification of the ETS-1 splice variants p42 and p27 in prostate cancer cell lines.Oncol Rep. 2012 May;27(5):1321-4. doi: 10.3892/or.2012.1667. Epub 2012 Feb 1.
269 Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer.J Mol Med (Berl). 2012 Oct;90(10):1121-32. doi: 10.1007/s00109-012-0885-0. Epub 2012 Mar 16.
270 CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway.Int J Oncol. 2018 Oct;53(4):1544-1556. doi: 10.3892/ijo.2018.4487. Epub 2018 Jul 18.
271 Transcriptome Network Analysis Identifies CXCL13-CXCR5 Signaling Modules in the Prostate Tumor Immune Microenvironment.Sci Rep. 2019 Oct 18;9(1):14963. doi: 10.1038/s41598-019-46491-3.
272 Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics.Genome Res. 2012 Jun;22(6):1015-25. doi: 10.1101/gr.133280.111. Epub 2012 Apr 16.
273 Development and validation of a prediction model for identifying men with intermediate- or high-risk prostate cancer for whom bone imaging is unnecessary: a nation-wide population-based study.Scand J Urol. 2019 Dec;53(6):378-384. doi: 10.1080/21681805.2019.1697358. Epub 2019 Dec 5.
274 Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer.Cancer Res. 2018 Nov 15;78(22):6354-6362. doi: 10.1158/0008-5472.CAN-18-0687. Epub 2018 Sep 21.
275 Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D.Cancer Res. 2006 Apr 15;66(8):4516-24. doi: 10.1158/0008-5472.CAN-05-3796.
276 Regulation of expression of deoxyhypusine hydroxylase (DOHH), the enzyme that catalyzes the activation of eIF5A, by miR-331-3p and miR-642-5p in prostate cancer cells.J Biol Chem. 2012 Oct 12;287(42):35251-35259. doi: 10.1074/jbc.M112.374686. Epub 2012 Aug 20.
277 Suppressive Effect of Delta-Tocotrienol on Hypoxia Adaptation of Prostate Cancer Stem-like Cells.Anticancer Res. 2018 Mar;38(3):1391-1399. doi: 10.21873/anticanres.12362.
278 Arachidonic acid pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 identified as putative novel therapeutic targets in prostate cancer.Am J Pathol. 2011 Feb;178(2):525-36. doi: 10.1016/j.ajpath.2010.10.002.
279 Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.Prostate. 2018 Jan;78(1):2-10. doi: 10.1002/pros.23446. Epub 2017 Nov 2.
280 MiR-129 inhibits cell proliferation and metastasis by targeting ETS1 via PI3K/AKT/mTOR pathway in prostate cancer.Biomed Pharmacother. 2017 Dec;96:634-641. doi: 10.1016/j.biopha.2017.10.037. Epub 2017 Nov 6.
281 Elevated expression of Par3 promotes prostate cancer metastasis by forming a Par3/aPKC/KIBRA complex and inactivating the hippo pathway.J Exp Clin Cancer Res. 2017 Oct 10;36(1):139. doi: 10.1186/s13046-017-0609-y.
282 Role of squalene synthase in prostate cancer risk and the biological aggressiveness of human prostate cancer.Prostate Cancer Prostatic Dis. 2012 Dec;15(4):339-45. doi: 10.1038/pcan.2012.14. Epub 2012 May 1.
283 Insulin Enhances Migration and Invasion in Prostate Cancer Cells by Up-Regulation of FOXC2.Front Endocrinol (Lausanne). 2019 Jul 17;10:481. doi: 10.3389/fendo.2019.00481. eCollection 2019.
284 Long non-coding RNA PCAT-1 contributes to tumorigenesis by regulating FSCN1 via miR-145-5p in prostate cancer.Biomed Pharmacother. 2017 Nov;95:1112-1118. doi: 10.1016/j.biopha.2017.09.019. Epub 2017 Oct 6.
285 Hypermethylation of the GABRE~miR-452~miR-224 promoter in prostate cancer predicts biochemical recurrence after radical prostatectomy.Clin Cancer Res. 2014 Apr 15;20(8):2169-81. doi: 10.1158/1078-0432.CCR-13-2642.
286 ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models.Front Cell Dev Biol. 2017 Dec 5;5:104. doi: 10.3389/fcell.2017.00104. eCollection 2017.
287 Glycoprotein transmembrane nmb: an androgen-downregulated gene attenuates cell invasion and tumorigenesis in prostate carcinoma cells.Prostate. 2012 Sep 15;72(13):1431-42. doi: 10.1002/pros.22494. Epub 2012 Jan 30.
288 Distinct expression and activity of GSK-3 and GSK-3 in prostate cancer.Int J Cancer. 2012 Sep 15;131(6):E872-83. doi: 10.1002/ijc.27620. Epub 2012 May 22.
289 Effect of survivin downregulation by simvastatin on the growth and invasion of salivary adenoid cystic carcinoma.Mol Med Rep. 2018 Aug;18(2):1939-1946. doi: 10.3892/mmr.2018.9204. Epub 2018 Jun 22.
290 Overexpression of SOX18 promotes prostate cancer progression via the regulation of TCF1, c-Myc, cyclinD1 and MMP-7.Oncol Rep. 2017 Feb;37(2):1045-1051. doi: 10.3892/or.2016.5288. Epub 2016 Dec 2.
291 A Prostate Cancer Risk Element Functions as a Repressive Loop that Regulates HOXA13.Cell Rep. 2017 Nov 7;21(6):1411-1417. doi: 10.1016/j.celrep.2017.10.048.
292 Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy.Oncotarget. 2018 Jul 27;9(58):31200-31213. doi: 10.18632/oncotarget.25756. eCollection 2018 Jul 27.
293 Prostate cancer in elderly Croatian men: 5-HT genetic polymorphisms and the influence of androgen deprivation therapy on osteopenia--a pilot study.Genet Test Mol Biomarkers. 2012 Jun;16(6):598-604. doi: 10.1089/gtmb.2011.0279. Epub 2012 Mar 15.
294 Preclinical testing of 5-amino-1-((1R,2S,3S,4R)-2,3-dihydroxy-4-methylcyclopentyl)-1H-imidazole-4-carboxamide: a potent protein kinase C- inhibitor as a potential prostate carcinoma therapeutic.Anticancer Drugs. 2019 Jan;30(1):65-71. doi: 10.1097/CAD.0000000000000694.
295 Efficient Photodynamic Therapy of Prostate Cancer Cells through an Improved Targeting of the Cation-Independent Mannose 6-Phosphate Receptor.Int J Mol Sci. 2019 Jun 8;20(11):2809. doi: 10.3390/ijms20112809.
296 Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation.J Exp Clin Cancer Res. 2019 Jul 18;38(1):317. doi: 10.1186/s13046-019-1317-6.
297 Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.J Cell Biochem. 2017 May;118(5):1038-1049. doi: 10.1002/jcb.25673. Epub 2017 Jan 5.
298 Histone Demethylase KDM4C Stimulates the Proliferation of Prostate Cancer Cells via Activation of AKT and c-Myc.Cancers (Basel). 2019 Nov 13;11(11):1785. doi: 10.3390/cancers11111785.
299 Long noncoding RNA LUCAT1 promotes migration and invasion of prostate cancer cells by inhibiting KISS1 expression.Eur Rev Med Pharmacol Sci. 2019 Apr;23(8):3277-3283. doi: 10.26355/eurrev_201904_17689.
300 The molecular function of kallikrein-related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer.Mol Oncol. 2020 Jan;14(1):105-128. doi: 10.1002/1878-0261.12587. Epub 2019 Nov 28.
301 Germline Mutations in the Kallikrein 6 Region and Predisposition for Aggressive Prostate Cancer.J Natl Cancer Inst. 2017 Apr 1;109(4). doi: 10.1093/jnci/djw258.
302 Functional polymorphism at the miR-502-binding site in the 3' untranslated region of the SETD8 gene increased the risk of prostate cancer in a sample of Iranian population.Gene. 2017 Aug 30;626:354-357. doi: 10.1016/j.gene.2017.05.060. Epub 2017 Jun 1.
303 Detection of CK19 mRNA Using One-step Nucleic Acid Amplification (OSNA) in Prostate Cancer: Preliminary Results.J Cancer. 2018 Nov 24;9(24):4611-4617. doi: 10.7150/jca.26794. eCollection 2018.
304 LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway.Cell Death Dis. 2018 Feb 7;9(2):197. doi: 10.1038/s41419-017-0207-0.
305 Suppression of LIM and SH3 Domain Protein 1 (LASP1) Negatively Regulated by Androgen Receptor Delays Castration Resistant Prostate Cancer Progression.Prostate. 2017 Feb;77(3):309-320. doi: 10.1002/pros.23269. Epub 2016 Oct 24.
306 Repression of MicroRNA-372 by Arsenic Sulphide Inhibits Prostate Cancer Cell Proliferation and Migration through Regulation of large tumour suppressor kinase 2.Basic Clin Pharmacol Toxicol. 2017 Mar;120(3):256-263. doi: 10.1111/bcpt.12687. Epub 2016 Dec 28.
307 Imbalance of a KLF4-miR-7 auto-regulatory feedback loop promotes prostate cancer cell growth by impairing microRNA processing.Am J Cancer Res. 2018 Feb 1;8(2):226-244. eCollection 2018.
308 The impact of TRAIL on proliferation of secretory prostate cancer PC-3 cell and LMO2 gene expression.Eur Rev Med Pharmacol Sci. 2018 Nov;22(21):7172-7177. doi: 10.26355/eurrev_201811_16249.
309 Oxidised low-density lipoprotein, a possible distinguishing lipid profile biomolecule between prostate cancer and benign prostatic hyperplasia.Andrologia. 2019 Sep;51(8):e13321. doi: 10.1111/and.13321. Epub 2019 May 30.
310 Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk.Prostate. 2011 Sep 15;71(13):1382-9. doi: 10.1002/pros.21354. Epub 2011 Feb 9.
311 HDL and sphingosine-1-phosphate activate stat3 in prostate cancer DU145 cells via ERK1/2 and S1P receptors, and promote cell migration and invasion.Prostate. 2011 May 15;71(7):690-9. doi: 10.1002/pros.21285. Epub 2010 Oct 26.
312 Breviscapine (BVP) inhibits prostate cancer progression through damaging DNA by minichromosome maintenance protein-7 (MCM-7) modulation.Biomed Pharmacother. 2017 Sep;93:103-116. doi: 10.1016/j.biopha.2017.06.024. Epub 2017 Jun 17.
313 Suppression of cancer progression by MGAT1 shRNA knockdown.PLoS One. 2012;7(9):e43721. doi: 10.1371/journal.pone.0043721. Epub 2012 Sep 5.
314 Elevated Ki-67 (MIB-1) expression as an independent predictor for unfavorable pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with localized prostate cancer: A propensity score matched study.PLoS One. 2019 Nov 7;14(11):e0224671. doi: 10.1371/journal.pone.0224671. eCollection 2019.
315 Next generation sequencing of prostate cancer from a patient identifies a deficiency of methylthioadenosine phosphorylase, an exploitable tumor target.Mol Cancer Ther. 2012 Mar;11(3):775-83. doi: 10.1158/1535-7163.MCT-11-0826. Epub 2012 Jan 17.
316 Essential role of NADPH oxidase-dependent reactive oxygen species generation in regulating microRNA-21 expression and function in prostate cancer.Antioxid Redox Signal. 2013 Dec 1;19(16):1863-76. doi: 10.1089/ars.2012.4820. Epub 2013 Jul 5.
317 Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders.Cell Cycle. 2011 Oct 15;10(20):3571-97. doi: 10.4161/cc.10.20.17842.
318 Correlation of SOX9 and NM23 genes with the incidence and prognosis of prostate cancer.Oncol Lett. 2019 Feb;17(2):2296-2302. doi: 10.3892/ol.2018.9828. Epub 2018 Dec 12.
319 Nur77 suppression facilitates androgen deprivation-induced cell invasion of prostate cancer cells mediated by TGF- signaling.Clin Transl Oncol. 2018 Oct;20(10):1302-1313. doi: 10.1007/s12094-018-1862-z. Epub 2018 Mar 28.
320 pH low insertion peptide mediated cell division cycle-associated protein 1 -siRNA transportation for prostatic cancer therapy targeted to the tumor microenvironment.Biochem Biophys Res Commun. 2018 Sep 10;503(3):1761-1767. doi: 10.1016/j.bbrc.2018.07.110. Epub 2018 Aug 18.
321 LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells.Cancer Lett. 2018 Feb 1;414:34-43. doi: 10.1016/j.canlet.2017.10.035. Epub 2017 Nov 14.
322 miR-181b/Oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation.J Cell Biochem. 2020 Feb;121(2):1664-1674. doi: 10.1002/jcb.29401. Epub 2019 Nov 3.
323 Membrane Androgen Receptors Unrelated to Nuclear Steroid Receptors.Endocrinology. 2019 Apr 1;160(4):772-781. doi: 10.1210/en.2018-00987.
324 Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function.Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14573-14582. doi: 10.1073/pnas.1908547116. Epub 2019 Jul 2.
325 Human PDE4D isoform composition is deregulated in primary prostate cancer and indicative for disease progression and development of distant metastases.Oncotarget. 2016 Oct 25;7(43):70669-70684. doi: 10.18632/oncotarget.12204.
326 PLAC1: biology and potential application in cancer immunotherapy.Cancer Immunol Immunother. 2019 Jul;68(7):1039-1058. doi: 10.1007/s00262-019-02350-8. Epub 2019 Jun 5.
327 Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer.PLoS One. 2012;7(11):e48709. doi: 10.1371/journal.pone.0048709. Epub 2012 Nov 1.
328 PRKAR2B promotes prostate cancer metastasis by activating Wnt/-catenin and inducing epithelial-mesenchymal transition.J Cell Biochem. 2018 Sep;119(9):7319-7327. doi: 10.1002/jcb.27030. Epub 2018 May 15.
329 Proteomics analysis of malignant and benign prostate tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate cancer.Prostate. 2015 Oct;75(14):1586-600. doi: 10.1002/pros.23034. Epub 2015 Jun 12.
330 A selective inhibitor of the immunoproteasome subunit LMP2 induces apoptosis in PC-3 cells and suppresses tumour growth in nude mice.Br J Cancer. 2012 Jun 26;107(1):53-62. doi: 10.1038/bjc.2012.243. Epub 2012 Jun 7.
331 PRL? increases the aggressive phenotype of prostate cancer cells invitro and its expression correlates with high-grade prostate tumors in patients.Int J Oncol. 2018 Feb;52(2):402-412. doi: 10.3892/ijo.2017.4208. Epub 2017 Nov 20.
332 PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers.Cancer Res. 2016 Jun 1;76(11):3130-5. doi: 10.1158/0008-5472.CAN-15-1501. Epub 2016 Mar 28.
333 Trop-2 inhibits prostate cancer cell adhesion to fibronectin through the 1 integrin-RACK1 axis.J Cell Physiol. 2012 Nov;227(11):3670-7. doi: 10.1002/jcp.24074.
334 Evidence for a pro-proliferative feedback loop in prostate cancer: the role of Epac1 and COX-2-dependent pathways.PLoS One. 2013 Apr 30;8(4):e63150. doi: 10.1371/journal.pone.0063150. Print 2013.
335 Antihypertensive drugs and prostate cancer survival after radical prostatectomy in Finland-A nationwide cohort study.Int J Cancer. 2019 Feb 1;144(3):440-447. doi: 10.1002/ijc.31802. Epub 2018 Nov 5.
336 In Search for risk predictors at the microscopic scenario of a negative biopsy. A systematic review.Actas Urol Esp (Engl Ed). 2019 Sep;43(7):337-347. doi: 10.1016/j.acuro.2019.01.010. Epub 2019 May 17.
337 Characterization of a novel androgen receptor (AR) coregulator RIPK1 and related chemicals that suppress AR-mediated prostate cancer growth via peptide and chemical screening.Oncotarget. 2017 May 13;8(41):69508-69519. doi: 10.18632/oncotarget.17843. eCollection 2017 Sep 19.
338 Selective neutralization of IL-12 p40 monomer induces death in prostate cancer cells via IL-12-IFN-.Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11482-11487. doi: 10.1073/pnas.1705536114. Epub 2017 Oct 9.
339 Expression of LDL-A module of relaxin receptor in prostate cancer cells inhibits tumorigenesis.Int J Oncol. 2011 Dec;39(6):1559-65. doi: 10.3892/ijo.2011.1159. Epub 2011 Aug 12.
340 Large-scale evaluation of SLC18A2 in prostate cancer reveals diagnostic and prognostic biomarker potential at three molecular levels. Mol Oncol. 2016 Jun;10(6):825-37.
341 Differential Expression of Glucose Transporters and Hexokinases in Prostate Cancer with a Neuroendocrine Gene Signature: A Mechanistic Perspective for (18)F-FDG Imaging of PSMA-Suppressed Tumors.J Nucl Med. 2020 Jun;61(6):904-910. doi: 10.2967/jnumed.119.231068. Epub 2019 Dec 5.
342 Association of prostate cancer SLCO gene expression with Gleason grade and alterations following androgen deprivation therapy.Prostate Cancer Prostatic Dis. 2019 Dec;22(4):560-568. doi: 10.1038/s41391-019-0141-6. Epub 2019 Mar 19.
343 MiR-199a-3p suppresses proliferation and invasion of prostate cancer cells by targeting Smad1.Oncotarget. 2017 Apr 18;8(32):52465-52473. doi: 10.18632/oncotarget.17191. eCollection 2017 Aug 8.
344 Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-1/ Smad signaling pathway.Cancer Biomark. 2018 Feb 14;21(3):613-620. doi: 10.3233/CBM-170683.
345 High immunoexpression of Ki67, EZH2, and SMYD3 in diagnostic prostate biopsies independently predicts outcome in patients with prostate cancer.Urol Oncol. 2018 Apr;36(4):161.e7-161.e17. doi: 10.1016/j.urolonc.2017.10.028. Epub 2017 Nov 22.
346 RNA splicing and splicing regulator changes in prostate cancer pathology.Hum Genet. 2017 Sep;136(9):1143-1154. doi: 10.1007/s00439-017-1792-9. Epub 2017 Apr 5.
347 IFN, a Double-Edged Sword in Cancer Immunity and Metastasis.Cancer Res. 2019 Mar 15;79(6):1032-1033. doi: 10.1158/0008-5472.CAN-19-0083.
348 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
349 Expression of Telomere Repeat Binding Factor 1 and TRF2 in Prostate Cancer and Correlation with Clinical Parameters.Biomed Res Int. 2017;2017:9764752. doi: 10.1155/2017/9764752. Epub 2017 Jul 20.
350 Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer.PLoS One. 2012;7(10):e45539. doi: 10.1371/journal.pone.0045539. Epub 2012 Oct 8.
351 Tenascin-C is a potential cancer-associated fibroblasts marker and predicts poor prognosis in prostate cancer.Biochem Biophys Res Commun. 2017 May 6;486(3):607-612. doi: 10.1016/j.bbrc.2017.03.021. Epub 2017 Mar 21.
352 LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth.Oncogene. 2011 Apr 21;30(16):1892-900. doi: 10.1038/onc.2010.575. Epub 2011 Jan 10.
353 Targeted TPX2 increases chromosome missegregation and suppresses tumor cell growth in human prostate cancer.Onco Targets Ther. 2017 Jul 17;10:3531-3543. doi: 10.2147/OTT.S136491. eCollection 2017.
354 Knockdown of tripartite motif 59 (TRIM59) inhibits tumor growth in prostate cancer.Eur Rev Med Pharmacol Sci. 2016 Dec;20(23):4864-4873.
355 Optimizing TRPM4 inhibitors in the MHFP6 chemical space.Eur J Med Chem. 2019 Mar 15;166:167-177. doi: 10.1016/j.ejmech.2019.01.048. Epub 2019 Jan 24.
356 Isobavachalcone Induces ROS-Mediated Apoptosis via Targeting Thioredoxin Reductase 1 in Human Prostate Cancer PC-3 Cells.Oxid Med Cell Longev. 2018 Oct 16;2018:1915828. doi: 10.1155/2018/1915828. eCollection 2018.
357 Stromal response to prostate cancer: nanotechnology-based detection of thioredoxin-interacting protein partners distinguishes prostate cancer associated stroma from that of benign prostatic hyperplasia.PLoS One. 2013 Jun 6;8(6):e60562. doi: 10.1371/journal.pone.0060562. Print 2013.
358 Ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is a potential tumour suppressor in prostate cancer and is frequently silenced by promoter methylation.Mol Cancer. 2011 Oct 14;10:129. doi: 10.1186/1476-4598-10-129.
359 Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors.Bioorg Med Chem Lett. 2017 Sep 1;27(17):4015-4018. doi: 10.1016/j.bmcl.2017.07.059. Epub 2017 Jul 23.
360 VPAC1-targeted PET/CT scan: improved molecular imaging for the diagnosis of prostate cancer using a novel cell surface antigen.World J Urol. 2018 May;36(5):719-726. doi: 10.1007/s00345-018-2263-1. Epub 2018 Mar 14.
361 Effect of high WDR5 expression on the hepatocellular carcinoma prognosis.Oncol Lett. 2018 May;15(5):7864-7870. doi: 10.3892/ol.2018.8298. Epub 2018 Mar 20.
362 Regulation of E3 ubiquitin ligase-1 (WWP1) by microRNA-452 inhibits cancer cell migration and invasion in prostate cancer.Br J Cancer. 2016 May 10;114(10):1135-44. doi: 10.1038/bjc.2016.95. Epub 2016 Apr 12.
363 Elevated expression of ZNF217 promotes prostate cancer growth by restraining ferroportin-conducted iron egress.Oncotarget. 2016 Dec 20;7(51):84893-84906. doi: 10.18632/oncotarget.12753.
364 Identification of hub genes in prostate cancer using robust rank aggregation and weighted gene co-expression network analysis.Aging (Albany NY). 2019 Jul 15;11(13):4736-4756. doi: 10.18632/aging.102087.
365 Upregulation of fractalkine contributes to theproliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition.Mol Med Rep. 2015 Dec;12(6):7907-14. doi: 10.3892/mmr.2015.4438. Epub 2015 Oct 13.
366 LncRNA LOXL1-AS1/miR-let-7a-5p/EGFR-related pathway regulates the doxorubicin resistance of prostate cancer DU-145 cells.IUBMB Life. 2019 Oct;71(10):1537-1551. doi: 10.1002/iub.2075. Epub 2019 Jun 12.
367 Single-nucleotide polymorphisms of stemness genes predicted to regulate RNA splicing, microRNA and oncogenic signaling are associated with prostate cancer survival.Carcinogenesis. 2018 Jul 3;39(7):879-888. doi: 10.1093/carcin/bgy062.
368 The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines.Asian J Androl. 2019 Sep-Oct;21(5):460-467. doi: 10.4103/aja.aja_1_19.
369 Contrasting roles of the ABCG2 Q141K variant in prostate cancer.Exp Cell Res. 2017 May 1;354(1):40-47. doi: 10.1016/j.yexcr.2017.03.020. Epub 2017 Mar 11.
370 Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics. 2015;10(4):319-28.
371 Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF-B activation and recurrent dexamethasone administration fails to suppress it in vivo.Prostate. 2019 Feb;79(2):168-182. doi: 10.1002/pros.23722. Epub 2018 Sep 27.
372 Positron Emission Tomography Imaging of the Gastrin-Releasing Peptide Receptor with a Novel Bombesin Analogue.ACS Omega. 2019 Jan 31;4(1):1470-1478. doi: 10.1021/acsomega.8b03293. Epub 2019 Jan 16.
373 Zinc cooperates with p53 to inhibit the activity of mitochondrial aconitase through reactive oxygen species accumulation.Cancer Med. 2019 May;8(5):2462-2473. doi: 10.1002/cam4.2130. Epub 2019 Apr 10.
374 ACR Appropriateness Criteria() Post-treatmentFollow-up Prostate Cancer.J Am Coll Radiol. 2018 May;15(5S):S132-S149. doi: 10.1016/j.jacr.2018.03.019.
375 Truncating mutations in the ACVR2 gene attenuates activin signaling in prostate cancer cells.Cancer Genet Cytogenet. 2005 Dec;163(2):123-9. doi: 10.1016/j.cancergencyto.2005.05.007.
376 TMPRSS2:ERG gene fusion variants induce TGF- signaling and epithelial to mesenchymal transition in human prostate cancer cells.Oncotarget. 2017 Apr 11;8(15):25115-25130. doi: 10.18632/oncotarget.15931.
377 Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer.Cancer Sci. 2007 Nov;98(11):1720-6. doi: 10.1111/j.1349-7006.2007.00601.x. Epub 2007 Aug 28.
378 CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338-3p.Onco Targets Ther. 2019 May 2;12:3363-3372. doi: 10.2147/OTT.S196931. eCollection 2019.
379 ADAM8 expression in prostate cancer is associated with parameters of unfavorable prognosis.Virchows Arch. 2006 Dec;449(6):628-36. doi: 10.1007/s00428-006-0315-1. Epub 2006 Nov 8.
380 Overexpression of ADAM9 in oral squamous cell carcinoma.Oncol Lett. 2018 Jan;15(1):495-502. doi: 10.3892/ol.2017.7284. Epub 2017 Oct 30.
381 Appetite-regulating hormones-leptin, adiponectin and ghrelin-and the development of prostate cancer: a systematic review and exploratory meta-analysis.Prostate Cancer Prostatic Dis. 2020 Mar;23(1):11-23. doi: 10.1038/s41391-019-0154-1. Epub 2019 May 30.
382 ADRB2-Targeting Therapies for Prostate Cancer.Cancers (Basel). 2019 Mar 13;11(3):358. doi: 10.3390/cancers11030358.
383 Pro-metastatic activity of AGR2 interrupts angiogenesis target bevacizumab efficiency via direct interaction with VEGFA and activation of NF-B pathway.Biochim Biophys Acta Mol Basis Dis. 2018 May;1864(5 Pt A):1622-1633. doi: 10.1016/j.bbadis.2018.01.021. Epub 2018 Feb 1.
384 Chemopreventive effects of angiotensin II receptor type 2 agonist on prostate carcinogenesis by the down-regulation of the androgen receptor.Oncotarget. 2018 Feb 14;9(17):13859-13869. doi: 10.18632/oncotarget.24492. eCollection 2018 Mar 2.
385 Aryl hydrocarbon receptor enhances the expression of miR-150-5p to suppress in prostate cancer progression by regulating MAP3K12.Arch Biochem Biophys. 2018 Sep 15;654:47-54. doi: 10.1016/j.abb.2018.07.010. Epub 2018 Jul 18.
386 Knockdown of COPS3 inhibits the progress of prostate cancer through reducing phosphorylated p38 MAPK expression and impairs the epithelial-mesenchymal transition process.Prostate. 2019 Dec;79(16):1823-1831. doi: 10.1002/pros.23907. Epub 2019 Sep 11.
387 Consecutive Prostate Cancer Specimens Revealed Increased AldoKeto Reductase Family 1 Member C3 Expression with Progression to Castration-Resistant Prostate Cancer.J Clin Med. 2019 May 1;8(5):601. doi: 10.3390/jcm8050601.
388 Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization?.J Mol Med (Berl). 2005 Dec;83(12):1014-24. doi: 10.1007/s00109-005-0703-z. Epub 2005 Oct 7.
389 Epigenome-Wide Tumor DNA Methylation Profiling Identifies Novel Prognostic Biomarkers of Metastatic-Lethal Progression in Men Diagnosed with Clinically Localized Prostate Cancer.Clin Cancer Res. 2017 Jan 1;23(1):311-319. doi: 10.1158/1078-0432.CCR-16-0549. Epub 2016 Jun 29.
390 Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-B.Int J Cancer. 2013 Oct 15;133(8):1784-91. doi: 10.1002/ijc.28165. Epub 2013 Jul 13.
391 7-Farnesyloxycoumarin Exerts Anti-cancer Effects on a Prostate Cancer Cell Line by 15-LOX-1 Inhibition.Arch Iran Med. 2018 Jun 1;21(6):251-259.
392 Inhibition of 5-lipoxygenase downregulates stemness and kills prostate cancer stem cells by triggering apoptosis via activation of c-Jun N-terminal kinase.Oncotarget. 2019 Jan 11;10(4):424-436. doi: 10.18632/oncotarget.13422. eCollection 2019 Jan 11.
393 Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer.Br J Cancer. 2017 Jan 17;116(2):227-236. doi: 10.1038/bjc.2016.402. Epub 2016 Dec 22.
394 Corrigendum: mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer.Nature. 2018 Feb 22;554(7693):554. doi: 10.1038/nature25470. Epub 2018 Jan 17.
395 Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway.Oncotarget. 2017 Feb 7;8(6):10145-10160. doi: 10.18632/oncotarget.14358.
396 Effects of testosterone and 17estradiol on angiotensininduced changes in tyrosine kinase activity in the androgenindependent human prostate cancer cell line, DU145.Int J Mol Med. 2017 Nov;40(5):1573-1581. doi: 10.3892/ijmm.2017.3149. Epub 2017 Sep 25.
397 Expression and function of ATIP/MTUS1 in human prostate cancer cell lines.Prostate. 2010 Oct 1;70(14):1563-74. doi: 10.1002/pros.21192.
398 Hypoxia-induced angiopoietin-like protein 4 as a clinical biomarker and treatment target for human prostate cancer.Oncol Rep. 2017 Jul;38(1):120-128. doi: 10.3892/or.2017.5669. Epub 2017 May 24.
399 Autoantibody against new gene expressed in prostate protein is traceable in prostate cancer patients.Biomark Med. 2018 Oct;12(10):1125-1138. doi: 10.2217/bmm-2018-0069. Epub 2018 Sep 7.
400 Increased Soluble CMG2 Serum Protein Concentration is Associated with the Progression of Prostate Carcinoma.Cancers (Basel). 2019 Jul 26;11(8):1059. doi: 10.3390/cancers11081059.
401 Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness.Cell Adh Migr. 2017 May 4;11(3):247-260. doi: 10.1080/19336918.2016.1259056. Epub 2016 Nov 11.
402 Simvastatin Up-Regulates Annexin A10 That Can Inhibit the Proliferation, Migration, and Invasion in Androgen-Independent Human Prostate Cancer Cells.Prostate. 2017 Mar;77(4):337-349. doi: 10.1002/pros.23273. Epub 2016 Nov 8.
403 MicroRNA-206 regulates the epithelial-mesenchymal transition and inhibits the invasion and metastasis of prostate cancer cells by targeting Annexin A2.Oncol Lett. 2018 Jun;15(6):8295-8302. doi: 10.3892/ol.2018.8395. Epub 2018 Mar 30.
404 Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival.Eur Urol. 2018 Dec;74(6):710-719. doi: 10.1016/j.eururo.2018.06.021. Epub 2018 Jul 7.
405 Relationship between XPD, RAD51, and APEX1 DNA repair genotypes and prostate cancer risk in the male population of Rio de Janeiro, Brazil.Genet Mol Biol. 2017 Oct-Dec;40(4):751-758. doi: 10.1590/1678-4685-GMB-2017-0039. Epub 2017 Nov 6.
406 Overexpression of Aquaporin-1 is a Prognostic Factor for Biochemical Recurrence in Prostate Adenocarcinoma.Pathol Oncol Res. 2017 Jan;23(1):189-196. doi: 10.1007/s12253-016-0145-7. Epub 2016 Nov 5.
407 Subcellular localization of aquaporin 3 in prostate cancer is regulated by RalA.Oncol Rep. 2018 May;39(5):2171-2177. doi: 10.3892/or.2018.6308. Epub 2018 Mar 9.
408 Expression, localisation and potential significance of aquaporins in benign and malignant human prostate tissue.BMC Urol. 2018 Sep 3;18(1):75. doi: 10.1186/s12894-018-0391-y.
409 Combined targeting of Arf1 and Ras potentiates anticancer activity for prostate cancer therapeutics.J Exp Clin Cancer Res. 2017 Aug 23;36(1):112. doi: 10.1186/s13046-017-0583-4.
410 Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer.Mol Cancer Res. 2012 Feb;10(2):218-29. doi: 10.1158/1541-7786.MCR-11-0451. Epub 2011 Dec 5.
411 Arylsulfatase B is reduced in prostate cancer recurrences.Cancer Biomark. 2017 Dec 12;21(1):229-234. doi: 10.3233/CBM-170680.
412 Bufalin suppresses the migration and invasion of prostate cancer cells through HOTAIR, the sponge of miR-520b.Acta Pharmacol Sin. 2019 Sep;40(9):1228-1236. doi: 10.1038/s41401-019-0234-8. Epub 2019 Apr 26.
413 Regulation of the unfolded protein response through ATF4 and FAM129A in prostate cancer.Oncogene. 2019 Aug;38(35):6301-6318. doi: 10.1038/s41388-019-0879-2. Epub 2019 Jul 16.
414 Reciprocal Network between Cancer Stem-Like Cells and Macrophages Facilitates the Progression and Androgen Deprivation Therapy Resistance of Prostate Cancer.Clin Cancer Res. 2018 Sep 15;24(18):4612-4626. doi: 10.1158/1078-0432.CCR-18-0461. Epub 2018 Apr 24.
415 Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res. 2000 Mar 1;60(5):1312-6.
416 Characterization of CD133(+)/CD44(+) human prostate cancer stem cells with ATR-FTIR spectroscopy.Analyst. 2019 Mar 21;144(6):2138-2149. doi: 10.1039/c9an00093c. Epub 2019 Feb 11.
417 Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations.Cancer Res. 2016 Sep 1;76(17):5103-14. doi: 10.1158/0008-5472.CAN-15-2980. Epub 2016 Apr 20.
418 End-to-end empirical validation of dose accumulation in MRI-guided adaptive radiotherapy for prostate cancer using an anthropomorphic deformable pelvis phantom.Radiother Oncol. 2019 Dec;141:200-207. doi: 10.1016/j.radonc.2019.09.014. Epub 2019 Oct 1.
419 Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment.Mol Cell Proteomics. 2015 Mar;14(3):471-83. doi: 10.1074/mcp.M114.039909. Epub 2014 Dec 19.
420 Silencing of BACH1 inhibits invasion and migration of prostate cancer cells by altering metastasis-related gene expression.Artif Cells Nanomed Biotechnol. 2018 Nov;46(7):1495-1504. doi: 10.1080/21691401.2017.1374284. Epub 2017 Sep 11.
421 PUMA decreases the growth of prostate cancer PC-3 cells independent of p53.Oncol Lett. 2017 Mar;13(3):1885-1890. doi: 10.3892/ol.2017.5657. Epub 2017 Jan 27.
422 MicroRNA-218 inhibits tumor growth and increases chemosensitivity to CDDP treatment by targeting BCAT1 in prostate cancer.Mol Carcinog. 2017 Jun;56(6):1570-1577. doi: 10.1002/mc.22612. Epub 2017 Jan 18.
423 C/EBPbeta regulates metastatic gene expression and confers TNF-alpha resistance to prostate cancer cells.Prostate. 2009 Sep 15;69(13):1435-47. doi: 10.1002/pros.20993.
424 Up-regulation of Biglycan is Associated with Poor Prognosis and PTEN Deletion in Patients with Prostate Cancer.Neoplasia. 2017 Sep;19(9):707-715. doi: 10.1016/j.neo.2017.06.003. Epub 2017 Aug 19.
425 Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.Mol Cancer. 2009 Jun 23;8:39. doi: 10.1186/1476-4598-8-39.
426 High BIRC7 Expression Might Be an Independent Prognostic Indicator of Poor Recurrence-Free Survival in Patients With Prostate Cancer.Technol Cancer Res Treat. 2018 Jan 1;17:1533033818809694. doi: 10.1177/1533033818809694.
427 BMI1 is directly regulated by androgen receptor to promote castration-resistance in prostate cancer.Oncogene. 2020 Jan;39(1):17-29. doi: 10.1038/s41388-019-0966-4. Epub 2019 Aug 28.
428 Bone morphogenetic protein-10 (BMP-10) inhibits aggressiveness of breast cancer cells and correlates with poor prognosis in breast cancer.Cancer Sci. 2010 Oct;101(10):2137-44. doi: 10.1111/j.1349-7006.2010.01648.x. Epub 2010 Jul 1.
429 Decreased expression of bone morphogenetic protein-2 is correlated with biochemical recurrence in prostate cancer: Immunohistochemical analysis.Sci Rep. 2018 Jul 16;8(1):10748. doi: 10.1038/s41598-018-28566-9.
430 Biological effects of BMP7 on small-cell lung cancer cells and its bone metastasis.Int J Oncol. 2018 Sep;53(3):1354-1362. doi: 10.3892/ijo.2018.4469. Epub 2018 Jul 4.
431 Opposing roles of TGF and BMP signaling in prostate cancer development.Genes Dev. 2017 Dec 1;31(23-24):2337-2342. doi: 10.1101/gad.307116.117.
432 Maintenance of MYC expression promotes de novo resistance to BET bromodomain inhibition in castration-resistant prostate cancer.Sci Rep. 2019 Mar 7;9(1):3823. doi: 10.1038/s41598-019-40518-5.
433 Clinical significance of bromodomain-containing protein 7 and its association with tumor progression in prostate cancer.Oncol Lett. 2019 Jan;17(1):849-856. doi: 10.3892/ol.2018.9665. Epub 2018 Nov 5.
434 Identification of ADAM12 as a Novel Basigin Sheddase.Int J Mol Sci. 2019 Apr 22;20(8):1957. doi: 10.3390/ijms20081957.
435 Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism.Asian J Androl. 2005 Dec;7(4):375-80. doi: 10.1111/j.1745-7262.2005.00031.x.
436 Exploration of the molecular mechanism of prostate cancer based on mRNA and miRNA expression profiles.Onco Targets Ther. 2017 Jun 29;10:3225-3232. doi: 10.2147/OTT.S135764. eCollection 2017.
437 Calcitonin induces stem cell-like phenotype in prostate cancer cells.Endocr Relat Cancer. 2019 Nov;26(11):815-828. doi: 10.1530/ERC-19-0333.
438 CAMKK2 Promotes Prostate Cancer Independently of AMPK via Increased Lipogenesis.Cancer Res. 2018 Dec 15;78(24):6747-6761. doi: 10.1158/0008-5472.CAN-18-0585. Epub 2018 Sep 21.
439 Inhibition of androgen receptor and -catenin activity in prostate cancer.Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15710-5. doi: 10.1073/pnas.1218168110. Epub 2013 Sep 9.
440 Correction: Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation.Oncotarget. 2018 Sep 25;9(75):34190. doi: 10.18632/oncotarget.26197. eCollection 2018 Sep 25.
441 TSA-induced cell death in prostate cancer cell lines is caspase-2 dependent and involves the PIDDosome.Cancer Biol Ther. 2006 Sep;5(9):1199-205. doi: 10.4161/cbt.5.9.3168. Epub 2006 Sep 9.
442 Prostate carcinomas developing in transgenic rats with SV40 T antigen expression under probasin promoter control are strictly androgen dependent.Cancer Res. 2001 Jun 15;61(12):4693-700.
443 MicroRNA-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer.Oncogene. 2013 Aug 29;32(35):4139-47. doi: 10.1038/onc.2012.424. Epub 2012 Sep 17.
444 A Single Nucleotide Polymorphism in HPGD Gene Is Associated with Prostate Cancer Risk.J Cancer. 2017 Oct 24;8(19):4083-4086. doi: 10.7150/jca.22025. eCollection 2017.
445 Circulating inflammation markers and prostate cancer.Prostate. 2019 Aug;79(11):1338-1346. doi: 10.1002/pros.23842. Epub 2019 Jun 18.
446 Chemokine receptor CCR6 expression level and aggressiveness of prostate cancer.J Cancer Res Clin Oncol. 2008 Nov;134(11):1181-9. doi: 10.1007/s00432-008-0403-5. Epub 2008 May 9.
447 Visual electrochemiluminescence ratiometry on bipolar electrode for bioanalysis.Biosens Bioelectron. 2018 Apr 15;102:624-630. doi: 10.1016/j.bios.2017.12.008. Epub 2017 Dec 6.
448 Prognostic value of mitotic checkpoint protein BUB3, cyclin B1, and pituitary tumor-transforming 1 expression in prostate cancer.Mod Pathol. 2020 May;33(5):905-915. doi: 10.1038/s41379-019-0418-2. Epub 2019 Dec 4.
449 SPOP suppresses prostate cancer through regulation of CYCLIN E1 stability.Cell Death Differ. 2019 Jun;26(6):1156-1168. doi: 10.1038/s41418-018-0198-0. Epub 2018 Sep 20.
450 TRIB1 induces macrophages to M2 phenotype by inhibiting IKB-zeta in prostate cancer.Cell Signal. 2019 Jul;59:152-162. doi: 10.1016/j.cellsig.2019.03.017. Epub 2019 Mar 26.
451 Mutant Kras-induced upregulation of CD24 enhances prostate cancer stemness and bone metastasis.Oncogene. 2019 Mar;38(12):2005-2019. doi: 10.1038/s41388-018-0575-7. Epub 2018 Nov 22.
452 Identification of targets for prostate cancer immunotherapy.Prostate. 2019 Apr;79(5):498-505. doi: 10.1002/pros.23756. Epub 2019 Jan 6.
453 Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer.Cancer Immunol Immunother. 2017 Oct;66(10):1345-1357. doi: 10.1007/s00262-017-2027-6. Epub 2017 Jun 12.
454 Clinical Implications of Peripheral CD3+CD69+ T-Cell And CD8+CD28+ T-Cell Proportions in Patients Prior to Radical Prostatectomy.Urol J. 2020 May 16;17(3):257-261. doi: 10.22037/uj.v0i0.5103.
455 miR-518f-5p decreases tetraspanin CD9 protein levels and differentially affects non-tumourigenic prostate and prostate cancer cell migration and adhesion.Oncotarget. 2017 Dec 7;9(2):1980-1991. doi: 10.18632/oncotarget.23118. eCollection 2018 Jan 5.
456 Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of -catenin in cancer stem-like cells.EBioMedicine. 2019 Apr;42:397-407. doi: 10.1016/j.ebiom.2019.03.032. Epub 2019 Mar 21.
457 CDC25A functions as a novel Ar corepressor in prostate cancer cells.J Mol Biol. 2009 Jan 16;385(2):446-56. doi: 10.1016/j.jmb.2008.10.070. Epub 2008 Nov 3.
458 Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer.Oncogene. 2003 Feb 6;22(5):734-9. doi: 10.1038/sj.onc.1206121.
459 Results, questions, perspectives of a study on human Polyomavirus BK and molecular actors in prostate cancer development.Cancer Genomics Proteomics. 2015 Mar-Apr;12(2):57-65.
460 The Identification of Potential Biomarkers and Biological Pathways in Prostate Cancer.J Cancer. 2019 Feb 23;10(6):1398-1408. doi: 10.7150/jca.29571. eCollection 2019.
461 Angiomotin is a novel component of cadherin-11/-catenin/p120 complex and is critical for cadherin-11-mediated cell migration.FASEB J. 2015 Mar;29(3):1080-91. doi: 10.1096/fj.14-261594. Epub 2014 Dec 2.
462 Clinical Outcomes in Cyclin-dependent Kinase 12 Mutant Advanced Prostate Cancer.Eur Urol. 2020 Mar;77(3):333-341. doi: 10.1016/j.eururo.2019.09.036. Epub 2019 Oct 20.
463 The co-chaperone p23 promotes prostate cancer motility and metastasis.Mol Oncol. 2015 Jan;9(1):295-308. doi: 10.1016/j.molonc.2014.08.014. Epub 2014 Sep 6.
464 Phase I trial of TAK-385 in hormone treatment-nave Japanese patients with nonmetastatic prostate cancer.Cancer Med. 2019 Oct;8(13):5891-5902. doi: 10.1002/cam4.2442. Epub 2019 Aug 19.
465 Flavokawain B targets protein neddylation for enhancing the anti-prostate cancer effect of Bortezomib via Skp2 degradation.Cell Commun Signal. 2019 Mar 18;17(1):25. doi: 10.1186/s12964-019-0338-2.
466 Engineered measles virus as a novel oncolytic therapy against prostate cancer.Prostate. 2009 Jan 1;69(1):82-91. doi: 10.1002/pros.20857.
467 Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers.BMC Cancer. 2007 Jan 3;7:2. doi: 10.1186/1471-2407-7-2.
468 Loss of CCAAT-enhancer-binding protein alpha (CEBPA) is linked to poor prognosis in PTEN deleted and TMPRSS2:ERG fusion type prostate cancers.Prostate. 2019 Feb;79(3):302-311. doi: 10.1002/pros.23736. Epub 2018 Nov 14.
469 LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression.Cancer Res. 2017 Oct 15;77(20):5479-5490. doi: 10.1158/0008-5472.CAN-17-0496. Epub 2017 Sep 15.
470 Expression of luteinizing hormone/human chorionic gonadotropin receptor gene in benign prostatic hyperplasia and in prostate carcinoma in humans.Biol Reprod. 1997 Jan;56(1):67-72. doi: 10.1095/biolreprod56.1.67.
471 Bringing Prostate Cancer Germline Genetics into Clinical Practice.J Urol. 2019 Aug;202(2):223-230. doi: 10.1097/JU.0000000000000137. Epub 2019 Jul 8.
472 Preclinical Development of a Nontoxic Oral Formulation of Monoethanolamine, a Lipid Precursor, for Prostate Cancer Treatment.Clin Cancer Res. 2017 Jul 15;23(14):3781-3793. doi: 10.1158/1078-0432.CCR-16-1716. Epub 2017 Feb 6.
473 Muscarinic acetylcholine receptor M1 mediates prostate cancer cell migration and invasion through hedgehog signaling.Asian J Androl. 2018 Nov-Dec;20(6):608-614. doi: 10.4103/aja.aja_55_18.
474 MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3.Int J Oncol. 2019 Feb;54(2):443-454. doi: 10.3892/ijo.2018.4647. Epub 2018 Nov 26.
475 Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells.Cancer Res. 2004 Jul 15;64(14):4841-8. doi: 10.1158/0008-5472.CAN-03-3223.
476 Prognostic potential of ERG (ETS-related gene) expression in prostatic adenocarcinoma.Int Urol Nephrol. 2013 Jun;45(3):727-33. doi: 10.1007/s11255-013-0406-2. Epub 2013 May 18.
477 Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level.Biomolecules. 2019 Feb 22;9(2):77. doi: 10.3390/biom9020077.
478 Impact of Surgical Approach on Patient-Reported Outcomes after Radical Prostatectomy: A Propensity Score-Weighted Analysis from a Multicenter, Prospective, Observational Study (The Pros-IT CNR Study).Urol Int. 2019;103(1):8-18. doi: 10.1159/000496980. Epub 2019 Feb 7.
479 Store-operated Ca2+ current in prostate cancer epithelial cells. Role of endogenous Ca2+ transporter type 1.J Biol Chem. 2003 Apr 25;278(17):15381-9. doi: 10.1074/jbc.M212106200. Epub 2003 Feb 12.
480 The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer.EMBO Mol Med. 2019 Nov 7;11(11):e10659. doi: 10.15252/emmm.201910659. Epub 2019 Sep 26.
481 Randomized phase II trial of neoadjuvant everolimus in patients with high-risk localized prostate cancer.Invest New Drugs. 2019 Jun;37(3):559-566. doi: 10.1007/s10637-019-00778-4. Epub 2019 Apr 30.
482 CRTC2 as a novel prognostic biomarker for worse pathologic outcomes and biochemical recurrence after radical prostatectomy in patients with prostate cancer.Investig Clin Urol. 2019 Mar;60(2):84-90. doi: 10.4111/icu.2019.60.2.84. Epub 2019 Feb 19.
483 Absence of myeloid Klf4 reduces prostate cancer growth with pro-atherosclerotic activation of tumor myeloid cells and infiltration of CD8 T cells.PLoS One. 2018 Jan 11;13(1):e0191188. doi: 10.1371/journal.pone.0191188. eCollection 2018.
484 Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer.Oncoimmunology. 2019 Mar 28;8(6):e1581528. doi: 10.1080/2162402X.2019.1581528. eCollection 2019.
485 FENDRR reduces tumor invasiveness in prostate cancer PC-3 cells by targeting CSNK1E.Eur Rev Med Pharmacol Sci. 2019 Sep;23(17):7327-7337. doi: 10.26355/eurrev_201909_18838.
486 A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells.J Biol Chem. 2001 Feb 23;276(8):5992-9. doi: 10.1074/jbc.M004862200. Epub 2000 Nov 7.
487 Combination of Prostate Cancer Antigen 3 and Prostate-Specific Antigen Improves Diagnostic Accuracy in Men at Risk of Prostate Cancer.Arch Pathol Lab Med. 2018 Sep;142(9):1106-1112. doi: 10.5858/arpa.2017-0185-OA. Epub 2018 Mar 16.
488 Dysregulation of cystathionine -lyase promotes prostate cancer progression and metastasis.EMBO Rep. 2019 Oct 4;20(10):e45986. doi: 10.15252/embr.201845986. Epub 2019 Aug 29.
489 Targeting the lysosome by an aminomethylated Riccardin D triggers DNA damage through cathepsin B-mediated degradation of BRCA1.J Cell Mol Med. 2019 Mar;23(3):1798-1812. doi: 10.1111/jcmm.14077. Epub 2018 Dec 18.
490 Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unnecessary prostate biopsies.BJU Int. 2019 May;123(5):826-833. doi: 10.1111/bju.14540. Epub 2018 Oct 11.
491 Cathepsin E enhances anticancer activity of doxorubicin on human prostate cancer cells showing resistance to TRAIL-mediated apoptosis.Biol Chem. 2010 Aug;391(8):947-58. doi: 10.1515/BC.2010.087.
492 Analysis of a truncated form of cathepsin H in human prostate tumor cells.J Biol Chem. 2002 Mar 29;277(13):11533-8. doi: 10.1074/jbc.M109557200. Epub 2002 Jan 16.
493 Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone.J Cancer Res Clin Oncol. 2019 Aug;145(8):1999-2012. doi: 10.1007/s00432-019-02950-y. Epub 2019 Jun 6.
494 Snail transcription factor NLS and importin 1 regulate the subcellular localization of Cathepsin L and Cux1.Biochem Biophys Res Commun. 2017 Sep 9;491(1):59-64. doi: 10.1016/j.bbrc.2017.07.039. Epub 2017 Jul 8.
495 CXCL1-LCN2 paracrine axis promotes progression of prostate cancer via the Src activation and epithelial-mesenchymal transition.Cell Commun Signal. 2019 Sep 10;17(1):118. doi: 10.1186/s12964-019-0434-3.
496 MiR-206 inhibits proliferation and migration of prostate cancer cells by targeting CXCL11.Prostate. 2018 May;78(7):479-490. doi: 10.1002/pros.23468. Epub 2018 Mar 14.
497 CXCL9 promotes prostate cancer progression through inhibition of cytokines from Tcells.Mol Med Rep. 2018 Aug;18(2):1305-1310. doi: 10.3892/mmr.2018.9152. Epub 2018 Jun 11.
498 Expression of E-cadherin and specific CXCR3 isoforms impact each other in prostate cancer.Cell Commun Signal. 2019 Dec 12;17(1):164. doi: 10.1186/s12964-019-0489-1.
499 Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer.Cancer Sci. 2018 Apr;109(4):1230-1238. doi: 10.1111/cas.13517. Epub 2018 Feb 19.
500 Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing.Bioorg Chem. 2019 May;86:401-409. doi: 10.1016/j.bioorg.2019.01.066. Epub 2019 Jan 30.
501 Correction to: Association between NAT2, CYP1A1, and CYP1A2 genotypes, heterocyclic aromatic amines, and prostate cancer risk: a case control study in Japan.Environ Health Prev Med. 2018 Jul 4;23(1):30. doi: 10.1186/s12199-018-0718-z.
502 Polymorphisms of metabolic enzyme genes, living habits and prostate cancer susceptibility.Front Biosci. 2006 Sep 1;11:2052-60. doi: 10.2741/1947.
503 Missense mutations in -1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet. 2013 May 1;22(9):1746-54. doi: 10.1093/hmg/ddt021. Epub 2013 Jan 28.
504 Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines.Cancer Res. 2001 Oct 1;61(19):7217-24.
505 Association of doublecortin-like kinase 1 with tumor aggressiveness and poor biochemical recurrence-free survival in prostate cancer.Onco Targets Ther. 2018 Feb 28;11:1077-1086. doi: 10.2147/OTT.S157295. eCollection 2018.
506 Dual regulation of decorin by androgen and Hedgehog signaling during prostate morphogenesis.Dev Dyn. 2018 May;247(5):679-685. doi: 10.1002/dvdy.24619. Epub 2018 Feb 19.
507 Autophagy induced by overexpression of DCTPP1 promotes tumor progression and predicts poor clinical outcome in prostate cancer.Int J Biol Macromol. 2018 Oct 15;118(Pt A):599-609. doi: 10.1016/j.ijbiomac.2018.06.005. Epub 2018 Jun 3.
508 Molecular characteristic and physiological role of DOPA-decarboxylase.Postepy Hig Med Dosw (Online). 2016 Dec 31;70(0):1424-1440. doi: 10.5604/17322693.1227773.
509 REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase.Oncogene. 2005 Feb 10;24(7):1138-49. doi: 10.1038/sj.onc.1208236.
510 Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer.Cancer Sci. 2008 Jan;99(1):39-45. doi: 10.1111/j.1349-7006.2007.00655.x. Epub 2007 Oct 29.
511 LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P.Mol Cancer Ther. 2019 Dec;18(12):2469-2479. doi: 10.1158/1535-7163.MCT-19-0095. Epub 2019 Aug 6.
512 Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer.Oncotarget. 2015 Jan 30;6(3):1806-20. doi: 10.18632/oncotarget.2809.
513 DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.Biochem Biophys Res Commun. 2017 Aug 26;490(3):707-712. doi: 10.1016/j.bbrc.2017.06.105. Epub 2017 Jun 19.
514 DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals.Oncogene. 2020 Feb;39(7):1557-1571. doi: 10.1038/s41388-019-1085-y. Epub 2019 Nov 4.
515 DGAT1 Inhibitor Suppresses Prostate Tumor Growth and Migration by Regulating Intracellular Lipids and Non-Centrosomal MTOC Protein GM130.Sci Rep. 2019 Feb 28;9(1):3035. doi: 10.1038/s41598-019-39537-z.
516 Erratum: Predicting clinically significant prostate cancer using DCE-MRI habitat descriptors.Oncotarget. 2019 Mar 12;10(21):2113. doi: 10.18632/oncotarget.26802. eCollection 2019 Mar 12.
517 Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer.Sci Transl Med. 2019 Mar 20;11(484):eaav0891. doi: 10.1126/scitranslmed.aav0891.
518 Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo.Cancer Res. 2007 Dec 1;67(23):11244-53. doi: 10.1158/0008-5472.CAN-07-0969.
519 Targeting the Hsp40/Hsp70 Chaperone Axis as a Novel Strategy to Treat Castration-Resistant Prostate Cancer.Cancer Res. 2018 Jul 15;78(14):4022-4035. doi: 10.1158/0008-5472.CAN-17-3728. Epub 2018 May 15.
520 Novel Insight into Differential Gene Expression and Clinical Significance of Dopamine Receptors, COMT, and IL6 in BPH and Prostate Cancer.Curr Mol Med. 2019;19(8):605-619. doi: 10.2174/1566524019666190709180146.
521 The mitogen-activated protein kinase phosphatase vaccinia H1-related protein inhibits apoptosis in prostate cancer cells and is overexpressed in prostate cancer.Cancer Res. 2008 Nov 15;68(22):9255-64. doi: 10.1158/0008-5472.CAN-08-1224.
522 DUSP5 is methylated in CIMP-high colorectal cancer but is not a major regulator of intestinal cell proliferation and tumorigenesis.Sci Rep. 2018 Jan 29;8(1):1767. doi: 10.1038/s41598-018-20176-9.
523 MicroRNA let-7a inhibits proliferation of human prostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2.PLoS One. 2010 Apr 14;5(4):e10147. doi: 10.1371/journal.pone.0010147.
524 Herpesvirus saimiri-based endothelin-converting enzyme-1 shRNA expression decreases prostate cancer cell invasion and migration.Int J Cancer. 2011 Aug 1;129(3):586-98. doi: 10.1002/ijc.25719. Epub 2010 Dec 2.
525 Methylated genes as potential biomarkers in prostate cancer.BJU Int. 2010 May;105(10):1364-70. doi: 10.1111/j.1464-410X.2009.09167.x. Epub 2010 Jan 8.
526 Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells.Cancer Lett. 2017 Apr 1;390:11-20. doi: 10.1016/j.canlet.2017.01.003. Epub 2017 Jan 13.
527 Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion.Oncogene. 2019 Jun;38(23):4540-4559. doi: 10.1038/s41388-019-0736-3. Epub 2019 Feb 12.
528 EHMT2 promotes the development of prostate cancer by inhibiting PI3K/AKT/mTOR pathway.Eur Rev Med Pharmacol Sci. 2019 Sep;23(18):7808-7815. doi: 10.26355/eurrev_201909_18990.
529 PSMA-homing dsRNA chimeric protein vector kills prostate cancer cells and activates anti-tumor bystander responses.Oncotarget. 2017 Apr 11;8(15):24046-24062. doi: 10.18632/oncotarget.15733.
530 The mTOR Targets 4E-BP1/2 Restrain Tumor Growth and Promote Hypoxia Tolerance in PTEN-driven Prostate Cancer.Mol Cancer Res. 2018 Apr;16(4):682-695. doi: 10.1158/1541-7786.MCR-17-0696. Epub 2018 Feb 16.
531 Eukaryotic translation initiation factor 5A2 is highly expressed in prostate cancer and predicts poor prognosis.Exp Ther Med. 2019 May;17(5):3741-3747. doi: 10.3892/etm.2019.7331. Epub 2019 Mar 1.
532 Soluble CD105 is prognostic of disease recurrence in prostate cancer patients.Endocr Relat Cancer. 2020 Jan;27(1):1-9. doi: 10.1530/ERC-19-0370.
533 Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells.Prostate. 2008 Nov 1;68(15):1666-73. doi: 10.1002/pros.20835.
534 Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues.J Cell Physiol. 2007 Jan;210(1):111-21. doi: 10.1002/jcp.20828.
535 Detection of Androgen Receptor Variant 7 (ARV7) mRNA Levels in EpCAM-Enriched CTC Fractions for Monitoring Response to Androgen Targeting Therapies in Prostate Cancer.Cells. 2019 Sep 11;8(9):1067. doi: 10.3390/cells8091067.
536 Elevated Expression of EPHA2 Is Associated With Poor Prognosis After Radical Prostatectomy in Prostate Cancer.Anticancer Res. 2019 Nov;39(11):6249-6257. doi: 10.21873/anticanres.13834.
537 Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression.Cell Death Dis. 2017 Oct 12;8(10):e3122. doi: 10.1038/cddis.2017.507.
538 Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer.Cancer Res. 2019 May 15;79(10):2580-2592. doi: 10.1158/0008-5472.CAN-18-2812. Epub 2019 Apr 5.
539 EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells.Cell Death Dis. 2019 Oct 22;10(11):801. doi: 10.1038/s41419-019-2042-y.
540 Androgen-deprivation therapy with enzalutamide enhances prostate cancer metastasis via decreasing the EPHB6 suppressor expression.Cancer Lett. 2017 Nov 1;408:155-163. doi: 10.1016/j.canlet.2017.08.014. Epub 2017 Aug 18.
541 Antibody-based detection of ERG rearrangement-positive prostate cancer.Neoplasia. 2010 Jul;12(7):590-8. doi: 10.1593/neo.10726.
542 IRE1-XBP1s pathway promotes prostate cancer by activating c-MYC signaling.Nat Commun. 2019 Jan 24;10(1):323. doi: 10.1038/s41467-018-08152-3.
543 Estrogen and Androgen Blockade for Advanced Prostate Cancer in the Era of Precision Medicine.Cancers (Basel). 2018 Jan 23;10(2):29. doi: 10.3390/cancers10020029.
544 Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling.Biomed Res Int. 2019 Jun 16;2019:3808432. doi: 10.1155/2019/3808432. eCollection 2019.
545 Dual Inhibition of EZH2 and EZH1 Sensitizes PRC2-Dependent Tumors to Proteasome Inhibition.Clin Cancer Res. 2017 Aug 15;23(16):4817-4830. doi: 10.1158/1078-0432.CCR-16-2735. Epub 2017 May 10.
546 Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants.Nat Commun. 2018 Jun 11;9(1):2256. doi: 10.1038/s41467-018-04109-8.
547 Genome-wide testing of putative functional exonic variants in relationship with breast and prostate cancer risk in a multiethnic population.PLoS Genet. 2013 Mar;9(3):e1003419. doi: 10.1371/journal.pgen.1003419. Epub 2013 Mar 28.
548 Tissue specific and androgen-regulated expression of human prostate-specific transglutaminase.Biochem J. 1996 May 1;315 ( Pt 3)(Pt 3):901-8. doi: 10.1042/bj3150901.
549 Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1.Int J Cancer. 2010 Feb 1;126(3):599-610. doi: 10.1002/ijc.24904.
550 Expression of proteinase-activated receptor-2 (PAR2) is androgen-dependent in stromal cell line (hPCPs) from benign prostatic hyperplasia.Prostate. 2010 Sep 1;70(12):1350-8. doi: 10.1002/pros.21170.
551 Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a pro-tumourigenic 'activated' state that enhances prostate cancer cell migration.Int J Cancer. 2018 May 15;142(10):2056-2067. doi: 10.1002/ijc.31226. Epub 2018 Jan 4.
552 Speckle-type POZ protein suppresses lipid accumulation and prostate cancer growth by stabilizing fatty acid synthase.Prostate. 2019 Jun;79(8):864-871. doi: 10.1002/pros.23793. Epub 2019 Apr 7.
553 Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation.Mol Cancer Ther. 2008 Oct;7(10):3203-11. doi: 10.1158/1535-7163.MCT-08-0494.
554 Single Cell Gene Co-Expression Network Reveals FECH/CROT Signature as a Prognostic Marker.Cells. 2019 Jul 10;8(7):698. doi: 10.3390/cells8070698.
555 MAN2A1-FER Fusion Gene Is Expressed by Human Liver and Other Tumor Types and Has Oncogenic Activity in Mice.Gastroenterology. 2017 Oct;153(4):1120-1132.e15. doi: 10.1053/j.gastro.2016.12.036. Epub 2017 Feb 27.
556 Oleic acid promotes prostate cancer malignant phenotype via the G protein-coupled receptor FFA1/GPR40.J Cell Physiol. 2018 Sep;233(9):7367-7378. doi: 10.1002/jcp.26572. Epub 2018 Apr 16.
557 Role of Host GPR120 in Mediating Dietary Omega-3 Fatty Acid Inhibition of Prostate Cancer.J Natl Cancer Inst. 2019 Jan 1;111(1):52-59. doi: 10.1093/jnci/djy125.
558 Using the epigenetic field defect to detect prostate cancer in biopsy negative patients.J Urol. 2013 Jun;189(6):2335-41. doi: 10.1016/j.juro.2012.11.074. Epub 2012 Nov 15.
559 Intrinsic FGFR2 and Ectopic FGFR1 Signaling in the Prostate and Prostate Cancer.Front Genet. 2019 Jan 30;10:12. doi: 10.3389/fgene.2019.00012. eCollection 2019.
560 Plant-based diets relatively low in bioavailable phosphate and calcium may aid prevention and control of prostate cancer by lessening production of fibroblast growth factor 23.Med Hypotheses. 2017 Feb;99:68-72. doi: 10.1016/j.mehy.2017.01.001. Epub 2017 Jan 3.
561 Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice.Neoplasia. 2010 Nov;12(11):915-27. doi: 10.1593/neo.10776.
562 Coordinate suppression of Sdpr and Fhl1 expression in tumors of the breast, kidney, and prostate.Cancer Sci. 2008 Jul;99(7):1326-33. doi: 10.1111/j.1349-7006.2008.00816.x. Epub 2008 Apr 15.
563 The prognostic value of stromal FK506-binding protein 1 and androgen receptor in prostate cancer outcome.Prostate. 2017 Feb;77(2):185-195. doi: 10.1002/pros.23259. Epub 2016 Oct 8.
564 Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer.Clin Cancer Res. 2019 Jan 15;25(2):710-723. doi: 10.1158/1078-0432.CCR-18-0704. Epub 2018 Oct 15.
565 Exosome proteomic analyses identify inflammatory phenotype and novel biomarkers in African American prostate cancer patients.Cancer Med. 2019 Mar;8(3):1110-1123. doi: 10.1002/cam4.1885. Epub 2019 Jan 8.
566 Intra-tumoral delivery of functional ID4 protein via PCL/maltodextrin nano-particle inhibits prostate cancer growth.Oncotarget. 2016 Oct 18;7(42):68072-68085. doi: 10.18632/oncotarget.10953.
567 A Bispecific Antibody Targeting the v and 51 Integrins Induces Integrin Degradation in Prostate Cancer Cells and Is Superior to Monospecific Antibodies.Mol Cancer Res. 2020 Jan;18(1):27-32. doi: 10.1158/1541-7786.MCR-19-0442. Epub 2019 Oct 21.
568 Folate-Decorated Amphiphilic Cyclodextrins as Cell-Targeted Nanophototherapeutics.Biomacromolecules. 2019 Jul 8;20(7):2530-2544. doi: 10.1021/acs.biomac.9b00306. Epub 2019 Jun 25.
569 Suppressor of activator protein-1 regulated by interferon expression in prostate cancer tissues and cells.Life Sci. 2019 Sep 1;232:116626. doi: 10.1016/j.lfs.2019.116626. Epub 2019 Jul 2.
570 FOSL1 enhances growth and metastasis of human prostate cancer cells through epithelial mesenchymal transition pathway.Eur Rev Med Pharmacol Sci. 2018 Dec;22(24):8609-8615. doi: 10.26355/eurrev_201812_16624.
571 Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.BMC Cancer. 2011 Jan 25;11:31. doi: 10.1186/1471-2407-11-31.
572 High FOXM1 expression is a prognostic marker for poor clinical outcomes in prostate cancer.J Cancer. 2019 Jan 1;10(3):749-756. doi: 10.7150/jca.28099. eCollection 2019.
573 TMEFF2 shedding is regulated by oxidative stress and mediated by ADAMs and transmembrane serine proteases implicated in prostate cancer.Cell Biol Int. 2018 Mar;42(3):273-280. doi: 10.1002/cbin.10832. Epub 2017 Aug 21.
574 Screening, identification of prostate cancer urinary biomarkers and verification of important spots.Invest New Drugs. 2019 Oct;37(5):935-947. doi: 10.1007/s10637-018-0709-3. Epub 2019 Jan 4.
575 Knockdown of fucosyltransferase III disrupts the adhesion of circulating cancer cells to E-selectin without affecting hematopoietic cell adhesion.Carbohydr Res. 2010 Nov 2;345(16):2334-42. doi: 10.1016/j.carres.2010.07.028. Epub 2010 Jul 21.
576 SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer.Oncotarget. 2015 Dec 29;6(42):44072-83. doi: 10.18632/oncotarget.6398.
577 Prostate cancer-related anxiety in long-term survivors after radical prostatectomy.J Cancer Surviv. 2017 Dec;11(6):800-807. doi: 10.1007/s11764-017-0619-y. Epub 2017 May 21.
578 Matrine inhibits the progression of prostate cancer by promoting expression of GADD45B.Prostate. 2018 Apr;78(5):327-335. doi: 10.1002/pros.23469. Epub 2018 Jan 21.
579 An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation.PLoS One. 2017 Aug 3;12(8):e0182305. doi: 10.1371/journal.pone.0182305. eCollection 2017.
580 Association of XPD polymorphisms with prostate cancer in Taiwanese patients.Anticancer Res. 2007 Jul-Aug;27(4C):2893-6.
581 Increase in gamma-glutamylcysteine synthetase activity and steady-state messenger RNA levels in melphalan-resistant DU-145 human prostate carcinoma cells expressing elevated glutathione levels.Cancer Res. 1992 Sep 15;52(18):5115-8.
582 Glyceryl trinitrateinduced cytotoxicity of docetaxelresistant prostatic cancer cells is associated with differential regulation of clusterin.Int J Oncol. 2019 Apr;54(4):1446-1456. doi: 10.3892/ijo.2019.4708. Epub 2019 Feb 1.
583 High-Level -Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer.Int J Mol Sci. 2017 Jan 29;18(2):286. doi: 10.3390/ijms18020286.
584 Gamma-glutamyltransferase activity in exosomes as a potential marker for prostate cancer.BMC Cancer. 2017 May 5;17(1):316. doi: 10.1186/s12885-017-3301-x.
585 Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer.Clin Cancer Res. 2005 Dec 1;11(23):8295-303. doi: 10.1158/1078-0432.CCR-05-0443.
586 Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by alpha-catenin.J Biol Chem. 2002 Dec 20;277(51):50087-97. doi: 10.1074/jbc.M202652200. Epub 2002 Aug 29.
587 GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism.J Cell Biochem. 2018 Apr;119(4):3641-3652. doi: 10.1002/jcb.26572. Epub 2018 Jan 5.
588 Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via EMT control.J Cell Mol Med. 2018 May;22(5):2865-2883. doi: 10.1111/jcmm.13581. Epub 2018 Mar 5.
589 Evaluation of A Novel GLP-1R Ligand for PET Imaging of Prostate Cancer.Anticancer Agents Med Chem. 2019;19(4):509-514. doi: 10.2174/1871520618666180801101730.
590 Glutamate Decarboxylase 65 Signals through the Androgen Receptor to Promote Castration Resistance in Prostate Cancer.Cancer Res. 2019 Sep 15;79(18):4638-4649. doi: 10.1158/0008-5472.CAN-19-0700. Epub 2019 Jun 10.
591 Oncological outcome of neoadjuvant low-dose estramustine plus LHRH agonist/antagonist followed by extended radical prostatectomy for Japanese patients with high-risk localized prostate cancer: a prospective single-arm study.Jpn J Clin Oncol. 2020 Jan 24;50(1):66-72. doi: 10.1093/jjco/hyz138.
592 Identification of a Glypican-3-Binding Peptide for In Vivo Non-Invasive Human Hepatocellular Carcinoma Detection.Macromol Biosci. 2017 Apr;17(4). doi: 10.1002/mabi.201600335. Epub 2016 Nov 15.
593 Raloxifene decreases cell viability and migratory potential in prostate cancer cells (LNCaP) with GPR30/GPER1 involvement.J Pharm Pharmacol. 2019 Jul;71(7):1065-1071. doi: 10.1111/jphp.13089. Epub 2019 Mar 28.
594 The Zinc Sensing Receptor, ZnR/GPR39, in Health and Disease.Int J Mol Sci. 2018 Feb 1;19(2):439. doi: 10.3390/ijms19020439.
595 DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers.Br J Cancer. 2005 Oct 31;93(9):1029-37. doi: 10.1038/sj.bjc.6602837.
596 Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.Cancer Res. 2017 Jul 1;77(13):3417-3430. doi: 10.1158/0008-5472.CAN-16-1616. Epub 2017 May 4.
597 Anti-glutamate receptor 2 as a new potential diagnostic probe for prostatic adenocarcinoma: a pilot immunohistochemical study.Appl Immunohistochem Mol Morphol. 2012 Jul;20(4):344-9. doi: 10.1097/PAI.0b013e31824013ba.
598 Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth.J Biol Chem. 2003 Sep 26;278(39):37569-73. doi: 10.1074/jbc.M306276200. Epub 2003 Jul 17.
599 GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells.Oncotarget. 2016 Jul 19;7(29):45171-45185. doi: 10.18632/oncotarget.9359.
600 Riluzole Inhibits Proliferation, Migration and Cell Cycle Progression and Induces Apoptosis in Tumor Cells of Various Origins.Anticancer Agents Med Chem. 2018;18(4):565-572. doi: 10.2174/1871520618666180228152713.
601 Comparison of biological properties of [(177) Lu]Lu-ProBOMB1 and [(177) Lu]Lu-NeoBOMB1 for GRPR targeting.J Labelled Comp Radiopharm. 2020 Feb;63(2):56-64. doi: 10.1002/jlcr.3815. Epub 2020 Jan 11.
602 Wogonoside Inhibits Prostate Cancer Cell Growth and Metastasis via Regulating Wnt/-Catenin Pathway and Epithelial-Mesenchymal Transition.Pharmacology. 2019;104(5-6):312-319. doi: 10.1159/000502400. Epub 2019 Sep 3.
603 Secreted gelsolin desensitizes and induces apoptosis of infiltrated lymphocytes in prostate cancer.Oncotarget. 2017 Aug 23;8(44):77152-77167. doi: 10.18632/oncotarget.20414. eCollection 2017 Sep 29.
604 Human glutathione S-transferase A2 polymorphisms: variant expression, distribution in prostate cancer cases/controls and a novel form. Pharmacogenetics. 2004 Jan;14(1):35-44.
605 Enterolactone glucuronide and -glucuronidase in antibody directed enzyme prodrug therapy for targeted prostate cancer cell treatment.AAPS PharmSciTech. 2017 Aug;18(6):2336-2345. doi: 10.1208/s12249-017-0721-5. Epub 2017 Jan 23.
606 YY1 negatively regulates the XAF1 gene expression in prostate cancer.Biochem Biophys Res Commun. 2019 Jan 15;508(3):973-979. doi: 10.1016/j.bbrc.2018.12.056. Epub 2018 Dec 11.
607 Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation.Cancer Lett. 2020 Mar 31;473:118-129. doi: 10.1016/j.canlet.2019.12.018. Epub 2019 Dec 13.
608 Dual inhibition of AKT-mTOR and AR signaling by targeting HDAC3 in PTEN- or SPOP-mutated prostate cancer.EMBO Mol Med. 2018 Apr;10(4):e8478. doi: 10.15252/emmm.201708478.
609 A New Histone Deacetylase Inhibitor, MHY4381, Induces Apoptosis via Generation of Reactive Oxygen Species in Human Prostate Cancer Cells.Biomol Ther (Seoul). 2020 Mar 1;28(2):184-194. doi: 10.4062/biomolther.2019.074.
610 Zinc and p53 disrupt mitochondrial binding of HK2 by phosphorylating VDAC1.Exp Cell Res. 2019 Jan 1;374(1):249-258. doi: 10.1016/j.yexcr.2018.12.002. Epub 2018 Dec 4.
611 Downregulation of miR-195 promotes prostate cancer progression by targeting HMGA1.Oncol Rep. 2016 Jul;36(1):376-82. doi: 10.3892/or.2016.4797. Epub 2016 May 9.
612 Long non-coding RNA-NEAT1, a sponge for miR-98-5p, promotes expression of oncogene HMGA2 in prostate cancer.Biosci Rep. 2019 Sep 24;39(9):BSR20190635. doi: 10.1042/BSR20190635. Print 2019 Sep 30.
613 Glycyrrhizin Attenuates the Process of Epithelial-to-Mesenchymal Transition by Modulating HMGB1 Initiated Novel Signaling Pathway in Prostate Cancer Cells.J Agric Food Chem. 2019 Mar 27;67(12):3323-3332. doi: 10.1021/acs.jafc.9b00251. Epub 2019 Mar 13.
614 Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer.Curr Med Chem. 2020;27(20):3271-3289. doi: 10.2174/0929867326666190123120338.
615 Stromal regulation of prostate cancer cell growth by mevalonate pathway enzymes HMGCS1 and HMGCR.Oncol Lett. 2017 Dec;14(6):6533-6542. doi: 10.3892/ol.2017.7025. Epub 2017 Sep 22.
616 HMGCS2 functions as a tumor suppressor and has a prognostic impact in prostate cancer.Pathol Res Pract. 2019 Aug;215(8):152464. doi: 10.1016/j.prp.2019.152464. Epub 2019 May 22.
617 Design of Peptoid-peptide Macrocycles to Inhibit the -catenin TCF Interaction in Prostate Cancer.Nat Commun. 2018 Oct 23;9(1):4396. doi: 10.1038/s41467-018-06845-3.
618 Integrated Analysis of Genetic Abnormalities of the Histone Lysine Methyltransferases in Prostate Cancer.Med Sci Monit. 2019 Jan 7;25:193-239. doi: 10.12659/MSM.912294.
619 Quercetin Targets hnRNPA1 to Overcome Enzalutamide Resistance in Prostate Cancer Cells.Mol Cancer Ther. 2017 Dec;16(12):2770-2779. doi: 10.1158/1535-7163.MCT-17-0030. Epub 2017 Jul 20.
620 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol, a novel natural product for prostate cancer therapy: activity in vitro and in vivo and mechanisms of action.Br J Cancer. 2008 Feb 26;98(4):792-802. doi: 10.1038/sj.bjc.6604227. Epub 2008 Feb 5.
621 Potential prostate cancer drug target: bioactivation of androstanediol by conversion to dihydrotestosterone.Clin Cancer Res. 2011 Sep 15;17(18):5844-9. doi: 10.1158/1078-0432.CCR-11-0644. Epub 2011 Jun 24.
622 Steroidogenic germline polymorphism predictors of prostate cancer progression in the estradiol pathway.Clin Cancer Res. 2014 Jun 1;20(11):2971-83. doi: 10.1158/1078-0432.CCR-13-2567. Epub 2014 Mar 28.
623 Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor.J Biol Chem. 2019 May 31;294(22):8699-8710. doi: 10.1074/jbc.RA119.007420. Epub 2019 Apr 16.
624 GRP78 modulates cell adhesion markers in prostate Cancer and multiple myeloma cell lines.BMC Cancer. 2018 Dec 18;18(1):1263. doi: 10.1186/s12885-018-5178-8.
625 Colocalisation of CD9 and mortalin in CD9-induced mitotic catastrophe in human prostate cancer cells.Br J Cancer. 2007 Oct 8;97(7):941-8. doi: 10.1038/sj.bjc.6603964. Epub 2007 Sep 11.
626 Hsp-27 and NF-B pathway is associated with AR/AR-V7 expression in prostate cancer cells.Gene. 2019 May 20;697:138-143. doi: 10.1016/j.gene.2019.02.055. Epub 2019 Feb 23.
627 The Homeobox gene, HOXB13, Regulates a Mitotic Protein-Kinase Interaction Network in Metastatic Prostate Cancers.Sci Rep. 2019 Jul 4;9(1):9715. doi: 10.1038/s41598-019-46064-4.
628 Microarray-based data mining reveals key genes and potential therapeutic drugs for Cadmium-induced prostate cell malignant transformation.Environ Toxicol Pharmacol. 2019 May;68:141-147. doi: 10.1016/j.etap.2019.03.014. Epub 2019 Mar 15.
629 Transcriptional activation by NFB increases perlecan/HSPG2 expression in the desmoplastic prostate tumor microenvironment.J Cell Biochem. 2014 Jul;115(7):1322-33. doi: 10.1002/jcb.24788.
630 TIP30 is associated with progression and metastasis of prostate cancer.Int J Cancer. 2008 Aug 15;123(4):810-6. doi: 10.1002/ijc.23638.
631 Id-1 and Id-2 proteins as molecular markers for human prostate cancer progression.Clin Cancer Res. 2004 Mar 15;10(6):2044-51. doi: 10.1158/1078-0432.ccr-03-0933.
632 IFNL4-G Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer.Clin Cancer Res. 2018 Nov 1;24(21):5471-5481. doi: 10.1158/1078-0432.CCR-18-1060. Epub 2018 Jul 16.
633 Two prostate cancerassociated polymorphisms in the 3'UTR of IGF1R influences prostate cancer susceptibility by affecting miRNA binding.Oncol Rep. 2019 Jan;41(1):512-524. doi: 10.3892/or.2018.6810. Epub 2018 Oct 22.
634 Insulin-like growth factor binding protein-6 inhibits prostate cancer cell proliferation: implication for anticancer effect of diethylstilbestrol in hormone refractory prostate cancer. Br J Cancer. 2005 Apr 25;92(8):1538-44. doi: 10.1038/sj.bjc.6602520.
635 IGFBP7 promoter methylation and gene expression analysis in prostate cancer.J Urol. 2012 Oct;188(4):1354-60. doi: 10.1016/j.juro.2012.06.002. Epub 2012 Aug 17.
636 Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells.J Clin Invest. 2013 Apr;123(4):1615-29. doi: 10.1172/JCI59623. Epub 2013 Mar 15.
637 Circulating monocytes from prostate cancer patients promote invasion and motility of epithelial cells.Cancer Med. 2018 Sep;7(9):4639-4649. doi: 10.1002/cam4.1695. Epub 2018 Aug 9.
638 Poly(I:C)-Mediated Death of Human Prostate Cancer Cell Lines Is Induced by Interleukin-27 Treatment.J Interferon Cytokine Res. 2019 Aug;39(8):483-494. doi: 10.1089/jir.2018.0166. Epub 2019 Apr 22.
639 Tumor-Penetrating Peptide Enhances Antitumor Effects of IL-24 Against Prostate Cancer.Transl Oncol. 2019 Mar;12(3):453-461. doi: 10.1016/j.tranon.2018.12.002. Epub 2018 Dec 20.
640 Tyrosine kinase inhibitor CEP-701 blocks the NTRK1/NGF receptor and limits the invasive capability of prostate cancer cells in vitro.Int J Oncol. 2007 Jan;30(1):193-200.
641 Interleukin-7 Contributes to the Invasiveness of Prostate Cancer Cells by Promoting Epithelial-Mesenchymal Transition.Sci Rep. 2019 May 6;9(1):6917. doi: 10.1038/s41598-019-43294-4.
642 Enhanced expression of IMPDH2 promotes metastasis and advanced tumor progression in patients with prostate cancer.Clin Transl Oncol. 2014 Oct;16(10):906-13. doi: 10.1007/s12094-014-1167-9. Epub 2014 Mar 22.
643 High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling.Clin Cancer Res. 2018 Sep 1;24(17):4309-4318. doi: 10.1158/1078-0432.CCR-18-0106. Epub 2018 May 18.
644 ITGB1-dependent upregulation of Caveolin-1 switches TGF signalling from tumour-suppressive to oncogenic in prostate cancer.Sci Rep. 2018 Feb 5;8(1):2338. doi: 10.1038/s41598-018-20161-2.
645 Tumor metastasis suppressor functions of Ets transcription factor through integrin 3-mediated signaling pathway.J Cell Physiol. 2019 Nov;234(11):20266-20274. doi: 10.1002/jcp.28627. Epub 2019 Apr 14.
646 PTEN counteracts FBXL2 to promote IP3R3- and Ca(2+)-mediated apoptosis limiting tumour growth.Nature. 2017 Jun 22;546(7659):554-558. doi: 10.1038/nature22965. Epub 2017 Jun 14.
647 Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsense-mediated decay and microarray analysis.Cancer Genet Cytogenet. 2005 Sep;161(2):97-103. doi: 10.1016/j.cancergencyto.2005.02.006.
648 Correction to: MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer.Mol Cancer. 2019 Aug 6;18(1):122. doi: 10.1186/s12943-019-1051-x.
649 p300/CBP-associated factor promotes autophagic degradation of -catenin through acetylation and decreases prostate cancer tumorigenicity.Sci Rep. 2019 Mar 4;9(1):3351. doi: 10.1038/s41598-019-40238-w.
650 Comparison of human prostate specific glandular kallikrein 2 and prostate specific antigen gene expression in prostate with gene amplification and overexpression of prostate specific glandular kallikrein 2 in tumor tissue.Cancer. 2001 Dec 15;92(12):2975-84. doi: 10.1002/1097-0142(20011215)92:12<2975::aid-cncr10113>3.0.co;2-k.
651 Prostate cancer tissues with positive TMPRSS2-ERG-gene-fusion status may display enhanced nerve density.Urol Oncol. 2020 Jan;38(1):3.e7-3.e15. doi: 10.1016/j.urolonc.2018.07.019. Epub 2018 Sep 18.
652 Role of KCNMA1 in breast cancer.PLoS One. 2012;7(8):e41664. doi: 10.1371/journal.pone.0041664. Epub 2012 Aug 10.
653 Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry.Oncogene. 2009 Apr 16;28(15):1792-806. doi: 10.1038/onc.2009.25. Epub 2009 Mar 9.
654 ZNFX1 anti-sense RNA 1 promotes the tumorigenesis of prostate cancer by regulating c-Myc expression via a regulatory network of competing endogenous RNAs.Cell Mol Life Sci. 2020 Mar;77(6):1135-1152. doi: 10.1007/s00018-019-03226-x. Epub 2019 Jul 18.
655 KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN.Biomed Pharmacother. 2019 Jun;114:108793. doi: 10.1016/j.biopha.2019.108793. Epub 2019 Mar 25.
656 A new metabolic gene signature in prostate cancer regulated by JMJD3 and EZH2.Oncotarget. 2018 May 4;9(34):23413-23425. doi: 10.18632/oncotarget.25182. eCollection 2018 May 4.
657 Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer.Int J Cancer. 2018 Dec 1;143(11):2849-2861. doi: 10.1002/ijc.31843. Epub 2018 Oct 9.
658 Osteopontin And Angiogenic Factors As New Biomarkers Of Prostate Cancer.Urol J. 2019 May 5;16(2):134-140. doi: 10.22037/uj.v0i0.4282.
659 c-MYC empowers transcription and productive splicing of the oncogenic splicing factor Sam68 in cancer.Nucleic Acids Res. 2019 Jul 9;47(12):6160-6171. doi: 10.1093/nar/gkz344.
660 Kinesin Family Member 11 mRNA Expression Predicts Prostate Cancer Aggressiveness.Clin Genitourin Cancer. 2017 Aug;15(4):450-454. doi: 10.1016/j.clgc.2016.10.005. Epub 2016 Oct 19.
661 Klotho inhibits androgen/androgen receptorassociated epithelialmesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling.Oncol Rep. 2018 Jul;40(1):217-225. doi: 10.3892/or.2018.6399. Epub 2018 Apr 25.
662 Downregulated Krppellike factor4 expression is associated with the aggressiveness of prostate cancer.Oncol Rep. 2019 Mar;41(3):1789-1796. doi: 10.3892/or.2019.6975. Epub 2019 Jan 22.
663 Identification of potential key genes and high-frequency mutant genes in prostate cancer by using RNA-Seq data.Oncol Lett. 2018 Apr;15(4):4550-4556. doi: 10.3892/ol.2018.7846. Epub 2018 Jan 24.
664 Kallikrein markers performance in pretreatment blood to predict early prostate cancer recurrence and metastasis after radical prostatectomy among very high-risk men.Prostate. 2020 Jan;80(1):51-56. doi: 10.1002/pros.23916. Epub 2019 Oct 11.
665 KLK5 gene expression is severely upregulated in androgen-independent prostate cancer cells after treatment with the chemotherapeutic agents docetaxel and mitoxantrone.Biol Chem. 2010 Apr;391(4):467-74. doi: 10.1515/BC.2010.026.
666 Expression of kallikrein-related peptidase 7 is decreased in prostate cancer.Asian J Androl. 2015 Jan-Feb;17(1):106-10. doi: 10.4103/1008-682X.137613.
667 Thioredoxin-1 protects against androgen receptor-induced redox vulnerability in castration-resistant prostate cancer.Nat Commun. 2017 Oct 31;8(1):1204. doi: 10.1038/s41467-017-01269-x.
668 Inhibition of Karyopherin beta 1 suppresses prostate cancer growth.Oncogene. 2019 Jun;38(24):4700-4714. doi: 10.1038/s41388-019-0745-2. Epub 2019 Feb 11.
669 Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types.Cancer Discov. 2016 Sep;6(9):1052-67. doi: 10.1158/2159-8290.CD-15-1227. Epub 2016 Jul 17.
670 Deacetylation of LAMP1 drives lipophagy-dependent generation of free fatty acids by Abrus agglutinin to promote senescence in prostate cancer.J Cell Physiol. 2020 Mar;235(3):2776-2791. doi: 10.1002/jcp.29182. Epub 2019 Sep 23.
671 MRI-based prostate cancer detection with high-level representation and hierarchical classification.Med Phys. 2017 Mar;44(3):1028-1039. doi: 10.1002/mp.12116.
672 Discovery of a novel long noncoding RNA overlapping the LCK gene that regulates prostate cancer cell growth.Mol Cancer. 2019 Jun 28;18(1):113. doi: 10.1186/s12943-019-1039-6.
673 Targeting lactate dehydrogenaseA promotes docetaxelinduced cytotoxicity predominantly in castrationresistant prostate cancer cells.Oncol Rep. 2019 Jul;42(1):224-230. doi: 10.3892/or.2019.7171. Epub 2019 May 24.
674 Interlink between cholesterol & cell cycle in prostate carcinoma.Indian J Med Res. 2017 Nov;146(Suppl):S38-S44. doi: 10.4103/ijmr.IJMR_1639_15.
675 Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44.Lab Invest. 2018 Dec;98(12):1642-1656. doi: 10.1038/s41374-018-0119-3. Epub 2018 Aug 31.
676 SUMO-Specific Cysteine Protease 1 Promotes Epithelial Mesenchymal Transition of Prostate Cancer Cells via Regulating SMAD4 deSUMOylation.Int J Mol Sci. 2017 Apr 12;18(4):808. doi: 10.3390/ijms18040808.
677 Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition.J Biol Chem. 2017 Sep 15;292(37):15525-15537. doi: 10.1074/jbc.M116.771931. Epub 2017 Aug 2.
678 Leukemia Inhibitory Factor Promotes Castration-resistant Prostate Cancer and Neuroendocrine Differentiation by Activated ZBTB46.Clin Cancer Res. 2019 Jul 1;25(13):4128-4140. doi: 10.1158/1078-0432.CCR-18-3239. Epub 2019 Apr 8.
679 Identification of LIMK2 as a therapeutic target in castration resistant prostate cancer.Cancer Lett. 2019 Apr 28;448:182-196. doi: 10.1016/j.canlet.2019.01.035. Epub 2019 Feb 1.
680 Lin28 induces resistance to anti-androgens via promotion of AR splice variant generation.Prostate. 2016 Apr;76(5):445-55. doi: 10.1002/pros.23134. Epub 2015 Dec 30.
681 Mice lacking lipid droplet-associated hydrolase, a gene linked to human prostate cancer, have normal cholesterol ester metabolism.J Lipid Res. 2017 Jan;58(1):226-235. doi: 10.1194/jlr.M072538. Epub 2016 Nov 11.
682 Urinary biomarkers in prostate cancer detection and monitoring progression.Crit Rev Oncol Hematol. 2017 Oct;118:15-26. doi: 10.1016/j.critrevonc.2017.08.002. Epub 2017 Aug 19.
683 Lysyl oxidase family members in urological tumorigenesis and fibrosis.Oncotarget. 2018 Apr 13;9(28):20156-20164. doi: 10.18632/oncotarget.24948. eCollection 2018 Apr 13.
684 Inhibition of LOXL2 Enhances the Radiosensitivity of Castration-Resistant Prostate Cancer Cells Associated with the Reversal of the EMT Process.Biomed Res Int. 2019 Jan 27;2019:4012590. doi: 10.1155/2019/4012590. eCollection 2019.
685 Genetic and epigenetic inactivation of LPL gene in human prostate cancer.Int J Cancer. 2009 Feb 1;124(3):734-8. doi: 10.1002/ijc.23972.
686 Strong synergy with APR-246 and DNA-damaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer.J Ovarian Res. 2016 May 14;9(1):27. doi: 10.1186/s13048-016-0239-6.
687 The Roles of Low-Density Lipoprotein Receptor-Related Proteins 5, 6, and 8 in Cancer: A Review.J Oncol. 2019 Mar 26;2019:4536302. doi: 10.1155/2019/4536302. eCollection 2019.
688 TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer.EBioMedicine. 2019 Jul;45:192-207. doi: 10.1016/j.ebiom.2019.06.046. Epub 2019 Jun 28.
689 Down-regulation of Lsm1 is involved in human prostate cancer progression.Br J Cancer. 2002 Mar 18;86(6):940-6. doi: 10.1038/sj.bjc.6600163.
690 The unexpected role of lymphotoxin beta receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development.Oncogene. 2010 Sep 9;29(36):5006-18. doi: 10.1038/onc.2010.260. Epub 2010 Jul 5.
691 Silencing of Lactotransferrin expression by methylation in prostate cancer progression.Cancer Biol Ther. 2007 Jul;6(7):1088-95. doi: 10.4161/cbt.6.7.4327.
692 Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer.Cell Rep. 2018 Dec 18;25(12):3504-3518.e6. doi: 10.1016/j.celrep.2018.11.069.
693 Effects of concentrated long-chain omega-3 polyunsaturated fatty acid supplementation before radical prostatectomy on prostate cancer proliferation, inflammation, and quality of life: study protocol for a phase IIb, randomized, double-blind, placebo-controlled trial.BMC Cancer. 2018 Jan 10;18(1):64. doi: 10.1186/s12885-017-3979-9.
694 Biopsy undergrading in men with Gleason score6 and fatal prostate cancer in the European Randomized study of Screening for Prostate Cancer Rotterdam.Int J Urol. 2017 Apr;24(4):281-286. doi: 10.1111/iju.13294. Epub 2017 Feb 7.
695 Functional interaction between co-expressed MAGE-A proteins.PLoS One. 2017 May 24;12(5):e0178370. doi: 10.1371/journal.pone.0178370. eCollection 2017.
696 NMD and microRNA expression profiling of the HPCX1 locus reveal MAGEC1 as a candidate prostate cancer predisposition gene.BMC Cancer. 2011 Aug 2;11:327. doi: 10.1186/1471-2407-11-327.
697 Expression of cancer/testis antigens in prostate cancer is associated with disease progression.Prostate. 2010 Dec 1;70(16):1778-87. doi: 10.1002/pros.21214.
698 Effect of Monoamine oxidase A (MAOA) inhibitors on androgen-sensitive and castration-resistant prostate cancer cells.Prostate. 2019 May;79(6):667-677. doi: 10.1002/pros.23774. Epub 2019 Jan 28.
699 Aberrant expression of extracellular signal-regulated kinase 5 in human prostate cancer.Oncogene. 2008 May 8;27(21):2978-88. doi: 10.1038/sj.onc.1210963. Epub 2007 Dec 10.
700 MicroRNA? suppresses human prostate cancer cell viability, invasion and migration via modulation of mitogenactivated protein kinase kinase kinase 3 expression.Mol Med Rep. 2019 May;19(5):4407-4418. doi: 10.3892/mmr.2019.10065. Epub 2019 Mar 21.
701 Prostate cancer of transition zone origin lacks TMPRSS2-ERG gene fusion.Mod Pathol. 2009 Jul;22(7):866-71. doi: 10.1038/modpathol.2009.57. Epub 2009 Apr 24.
702 Parallel-Reaction-Monitoring-Based Proteome-Wide Profiling of Differential Kinase Protein Expression during Prostate Cancer Metastasis in Vitro.Anal Chem. 2019 Aug 6;91(15):9893-9900. doi: 10.1021/acs.analchem.9b01561. Epub 2019 Jul 10.
703 In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer.Med Oncol. 2019 Apr 1;36(5):43. doi: 10.1007/s12032-019-1268-y.
704 Modulation of the response of prostate cancer cell lines to cisplatin treatment using small interfering RNA.Oncol Rep. 2013 Oct;30(4):1936-42. doi: 10.3892/or.2013.2637. Epub 2013 Jul 24.
705 MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer.Oncogene. 2006 May 18;25(21):2987-98. doi: 10.1038/sj.onc.1209337.
706 Clinical Utility of Ghrelin-O-Acyltransferase (GOAT) Enzyme as a Diagnostic Tool and Potential Therapeutic Target in Prostate Cancer.J Clin Med. 2019 Nov 22;8(12):2056. doi: 10.3390/jcm8122056.
707 Therapeutic Targeting of CD146/MCAM Reduces Bone Metastasis in Prostate Cancer.Mol Cancer Res. 2019 May;17(5):1049-1062. doi: 10.1158/1541-7786.MCR-18-1220. Epub 2019 Feb 11.
708 Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression.Cancer Manag Res. 2019 Feb 12;11:1415-1423. doi: 10.2147/CMAR.S190669. eCollection 2019.
709 MeCP2 overexpression inhibits proliferation, migration and invasion of C6 glioma by modulating ERK signaling and gene expression.Neurosci Lett. 2018 May 1;674:42-48. doi: 10.1016/j.neulet.2018.03.020. Epub 2018 Mar 11.
710 Identification of potential therapeutic targets in prostate cancer through a cross-species approach.EMBO Mol Med. 2018 Mar;10(3):e8274. doi: 10.15252/emmm.201708274.
711 Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy.J Cell Biochem. 2017 Apr;118(4):891-902. doi: 10.1002/jcb.25768. Epub 2016 Nov 10.
712 Synthesis, Anticancer Activity on Prostate Cancer Cell Lines and Molecular Modeling Studies of Flurbiprofen-Thioether Derivatives as Potential Target of MetAP (Type II).Med Chem. 2020;16(6):735-749. doi: 10.2174/1573406415666190613162322.
713 FABP5 coordinates lipid signaling that promotes prostate cancer metastasis.Sci Rep. 2019 Dec 12;9(1):18944. doi: 10.1038/s41598-019-55418-x.
714 Upregulation of SPOCK2 inhibits the invasion and migration of prostate cancer cells by regulating the MT1-MMP/MMP2 pathway.PeerJ. 2019 Jul 12;7:e7163. doi: 10.7717/peerj.7163. eCollection 2019.
715 Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression.Carcinogenesis. 2019 Jul 4;40(5):633-642. doi: 10.1093/carcin/bgz058.
716 RNA-binding protein Musashi2 stabilizing androgen receptor drives prostate cancer progression.Cancer Sci. 2020 Feb;111(2):369-382. doi: 10.1111/cas.14280. Epub 2020 Jan 4.
717 Tumor Cell Autonomous RON Receptor Expression Promotes Prostate Cancer Growth Under Conditions of Androgen Deprivation.Neoplasia. 2018 Sep;20(9):917-929. doi: 10.1016/j.neo.2018.07.003. Epub 2018 Aug 15.
718 Reduced expression of the DNA glycosylase gene MUTYH is associated with an increased number of somatic mutations via a reduction in the DNA repair capacity in prostate adenocarcinoma.Mol Carcinog. 2017 Feb;56(2):781-788. doi: 10.1002/mc.22509. Epub 2016 Jun 10.
719 N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway.Mol Cancer. 2019 Jan 18;18(1):11. doi: 10.1186/s12943-019-0941-2.
720 Circular RNA Myosin Light Chain Kinase (MYLK) Promotes Prostate Cancer Progression through Modulating Mir-29a Expression.Med Sci Monit. 2018 May 25;24:3462-3471. doi: 10.12659/MSM.908009.
721 Altered expression of lncRNA NCK1-AS1 distinguished patients with prostate cancer from those with benign prostatic hyperplasia.Oncol Lett. 2019 Dec;18(6):6379-6384. doi: 10.3892/ol.2019.11039. Epub 2019 Nov 1.
722 Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway.Nat Commun. 2018 Oct 5;9(1):4113. doi: 10.1038/s41467-018-06606-2.
723 Investigation of the relationship between prostate cancer and MSMB and NCOA4 genetic variants and protein expression.Hum Mutat. 2013 Jan;34(1):149-56. doi: 10.1002/humu.22176. Epub 2012 Oct 4.
724 HIF-1 induces immune escape of prostate cancer by regulating NCR1/NKp46 signaling through miR-224.Biochem Biophys Res Commun. 2018 Sep 3;503(1):228-234. doi: 10.1016/j.bbrc.2018.06.007. Epub 2018 Jun 14.
725 Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN.Oncotarget. 2015 Jun 20;6(17):15137-49. doi: 10.18632/oncotarget.3526.
726 Gartanin is a novel NEDDylation inhibitor for induction of Skp2 degradation, FBXW2 expression, and autophagy.Mol Carcinog. 2020 Feb;59(2):193-201. doi: 10.1002/mc.23140. Epub 2019 Nov 29.
727 Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors.Int J Cancer. 2019 Aug 15;145(4):1055-1067. doi: 10.1002/ijc.32200. Epub 2019 Feb 25.
728 Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6.Cancer Res. 2017 Feb 1;77(3):753-765. doi: 10.1158/0008-5472.CAN-16-0455. Epub 2016 Nov 29.
729 p62 as a therapeutic target for inhibition of autophagy in prostate cancer.Prostate. 2018 Apr;78(5):390-400. doi: 10.1002/pros.23483. Epub 2018 Jan 25.
730 TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis.J Clin Invest. 2018 Jul 2;128(7):3129-3143. doi: 10.1172/JCI96060. Epub 2018 Jun 18.
731 Utility of NKX3.1 Immunostaining in the Detection of Metastatic Prostatic Carcinoma on Fine-Needle Aspiration Smears.Am J Clin Pathol. 2019 Sep 9;152(4):495-501. doi: 10.1093/ajcp/aqz063.
732 Bloom Syndrome Protein Activates AKT and PRAS40 in Prostate Cancer Cells.Oxid Med Cell Longev. 2019 May 9;2019:3685817. doi: 10.1155/2019/3685817. eCollection 2019.
733 Notch-4 silencing inhibits prostate cancer growth and EMT via the NF-B pathway.Apoptosis. 2017 Jun;22(6):877-884. doi: 10.1007/s10495-017-1368-0.
734 Downregulated NOX4 underlies a novel inhibitory role of microRNA-137 in prostate cancer.J Cell Biochem. 2019 Jun;120(6):10215-10227. doi: 10.1002/jcb.28306. Epub 2019 Jan 13.
735 Identification of the key genes and pathways in prostate cancer.Oncol Lett. 2018 Nov;16(5):6663-6669. doi: 10.3892/ol.2018.9491. Epub 2018 Sep 24.
736 Aberrant expression of miR-141 and nuclear receptor small heterodimer partner in clinical samples of prostate cancer.Cancer Biomark. 2018;22(1):19-28. doi: 10.3233/CBM-170696.
737 Polymorphisms in nucleotide excision repair genes and risk of primary prostate cancer in Chinese Han populations.Oncotarget. 2017 Apr 11;8(15):24362-24371. doi: 10.18632/oncotarget.13848.
738 Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.Pathol Res Pract. 2017 Mar;213(3):267-270. doi: 10.1016/j.prp.2016.04.013. Epub 2016 May 12.
739 Update of the Standard Operating Procedure on the Use of Multiparametric Magnetic Resonance Imaging for the Diagnosis, Staging and Management of Prostate Cancer.J Urol. 2020 Apr;203(4):706-712. doi: 10.1097/JU.0000000000000617. Epub 2019 Oct 23.
740 The Role of Nuclear Receptors in Prostate Cancer.Cells. 2019 Jun 17;8(6):602. doi: 10.3390/cells8060602.
741 Nemo-like kinase as a negative regulator of nuclear receptor Nurr1 gene transcription in prostate cancer.BMC Cancer. 2016 Mar 31;16:257. doi: 10.1186/s12885-016-2291-4.
742 Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis.Cancer Res. 2018 May 1;78(9):2205-2218. doi: 10.1158/0008-5472.CAN-17-2341. Epub 2018 Feb 8.
743 Neuropilin-2 is an independent prognostic factor for shorter cancer-specific survival in patients with acinar adenocarcinoma of the prostate.Int J Cancer. 2020 May 1;146(9):2619-2627. doi: 10.1002/ijc.32679. Epub 2019 Oct 16.
744 Tumor-Suppressive Function of miR-30d-5p in Prostate Cancer Cell Proliferation and Migration by Targeting NT5E.Cancer Biother Radiopharm. 2018 Jun;33(5):203-211. doi: 10.1089/cbr.2018.2457.
745 Expression of netrin-1 by hypoxia contributes to the invasion and migration of prostate carcinoma cells by regulating YAP activity.Exp Cell Res. 2016 Dec 10;349(2):302-309. doi: 10.1016/j.yexcr.2016.10.023. Epub 2016 Nov 1.
746 Medullary thyroid carcinoma with double negative calcitonin and CEA: a case report and update of literature review.BMC Endocr Disord. 2019 Oct 16;19(1):103. doi: 10.1186/s12902-019-0435-7.
747 STIM1 accelerates cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in prostate cancer.Sci Rep. 2015 Aug 10;5:11754. doi: 10.1038/srep11754.
748 Genetic interaction of P2X7 receptor and VEGFR-2 polymorphisms identifies a favorable prognostic profile in prostate cancer patients.Oncotarget. 2015 Oct 6;6(30):28743-54. doi: 10.18632/oncotarget.4926.
749 Differing leukocyte gene expression profiles associated with fatigue in patients with prostate cancer versus chronic fatigue syndrome.Psychoneuroendocrinology. 2013 Dec;38(12):2983-95. doi: 10.1016/j.psyneuen.2013.08.008. Epub 2013 Sep 6.
750 D-GPCR: a novel putative G protein-coupled receptor overexpressed in prostate cancer and prostate.Biochem Biophys Res Commun. 2004 Sep 10;322(1):239-49. doi: 10.1016/j.bbrc.2004.07.106.
751 Identification of P4HA1 as a prognostic biomarker for high-grade gliomas.Pathol Res Pract. 2017 Nov;213(11):1365-1369. doi: 10.1016/j.prp.2017.09.017. Epub 2017 Sep 18.
752 Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway.Oncotarget. 2017 Apr 4;8(14):22563-22580. doi: 10.18632/oncotarget.15124.
753 Androgen-independent expression of adrenomedullin and peptidylglycine alpha-amidating monooxygenase in human prostatic carcinoma.Mol Carcinog. 2003 Sep;38(1):14-24. doi: 10.1002/mc.10134.
754 A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities.Nucleic Acids Res. 2019 Jun 20;47(11):5634-5647. doi: 10.1093/nar/gkz286.
755 PAX5-induced upregulation of IDH1-AS1 promotes tumor growth in prostate cancer by regulating ATG5-mediated autophagy.Cell Death Dis. 2019 Sep 30;10(10):734. doi: 10.1038/s41419-019-1932-3.
756 A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer.Oncogene. 2019 Feb;38(7):1136-1150. doi: 10.1038/s41388-018-0501-z. Epub 2018 Sep 20.
757 New Insights into the Role of Polybromo-1 in Prostate Cancer.Int J Mol Sci. 2019 Jun 12;20(12):2852. doi: 10.3390/ijms20122852.
758 Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer.Cancers (Basel). 2019 Mar 14;11(3):364. doi: 10.3390/cancers11030364.
759 Identification and characterization of the novel human prostate cancer-specific PC-1 gene promoter.Biochem Biophys Res Commun. 2007 May 25;357(1):8-13. doi: 10.1016/j.bbrc.2007.02.153. Epub 2007 Mar 7.
760 Enhanced anti-tumor activity of the Multi-Leu peptide PACE4 inhibitor transformed into an albumin-bound tumor-targeting prodrug.Sci Rep. 2019 Feb 14;9(1):2118. doi: 10.1038/s41598-018-37568-6.
761 The Immune Landscape of Prostate Cancer and Nomination of PD-L2 as a Potential Therapeutic Target.J Natl Cancer Inst. 2019 Mar 1;111(3):301-310. doi: 10.1093/jnci/djy141.
762 Identification of zinc finger protein of the cerebellum 5 as a survival factor of prostate and colorectal cancer cells.Cancer Sci. 2017 Dec;108(12):2405-2412. doi: 10.1111/cas.13419. Epub 2017 Oct 25.
763 Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer.Neoplasia. 2010 Oct;12(10):826-36. doi: 10.1593/neo.10586.
764 Tumor suppressor RKIP inhibits prostate cancer cell metastasis and sensitizes prostate cancer cells to docetaxel treatment.Neoplasma. 2018;65(2):228-233. doi: 10.4149/neo_2018_170203N72.
765 Inactivation of the Wnt/-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2.Cancer Cell Int. 2019 Oct 21;19:271. doi: 10.1186/s12935-019-0977-9. eCollection 2019.
766 Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins.Lab Chip. 2017 Jan 31;17(3):484-489. doi: 10.1039/c6lc01238h.
767 MicroRNA-488 inhibits proliferation and glycolysis in human prostate cancer cells by regulating PFKFB3.FEBS Open Bio. 2019 Oct;9(10):1798-1807. doi: 10.1002/2211-5463.12718. Epub 2019 Aug 22.
768 Inhibition of stromal PlGF suppresses the growth of prostate cancer xenografts.Int J Mol Sci. 2013 Sep 3;14(9):17958-71. doi: 10.3390/ijms140917958.
769 c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer.Oncotarget. 2016 Nov 15;7(46):75585-75602. doi: 10.18632/oncotarget.12310.
770 Sox7 negatively regulates prostate-specific membrane antigen (PSMA) expression through PSMA-enhancer.Prostate. 2019 Mar;79(4):370-378. doi: 10.1002/pros.23743. Epub 2018 Nov 28.
771 Pim-2 Cooperates with Downstream Factor XIAP to Inhibit Apoptosis and Intensify Malignant Grade in Prostate Cancer.Pathol Oncol Res. 2019 Jan;25(1):341-348. doi: 10.1007/s12253-017-0353-9. Epub 2017 Nov 9.
772 Small Molecule Pin1 Inhibitor Blocking NF-B Signaling in Prostate Cancer Cells.Chem Asian J. 2018 Feb 2;13(3):275-279. doi: 10.1002/asia.201701216. Epub 2018 Jan 15.
773 Mutational analysis of PINX1 in hereditary prostate cancer.Prostate. 2004 Sep 1;60(4):298-302. doi: 10.1002/pros.20075.
774 The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1/pAKT in prostate cancer.Int J Cancer. 2020 Mar 15;146(6):1686-1699. doi: 10.1002/ijc.32607. Epub 2019 Aug 16.
775 The endocrine-gland-derived vascular endothelial growth factor (EG-VEGF)/prokineticin 1 and 2 and receptor expression in human prostate: Up-regulation of EG-VEGF/prokineticin 1 with malignancy.Endocrinology. 2006 Sep;147(9):4245-51. doi: 10.1210/en.2006-0614. Epub 2006 Jun 8.
776 The protein kinase C super-family member PKN is regulated by mTOR and influences differentiation during prostate cancer progression.Prostate. 2017 Nov;77(15):1452-1467. doi: 10.1002/pros.23400. Epub 2017 Sep 6.
777 Secretory phospholipase A2-IIa is a target gene of the HER/HER2-elicited pathway and a potential plasma biomarker for poor prognosis of prostate cancer.Prostate. 2012 Jul 1;72(10):1140-9. doi: 10.1002/pros.22463. Epub 2011 Nov 29.
778 AKT and cytosolic phospholipase A2 form a positive loop in prostate cancer cells.Curr Cancer Drug Targets. 2015;15(9):781-91. doi: 10.2174/1568009615666150706103234.
779 Validation of Novel Biomarkers for Prostate Cancer Progression by the Combination of Bioinformatics, Clinical and Functional Studies.PLoS One. 2016 May 19;11(5):e0155901. doi: 10.1371/journal.pone.0155901. eCollection 2016.
780 Diverse effects of phospholipase A2 receptor expression on LNCaP and PC-3 prostate cancer cell growth in vitro and in vivo.Oncotarget. 2018 Nov 13;9(89):35983-35996. doi: 10.18632/oncotarget.26316. eCollection 2018 Nov 13.
781 Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy.J Control Release. 2011 Feb 10;149(3):314-22. doi: 10.1016/j.jconrel.2010.10.030. Epub 2010 Nov 1.
782 Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation.Br J Cancer. 2018 Jan;118(2):189-199. doi: 10.1038/bjc.2017.391. Epub 2017 Nov 14.
783 Phospholipase D2 in prostate cancer: protein expression changes with Gleason score.Br J Cancer. 2019 Dec;121(12):1016-1026. doi: 10.1038/s41416-019-0610-7. Epub 2019 Nov 1.
784 Phase 1/2 Dose-Escalation Study of the Use of Intensity Modulated Radiation Therapy to Treat the Prostate and Pelvic Nodes in Patients With Prostate Cancer.Int J Radiat Oncol Biol Phys. 2017 Dec 1;99(5):1234-1242. doi: 10.1016/j.ijrobp.2017.07.041. Epub 2017 Aug 2.
785 Implication of DNA repair genes in prostate tumourigenesis in Indian males.Indian J Med Res. 2012 Oct;136(4):622-32.
786 Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 2012 Jan 17;106(2):405-13.
787 Understanding the loss-of-function in a triple missense mutant of DNA polymerase found in prostate cancer.Int J Oncol. 2013 Oct;43(4):1131-40. doi: 10.3892/ijo.2013.2022. Epub 2013 Jul 19.
788 Overexpression of Periostin in Tumor Biopsy Samples Is Associated With Prostate Cancer Phenotype and Clinical Outcome.Clin Genitourin Cancer. 2018 Dec;16(6):e1257-e1265. doi: 10.1016/j.clgc.2018.07.019. Epub 2018 Jul 29.
789 Induction of apoptosis in prostate cancer by ginsenoside Rh2.Oncotarget. 2018 Jan 27;9(13):11109-11118. doi: 10.18632/oncotarget.24326. eCollection 2018 Feb 16.
790 Does the PGC-1/PPARgamma pathway play a role in Com-1/p8 mediated cell growth inhibition in prostate cancer?.Int J Mol Med. 2006 Dec;18(6):1169-75.
791 FKBP51 and Cyp40 are positive regulators of androgen-dependent prostate cancer cell growth and the targets of FK506 and cyclosporin A.Oncogene. 2010 Mar 18;29(11):1691-701. doi: 10.1038/onc.2009.458. Epub 2009 Dec 21.
792 PPM1A is a RelA phosphatase with tumor suppressor-like activity.Oncogene. 2014 May 29;33(22):2918-27. doi: 10.1038/onc.2013.246. Epub 2013 Jul 1.
793 Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model.Br J Cancer. 2014 Apr 15;110(8):2000-10. doi: 10.1038/bjc.2014.141. Epub 2014 Mar 18.
794 Expression of microRNA-99a-3p in Prostate Cancer Based on Bioinformatics Data and Meta-Analysis of a Literature Review of 965 Cases.Med Sci Monit. 2018 Jul 12;24:4807-4822. doi: 10.12659/MSM.908057.
795 Antitumor effects of oncolytic adenovirus armed with PSA-IZ-CD40L fusion gene against prostate cancer.Gene Ther. 2014 Aug;21(8):723-31. doi: 10.1038/gt.2014.46. Epub 2014 May 22.
796 Overexpressing PKIB in prostate cancer promotes its aggressiveness by linking between PKA and Akt pathways.Oncogene. 2009 Aug 13;28(32):2849-59. doi: 10.1038/onc.2009.144. Epub 2009 Jun 1.
797 Two novel PRKCI polymorphisms and prostate cancer risk in an Eastern Chinese Han population.Mol Carcinog. 2015 Aug;54(8):632-41. doi: 10.1002/mc.22130. Epub 2014 Feb 10.
798 PKC facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model.Oncogene. 2019 May;38(22):4215-4231. doi: 10.1038/s41388-019-0722-9. Epub 2019 Jan 31.
799 Protein kinase Ds promote tumor angiogenesis through mast cell recruitment and expression of angiogenic factors in prostate cancer microenvironment.J Exp Clin Cancer Res. 2019 Mar 6;38(1):114. doi: 10.1186/s13046-019-1118-y.
800 Low Preoperative Prolactin Levels Predict Non-Organ Confined Prostate Cancer in Clinically Localized Disease.Urol Int. 2019;103(4):391-399. doi: 10.1159/000496833. Epub 2019 Feb 14.
801 PRMT5 prognostic value in cancer.Oncotarget. 2019 May 7;10(34):3151-3153. doi: 10.18632/oncotarget.26883. eCollection 2019 May 7.
802 Exploitation of CD133 for the Targeted Imaging of Lethal Prostate Cancer.Clin Cancer Res. 2020 Mar 1;26(5):1054-1064. doi: 10.1158/1078-0432.CCR-19-1659. Epub 2019 Nov 15.
803 Regulation of prostasin expression and function in the prostate.Prostate. 2004 Apr 1;59(1):1-12. doi: 10.1002/pros.10346.
804 Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone.Cancer Res. 2017 Jun 15;77(12):3144-3150. doi: 10.1158/0008-5472.CAN-16-0708. Epub 2017 Apr 20.
805 A PSCA/PGRN-NF-B-Integrin-4 Axis Promotes Prostate Cancer Cell Adhesion to Bone Marrow Endothelium and Enhances Metastatic Potential.Mol Cancer Res. 2020 Mar;18(3):501-513. doi: 10.1158/1541-7786.MCR-19-0278. Epub 2019 Nov 13.
806 Differential expression of the pS2 protein in the human prostate and prostate cancer: association with premalignant changes and neuroendocrine differentiation.Hum Pathol. 1995 Aug;26(8):824-8. doi: 10.1016/0046-8177(95)90002-0.
807 Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5.FEBS Lett. 2020 Feb;594(3):466-476. doi: 10.1002/1873-3468.13624. Epub 2019 Oct 7.
808 Correlation of Gankyrin oncoprotein overexpression with histopathological grade in prostate cancer.Neoplasma. 2017;64(5):732-737. doi: 10.4149/neo_2017_511.
809 PAFR selectively mediates radioresistance and irradiation-induced autophagy suppression in prostate cancer cells.Oncotarget. 2017 Feb 21;8(8):13846-13854. doi: 10.18632/oncotarget.14647.
810 The RNA-binding protein FXR1 modulates prostate cancer progression by regulating FBXO4.Funct Integr Genomics. 2019 May;19(3):487-496. doi: 10.1007/s10142-019-00661-8. Epub 2019 Feb 11.
811 Synthesis and evaluation of (18)F-labeled CJ-042794 for imaging prostanoid EP4 receptor expression in cancer with positron emission tomography.Bioorg Med Chem Lett. 2017 May 15;27(10):2094-2098. doi: 10.1016/j.bmcl.2017.03.078. Epub 2017 Mar 27.
812 Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b(+)Gr1(+)MDSCs from bone marrow.Biomed Pharmacother. 2020 Jan;121:109581. doi: 10.1016/j.biopha.2019.109581. Epub 2019 Nov 10.
813 Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.Cancer Lett. 2019 Jan;440-441:35-46. doi: 10.1016/j.canlet.2018.10.004. Epub 2018 Oct 9.
814 Piperine depresses the migration progression via downregulating the Akt/mTOR/MMP? signaling pathway in DU145 cells.Mol Med Rep. 2018 May;17(5):6363-6370. doi: 10.3892/mmr.2018.8653. Epub 2018 Feb 28.
815 Vemurafenib Inhibits Active PTK6 in PTEN-null Prostate Tumor Cells.Mol Cancer Ther. 2019 May;18(5):937-946. doi: 10.1158/1535-7163.MCT-18-0862. Epub 2019 Mar 29.
816 Analysis of stromal-epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene.Cancer Lett. 2002 Jan 10;175(1):63-9. doi: 10.1016/s0304-3835(01)00703-0.
817 Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells.Clin Exp Metastasis. 2012 Apr;29(4):349-58. doi: 10.1007/s10585-012-9455-7. Epub 2012 Jan 25.
818 Mechanistic insights into Nav1.7-dependent regulation of rat prostate cancer cell invasiveness revealed by toxin probes and proteomic analysis.FEBS J. 2019 Jul;286(13):2549-2561. doi: 10.1111/febs.14823. Epub 2019 Apr 5.
819 Prognostic relevance of increased Rac GTPase expression in prostate carcinomas.Endocr Relat Cancer. 2007 Jun;14(2):245-56. doi: 10.1677/ERC-06-0036.
820 Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India.Prostate. 2015 Jul 1;75(10):1051-62. doi: 10.1002/pros.22989. Epub 2015 Mar 23.
821 RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia. 2010 Dec;12(12):1003-12.
822 Gene promoter methylation and cancer: An umbrella review.Gene. 2019 Aug 20;710:333-340. doi: 10.1016/j.gene.2019.06.023. Epub 2019 Jun 13.
823 The miR-96 and RAR signaling axis governs androgen signaling and prostate cancer progression.Oncogene. 2019 Jan;38(3):421-444. doi: 10.1038/s41388-018-0450-6. Epub 2018 Aug 17.
824 Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes.Sci Rep. 2016 Apr 22;6:24922. doi: 10.1038/srep24922.
825 Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors.BMC Cancer. 2004 Aug 4;4:43. doi: 10.1186/1471-2407-4-43.
826 RGS12 Is a Novel Tumor-Suppressor Gene in African American Prostate Cancer That Represses AKT and MNX1 Expression. Cancer Res. 2017 Aug 15;77(16):4247-4257.
827 Analysis of regulator of G-protein signalling 2 (RGS2) expression and function during prostate cancer progression.Sci Rep. 2018 Nov 22;8(1):17259. doi: 10.1038/s41598-018-35332-4.
828 RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy.Oncotarget. 2017 Jan 24;8(4):5774-5788. doi: 10.18632/oncotarget.14391.
829 Tissue transglutaminase interacts with protein kinase A anchor protein 13 in prostate cancer.Urol Oncol. 2005 Nov-Dec;23(6):407-12. doi: 10.1016/j.urolonc.2005.04.002.
830 RNF7 knockdown inhibits prostate cancer tumorigenesis by inactivation of ERK1/2 pathway.Sci Rep. 2017 Mar 2;7:43683. doi: 10.1038/srep43683.
831 ROBO1, a tumor suppressor and critical molecular barrier for localized tumor cells to acquire invasive phenotype: study in African-American and Caucasian prostate cancer models.Int J Cancer. 2014 Dec 1;135(11):2493-506. doi: 10.1002/ijc.28919. Epub 2014 Apr 29.
832 Robo 4 - the double-edged sword in prostate cancer: impact on cancer cell aggressiveness and tumor vasculature.Int J Med Sci. 2019 Jan 1;16(1):115-124. doi: 10.7150/ijms.28735. eCollection 2019.
833 Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase.Oncogene. 2010 Apr 8;29(14):2036-46. doi: 10.1038/onc.2009.496. Epub 2010 Jan 18.
834 Association study of Retinoic Acid Related Orphan Receptor A (RORA) gene and risk of prostate disorders.Urol J. 2019 May 5;16(2):141-144. doi: 10.22037/uj.v0i0.4373.
835 High RSF1 protein expression is an independent prognostic feature in prostate cancer.Acta Oncol. 2020 Mar;59(3):268-273. doi: 10.1080/0284186X.2019.1686537. Epub 2019 Nov 5.
836 RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer.J Transl Med. 2019 Apr 15;17(1):125. doi: 10.1186/s12967-019-1878-3.
837 Cell fate regulation by reticulon-4 in human prostate cancers.J Cell Physiol. 2019 Jul;234(7):10372-10385. doi: 10.1002/jcp.27704. Epub 2018 Nov 27.
838 Decreased retinoid X receptor-alpha protein expression in basal cells occurs in the early stage of human prostate cancer development.Cancer Epidemiol Biomarkers Prev. 2004 Mar;13(3):383-90.
839 Promoter hyper-methylation of calcium binding proteins S100A6 and S100A2 in human prostate cancer.Prostate. 2005 Dec 1;65(4):322-30. doi: 10.1002/pros.20302.
840 Loss of Sun2 promotes the progression of prostate cancer by regulating fatty acid oxidation.Oncotarget. 2017 Jul 12;8(52):89620-89630. doi: 10.18632/oncotarget.19210. eCollection 2017 Oct 27.
841 Expression profiles of voltage-gated Na(+) channel alpha-subunit genes in rat and human prostate cancer cell lines.Prostate. 2001 Aug 1;48(3):165-78. doi: 10.1002/pros.1095.
842 Anti-metastatic effect of ranolazine in an in vivo rat model of prostate cancer, and expression of voltage-gated sodium channel protein in human prostate.Prostate Cancer Prostatic Dis. 2019 Dec;22(4):569-579. doi: 10.1038/s41391-019-0128-3. Epub 2019 Mar 20.
843 Aberrant presentation of HPA-reactive carbohydrates implies Selectin-independent metastasis formation in human prostate cancer.Clin Cancer Res. 2014 Apr 1;20(7):1791-802. doi: 10.1158/1078-0432.CCR-13-2308. Epub 2014 Feb 13.
844 Decreased semaphorin 3A expression is associated with a poor prognosis in patients with epithelial ovarian carcinoma.Int J Mol Med. 2015 May;35(5):1374-80. doi: 10.3892/ijmm.2015.2142. Epub 2015 Mar 17.
845 Proteomics approach to identify novel metastatic bone markers from the secretome of PC-3 prostate cancer cells.Electrophoresis. 2017 Oct;38(20):2638-2645. doi: 10.1002/elps.201700052. Epub 2017 Jul 10.
846 Maspin expression profile in human prostate cancer (CaP) and in vitro induction of Maspin expression by androgen ablation.Clin Cancer Res. 2002 May;8(5):1172-7.
847 Decreased expression of serine protease inhibitor family G1 (SERPING1) in prostate cancer can help distinguish high-risk prostate cancer and predicts malignant progression.Urol Oncol. 2018 Aug;36(8):366.e1-366.e9. doi: 10.1016/j.urolonc.2018.05.021. Epub 2018 Jun 19.
848 Histone Methyltransferase Setd7 Regulates Nrf2 Signaling Pathway by Phenethyl Isothiocyanate and Ursolic Acid in Human Prostate Cancer Cells.Mol Nutr Food Res. 2018 Sep;62(18):e1700840. doi: 10.1002/mnfr.201700840. Epub 2018 Mar 6.
849 Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer.Transl Res. 2019 Oct;212:89-103. doi: 10.1016/j.trsl.2019.07.001. Epub 2019 Jul 9.
850 SFRP4 gene expression is increased in aggressive prostate cancer.Sci Rep. 2017 Oct 27;7(1):14276. doi: 10.1038/s41598-017-14622-3.
851 Human SP-D Acts as an Innate Immune Surveillance Molecule Against Androgen-Responsive and Androgen-Resistant Prostate Cancer Cells.Front Oncol. 2019 Jul 11;9:565. doi: 10.3389/fonc.2019.00565. eCollection 2019.
852 Overexpression of shugoshin1 predicts a poor prognosis for prostate cancer and promotes metastasis by affecting epithelial-mesenchymal transition.Onco Targets Ther. 2019 Feb 8;12:1111-1118. doi: 10.2147/OTT.S191157. eCollection 2019.
853 Olfactomedin 4 deficiency promotes prostate neoplastic progression and is associated with upregulation of the hedgehog-signaling pathway.Sci Rep. 2015 Nov 19;5:16974. doi: 10.1038/srep16974.
854 Anisamide-functionalized pH-responsive amphiphilic chitosan-based paclitaxel micelles for sigma-1 receptor targeted prostate cancer treatment.Carbohydr Polym. 2020 Feb 1;229:115498. doi: 10.1016/j.carbpol.2019.115498. Epub 2019 Oct 21.
855 SIRT1 Modulates the Sensitivity of Prostate Cancer Cells to Vesicular Stomatitis Virus Oncolysis.J Virol. 2019 Jul 17;93(15):e00626-19. doi: 10.1128/JVI.00626-19. Print 2019 Aug 1.
856 Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes.BMC Cancer. 2017 Dec 20;17(1):874. doi: 10.1186/s12885-017-3853-9.
857 SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/-catenin pathway.Exp Cell Res. 2018 Mar 15;364(2):143-151. doi: 10.1016/j.yexcr.2018.01.036. Epub 2018 Feb 6.
858 High Skp2 expression is associated with a mesenchymal phenotype and increased tumorigenic potential of prostate cancer cells.Sci Rep. 2019 Apr 5;9(1):5695. doi: 10.1038/s41598-019-42131-y.
859 MCT4 promotes cell proliferation and invasion of castration-resistant prostate cancer PC-3 cell line.EXCLI J. 2019 Mar 21;18:187-194. doi: 10.17179/excli2018-1879. eCollection 2019.
860 Circular RNA Expression Profiling Identifies Prostate Cancer- Specific circRNAs in Prostate Cancer.Cell Physiol Biochem. 2018;50(5):1903-1915. doi: 10.1159/000494870. Epub 2018 Nov 5.
861 Correlation between (18)F-1-amino-3-fluorocyclobutane-1-carboxylic acid ((18)F-fluciclovine) uptake and expression of alanine-serine-cysteine-transporter 2 (ASCT2) and L-type amino acid transporter 1 (LAT1) in primary prostate cancer.EJNMMI Res. 2019 May 31;9(1):50. doi: 10.1186/s13550-019-0518-5.
862 Protein expression information of prostate infection based on data mining.J Infect Public Health. 2020 Oct;13(10):1533-1536. doi: 10.1016/j.jiph.2019.07.019. Epub 2019 Aug 14.
863 Pharmacology and new perspectives of angiotensin II receptor blocker in prostate cancer treatment.Int J Urol. 2008 Jan;15(1):19-26. doi: 10.1111/j.1442-2042.2007.01937.x.
864 Polymorphisms in XPC gene and risk for prostate cancer.Mol Biol Rep. 2019 Feb;46(1):1117-1125. doi: 10.1007/s11033-018-4572-2. Epub 2018 Dec 14.
865 Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population.Prostate. 2005 Aug 1;64(3):246-52. doi: 10.1002/pros.20241.
866 The Discovery and Preclinical Development of ASG-5ME, an Antibody-Drug Conjugate Targeting SLC44A4-Positive Epithelial Tumors Including Pancreatic and Prostate Cancer.Mol Cancer Ther. 2016 Nov;15(11):2679-2687. doi: 10.1158/1535-7163.MCT-16-0225. Epub 2016 Aug 22.
867 Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer.Gene Ther. 2016 Apr;23(4):357-68. doi: 10.1038/gt.2016.5. Epub 2016 Jan 27.
868 Overall survival of high-risk prostate cancer patients who received neoadjuvant chemohormonal therapy followed by radical prostatectomy at a single institution.Int J Clin Oncol. 2017 Dec;22(6):1087-1093. doi: 10.1007/s10147-017-1160-8. Epub 2017 Jul 5.
869 Extracellular redox state shift: A novel approach to target prostate cancer invasion.Free Radic Biol Med. 2018 Mar;117:99-109. doi: 10.1016/j.freeradbiomed.2018.01.023. Epub 2018 Feb 2.
870 SLCO4C1 promoter methylation is a potential biomarker for prognosis associated with biochemical recurrence-free survival after radical prostatectomy.Clin Epigenetics. 2019 Jul 9;11(1):99. doi: 10.1186/s13148-019-0693-2.
871 The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer.Oncogene. 2010 Sep 30;29(39):5370-80. doi: 10.1038/onc.2010.269. Epub 2010 Jul 12.
872 BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer.J Cell Physiol. 2019 Sep;234(9):15194-15205. doi: 10.1002/jcp.28161. Epub 2019 Jan 22.
873 Time on androgen deprivation therapy and adaptations to exercise: secondary analysis from a 12-month randomized controlled trial in men with prostate cancer.BJU Int. 2018 Feb;121(2):194-202. doi: 10.1111/bju.14008. Epub 2017 Sep 22.
874 miR-221-5p enhances cell proliferation and metastasis through post-transcriptional regulation of SOCS1 in human prostate cancer.BMC Urol. 2018 Mar 5;18(1):14. doi: 10.1186/s12894-018-0325-8.
875 The Immunohistochemical Analysis of SOCS3 Protein Identifies a Subgroup of Prostatic Cancer Biopsies With Aggressive Behavior.Appl Immunohistochem Mol Morphol. 2018 May/Jun;26(5):324-329. doi: 10.1097/PAI.0000000000000438.
876 Sorbitol dehydrogenase expression is regulated by androgens in the human prostate.Oncol Rep. 2010 May;23(5):1233-9. doi: 10.3892/or_00000755.
877 SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer.Lab Invest. 2020 Apr;100(4):570-582. doi: 10.1038/s41374-019-0343-5. Epub 2019 Nov 26.
878 Secreted protein acidic and rich in cysteine (SPARC) induces epithelial-mesenchymal transition, enhancing migration and invasion, and is associated with high Gleason score in prostate cancer.Asian J Androl. 2019 Nov-Dec;21(6):557-564. doi: 10.4103/aja.aja_23_19.
879 Correlation of Sprouty1 and Jagged1 with aggressive prostate cancer cells with different sensitivities to androgen deprivation.J Cell Biochem. 2014 Sep;115(9):1505-15. doi: 10.1002/jcb.24805.
880 Inverse Regulation of DHT Synthesis Enzymes 5-Reductase Types 1 and 2 by the Androgen Receptor in Prostate Cancer.Endocrinology. 2017 Apr 1;158(4):1015-1021. doi: 10.1210/en.2016-1926.
881 Boosting Interleukin-12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGR-Tagged Nanogold.Small. 2019 Nov;15(45):e1903462. doi: 10.1002/smll.201903462. Epub 2019 Sep 16.
882 Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis.Int J Oncol. 2009 Feb;34(2):425-31.
883 Estrogens Modulate Somatostatin Receptors Expression and Synergize With the Somatostatin Analog Pasireotide in Prostate Cells.Front Pharmacol. 2019 Feb 15;10:28. doi: 10.3389/fphar.2019.00028. eCollection 2019.
884 Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer.Prostate. 2017 Nov;77(15):1499-1511. doi: 10.1002/pros.23426. Epub 2017 Sep 14.
885 Neuroendocrine differentiation of prostate cancer leads to PSMA suppression.Endocr Relat Cancer. 2018 Nov 23;26(2):131-146. doi: 10.1530/ERC-18-0226.
886 Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase.Oncogene. 2019 Jul;38(28):5580-5598. doi: 10.1038/s41388-019-0833-3. Epub 2019 May 31.
887 INSPstI polymorphism and prostate cancer in African-American men.Prostate. 2005 Sep 15;65(1):83-7. doi: 10.1002/pros.20271.
888 Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancer.Cancer Sci. 2009 May;100(5):914-9. doi: 10.1111/j.1349-7006.2009.01117.x. Epub 2009 Feb 26.
889 Inhibition of mouse RM-1 prostate cancer and B16F10 melanoma by the fusion protein of HSP65 & STEAP1 (186-193).Biomed Pharmacother. 2019 Mar;111:1124-1131. doi: 10.1016/j.biopha.2019.01.012. Epub 2019 Jan 12.
890 STEAP2 is down-regulated in breast cancer tissue and suppresses PI3K/AKT signaling and breast cancer cell invasion in vitro and in vivo.Cancer Biol Ther. 2020;21(3):278-291. doi: 10.1080/15384047.2019.1685290. Epub 2019 Nov 7.
891 Downregulation of NDR1 contributes to metastasis of prostate cancer cells via activating epithelial-mesenchymal transition.Cancer Med. 2018 Jul;7(7):3200-3212. doi: 10.1002/cam4.1532. Epub 2018 May 7.
892 Androgens induce expression of SPAK, a STE20/SPS1-related kinase, in LNCaP human prostate cancer cells.Mol Cell Endocrinol. 2001 Sep;182(2):181-92. doi: 10.1016/s0303-7207(01)00560-3.
893 Mapping the STK4/Hippo signaling network in prostate cancer cell.PLoS One. 2017 Sep 7;12(9):e0184590. doi: 10.1371/journal.pone.0184590. eCollection 2017.
894 Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer.Cancer Sci. 2009 Nov;100(11):2109-14. doi: 10.1111/j.1349-7006.2009.01277.x. Epub 2009 Jul 7.
895 Metformin inhibits SUV39H1-mediated migration of prostate cancer cells.Oncogenesis. 2017 May 1;6(5):e324. doi: 10.1038/oncsis.2017.28.
896 Overexpression of TACC3 is correlated with tumor aggressiveness and poor prognosis in prostate cancer.Biochem Biophys Res Commun. 2017 May 13;486(4):872-878. doi: 10.1016/j.bbrc.2017.03.090. Epub 2017 Mar 20.
897 Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis.Biochem Biophys Res Commun. 2012 May 25;422(1):146-51. doi: 10.1016/j.bbrc.2012.04.126. Epub 2012 Apr 30.
898 Emerging immunotherapeutic strategies targeting telomerases in genitourinary tumors.Crit Rev Oncol Hematol. 2018 Nov;131:1-6. doi: 10.1016/j.critrevonc.2018.07.008. Epub 2018 Aug 1.
899 Reversal of epigenetic silencing of AP-2alpha results in increased zinc uptake in DU-145 and LNCaP prostate cancer cells.Carcinogenesis. 2011 Dec;32(12):1773-81. doi: 10.1093/carcin/bgr212. Epub 2011 Sep 22.
900 Validation of SE-EPI-based T2 mapping for characterization of prostate cancer: a new method compared with the traditional CPMG method.Abdom Radiol (NY). 2019 Oct;44(10):3432-3440. doi: 10.1007/s00261-019-02105-0.
901 Ethnic differences in TGF-signaling pathway may contribute to prostate cancer health disparity.Carcinogenesis. 2018 Apr 5;39(4):546-555. doi: 10.1093/carcin/bgy020.
902 -Tocopherol inhibits human prostate cancer cell proliferation by up-regulation of transglutaminase 2 and down-regulation of cyclins.Amino Acids. 2013 Jan;44(1):45-51. doi: 10.1007/s00726-012-1278-y. Epub 2012 Mar 30.
903 Detection of Loss of Heterozygosity (LOH) Using Circulating Cell-free DNA (cfDNA) by Fluorescence-based Multiplex PCR for Identification of Patients With Prostate Cancer.Appl Immunohistochem Mol Morphol. 2018 Nov/Dec;26(10):749-759. doi: 10.1097/PAI.0000000000000514.
904 The combination of AroCell TK 210 ELISA with Prostate Health Index or prostate-specific antigen density can improve the ability to differentiate prostate cancer from noncancerous conditions.Prostate. 2019 Jun;79(8):856-863. doi: 10.1002/pros.23791. Epub 2019 Mar 19.
905 Transketolase like 1 (TKTL1) expression alterations in prostate cancer tumorigenesis.Urol Oncol. 2018 Oct;36(10):472.e21-472.e27. doi: 10.1016/j.urolonc.2018.06.010. Epub 2018 Aug 16.
906 Genetic variation in the toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk.Int J Cancer. 2008 Dec 1;123(11):2644-50. doi: 10.1002/ijc.23826.
907 CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer.Clin Cancer Res. 2007 Dec 1;13(23):6947-58. doi: 10.1158/1078-0432.CCR-07-0842.
908 Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carc... Am J Pathol. 2003 Aug;163(2):543-52.
909 Identification of a novel cell death receptor mediating IGFBP-3-induced anti-tumor effects in breast and prostate cancer.J Biol Chem. 2010 Sep 24;285(39):30233-46. doi: 10.1074/jbc.M110.122226. Epub 2010 Mar 30.
910 Inhibition of the RANK/RANKL signaling with osteoprotegerin prevents castration-induced acceleration of bone metastasis in castration-insensitive prostate cancer.Cancer Lett. 2017 Jul 1;397:103-110. doi: 10.1016/j.canlet.2017.03.034. Epub 2017 Mar 31.
911 Biofluid quantification of TWEAK/Fn14 axis in combination with a selected biomarker panel improves assessment of prostate cancer aggressiveness.J Transl Med. 2019 Sep 9;17(1):307. doi: 10.1186/s12967-019-2053-6.
912 Intratumoral STING Activation with T-cell Checkpoint Modulation Generates Systemic Antitumor Immunity.Cancer Immunol Res. 2017 Aug;5(8):676-684. doi: 10.1158/2326-6066.CIR-17-0049. Epub 2017 Jul 3.
913 Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.PLoS One. 2015 May 7;10(5):e0126270. doi: 10.1371/journal.pone.0126270. eCollection 2015.
914 Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation.Cancer Lett. 2019 Feb 28;443:80-90. doi: 10.1016/j.canlet.2018.11.013. Epub 2018 Nov 22.
915 Np63 Transcriptionally Regulates the Expression of CTEN That Is Associated with Prostate Cell Adhesion.PLoS One. 2016 Jan 19;11(1):e0147542. doi: 10.1371/journal.pone.0147542. eCollection 2016.
916 53BP1/RIF1 signaling promotes cell survival after multifractionated radiotherapy.Nucleic Acids Res. 2020 Feb 20;48(3):1314-1326. doi: 10.1093/nar/gkz1139.
917 Therapeutic effects of human monoclonal PSMA antibody-mediated TRIM24 siRNA delivery in PSMA-positive castration-resistant prostate cancer.Theranostics. 2019 Feb 7;9(5):1247-1263. doi: 10.7150/thno.29884. eCollection 2019.
918 TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression.Nat Commun. 2018 Nov 27;9(1):5007. doi: 10.1038/s41467-018-07475-5.
919 REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells.Oncogene. 2003 May 15;22(19):2920-5. doi: 10.1038/sj.onc.1206397.
920 Genetic polymorphisms of estrogen receptors alpha and beta and the risk of developing prostate cancer.PLoS One. 2009 Aug 5;4(8):e6523. doi: 10.1371/journal.pone.0006523.
921 Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis.Cancers (Basel). 2019 Jul 8;11(7):956. doi: 10.3390/cancers11070956.
922 Receptor-coupled, DAG-gated Ca2+-permeable cationic channels in LNCaP human prostate cancer epithelial cells.J Physiol. 2003 May 1;548(Pt 3):823-36. doi: 10.1113/jphysiol.2002.036772.
923 TRPM2 mediates distruption of autophagy machinery and correlates with the grade level in prostate cancer.J Cancer Res Clin Oncol. 2019 May;145(5):1297-1311. doi: 10.1007/s00432-019-02898-z. Epub 2019 Mar 19.
924 TGF-induced epithelial-to-mesenchymal transition in prostate cancer cells is mediated via TRPM7 expression.Mol Carcinog. 2018 Jun;57(6):752-761. doi: 10.1002/mc.22797. Epub 2018 Mar 15.
925 ADP-Ribose and oxidative stress activate TRPM8 channel in prostate cancer and kidney cells.Sci Rep. 2019 Mar 11;9(1):4100. doi: 10.1038/s41598-018-37552-0.
926 Natural product-drug conjugates for modulation of TRPV1-expressing tumors.Bioorg Med Chem. 2019 Jun 15;27(12):2531-2536. doi: 10.1016/j.bmc.2019.03.025. Epub 2019 Mar 13.
927 Structure-Based Discovery of a Subtype-Selective Inhibitor Targeting a Transient Receptor Potential Vanilloid Channel.J Med Chem. 2019 Feb 14;62(3):1373-1384. doi: 10.1021/acs.jmedchem.8b01496. Epub 2019 Jan 16.
928 Reduction of TSG101 protein has a negative impact on tumor cell growth.Int J Cancer. 2004 Apr 20;109(4):541-7. doi: 10.1002/ijc.20014.
929 Silencing TTK expression inhibits the proliferation and progression of prostate cancer.Exp Cell Res. 2019 Dec 1;385(1):111669. doi: 10.1016/j.yexcr.2019.111669. Epub 2019 Oct 9.
930 Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis.Prostate. 2019 May;79(6):647-656. doi: 10.1002/pros.23772. Epub 2019 Feb 3.
931 The Role of Genetic Variants in the Association between Dietary Acrylamide and Advanced Prostate Cancer in the Netherlands Cohort Study on Diet and Cancer.Nutr Cancer. 2018 May-Jun;70(4):620-631. doi: 10.1080/01635581.2018.1460682. Epub 2018 Apr 26.
932 c-Myc-driven glycolysis via TXNIP suppression is dependent on glutaminase-MondoA axis in prostate cancer.Biochem Biophys Res Commun. 2018 Oct 2;504(2):415-421. doi: 10.1016/j.bbrc.2018.08.069. Epub 2018 Aug 10.
933 Isolation, characterization, and bioactivities of compounds from Fuscoporia torulosa mushroom.J Food Biochem. 2019 Dec;43(12):e13074. doi: 10.1111/jfbc.13074. Epub 2019 Oct 10.
934 GAS6 receptor status is associated with dormancy and bone metastatic tumor formation.PLoS One. 2013 Apr 24;8(4):e61873. doi: 10.1371/journal.pone.0061873. Print 2013.
935 N-terminal truncation of Stat5a/b circumvents PIAS3-mediated transcriptional inhibition of Stat5 in prostate cancer cells.Int J Biochem Cell Biol. 2010 Dec;42(12):2037-46. doi: 10.1016/j.biocel.2010.09.008. Epub 2010 Sep 18.
936 Targeting the signalling pathways regulated by deubiquitinases for prostate cancer therapeutics.Cell Biochem Funct. 2019 Jul;37(5):304-319. doi: 10.1002/cbf.3401. Epub 2019 May 6.
937 Knockdown of UBE2T Inhibits Osteosarcoma Cell Proliferation, Migration, and Invasion by Suppressing the PI3K/Akt Signaling Pathway.Oncol Res. 2016;24(5):361-369. doi: 10.3727/096504016X14685034103310.
938 Proteotranscriptomic Measurements of E6-Associated Protein (E6AP) Targets in DU145 Prostate Cancer Cells.Mol Cell Proteomics. 2018 Jun;17(6):1170-1183. doi: 10.1074/mcp.RA117.000504. Epub 2018 Feb 20.
939 Polymorphisms of Estrogen Metabolism-Related Genes and Prostate Cancer Risk in Two Populations of African Ancestry.PLoS One. 2016 Apr 13;11(4):e0153609. doi: 10.1371/journal.pone.0153609. eCollection 2016.
940 Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression.Autophagy. 2017 Mar 4;13(3):506-521. doi: 10.1080/15548627.2016.1268300. Epub 2016 Dec 15.
941 Association of USP10 with G3BP2 Inhibits p53 Signaling and Contributes to Poor Outcome in Prostate Cancer.Mol Cancer Res. 2018 May;16(5):846-856. doi: 10.1158/1541-7786.MCR-17-0471. Epub 2018 Jan 29.
942 Inhibition of USP14 enhances the sensitivity of breast cancer to enzalutamide.J Exp Clin Cancer Res. 2019 May 24;38(1):220. doi: 10.1186/s13046-019-1227-7.
943 USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization.Mol Cells. 2019 Jan 31;42(1):17-27. doi: 10.14348/molcells.2018.0329. Epub 2019 Jan 2.
944 The combined effect of USP7 inhibitors and PARP inhibitors in hormone-sensitive and castration-resistant prostate cancer cells.Oncotarget. 2017 May 9;8(19):31815-31829. doi: 10.18632/oncotarget.16463.
945 Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer.Cancer Lett. 2020 Feb 28;471:72-87. doi: 10.1016/j.canlet.2019.12.017. Epub 2019 Dec 12.
946 Urotensin II receptor expression in prostate cancer patients: A new possible marker.Prostate. 2019 Feb;79(3):288-294. doi: 10.1002/pros.23734. Epub 2018 Nov 8.
947 Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-B/DNMT1 signaling pathway.Prostate. 2018 Jun;78(9):682-690. doi: 10.1002/pros.23512. Epub 2018 Mar 30.
948 VIP induces NF-B1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells.Cell Signal. 2015 Feb;27(2):236-44. doi: 10.1016/j.cellsig.2014.11.005. Epub 2014 Nov 15.
949 Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance.Histol Histopathol. 2012 Aug;27(8):1093-101. doi: 10.14670/HH-27.1093.
950 Androgen receptor induces EPHA3 expression by interacting with transcription factor SP1.Oncol Rep. 2018 Aug;40(2):1174-1184. doi: 10.3892/or.2018.6503. Epub 2018 Jun 18.
951 WEE1 epigenetically modulates 5-hmC levels by pY37-H2B dependent regulation of IDH2 gene expression.Oncotarget. 2017 Nov 10;8(63):106352-106368. doi: 10.18632/oncotarget.22374. eCollection 2017 Dec 5.
952 Validation of the prognostic value of NF-B p65 in prostate cancer: A retrospective study using a large multi-institutional cohort of the Canadian Prostate Cancer Biomarker Network.PLoS Med. 2019 Jul 2;16(7):e1002847. doi: 10.1371/journal.pmed.1002847. eCollection 2019 Jul.
953 Wnt5a induces and maintains prostate cancer cells dormancy in bone.J Exp Med. 2019 Feb 4;216(2):428-449. doi: 10.1084/jem.20180661. Epub 2018 Dec 28.
954 6-gene promoter methylation assay is potentially applicable for prostate cancer clinical staging based on urine collection following prostatic massage.Oncol Lett. 2019 Dec;18(6):6917-6925. doi: 10.3892/ol.2019.11015. Epub 2019 Oct 29.
955 Targeting the deubiquitinase STAMBPL1 triggers apoptosis in prostate cancer cells by promoting XIAP degradation.Cancer Lett. 2019 Aug 1;456:49-58. doi: 10.1016/j.canlet.2019.04.020. Epub 2019 Apr 17.
956 XPNPEP2 is associated with lymph node metastasis in prostate cancer patients.Sci Rep. 2019 Jul 11;9(1):10078. doi: 10.1038/s41598-019-45245-5.
957 Differential tissue expression of extracellular vesicle-derived proteins in prostate cancer.Prostate. 2019 Jun;79(9):1032-1042. doi: 10.1002/pros.23813. Epub 2019 Apr 24.
958 YAP1 Is Involved in Tumorigenic Properties of Prostate Cancer Cells.Pathol Oncol Res. 2020 Apr;26(2):867-876. doi: 10.1007/s12253-019-00634-z. Epub 2019 Mar 11.
959 MicroRNA-140 inhibit prostate cancer cell invasion and migration by targeting YES proto-oncogene 1.J Cell Biochem. 2020 Jan;121(1):482-488. doi: 10.1002/jcb.29231. Epub 2019 Jul 16.
960 Early Response Monitoring Following Radiation Therapy by Using [(18)F]FDG and [(11)C]Acetate PET in Prostate Cancer Xenograft Model with Metabolomics Corroboration.Molecules. 2017 Nov 10;22(11):1946. doi: 10.3390/molecules22111946.
961 Deletion of Interstitial Genes between TMPRSS2 and ERG Promotes Prostate Cancer Progression.Cancer Res. 2016 Apr 1;76(7):1869-81. doi: 10.1158/0008-5472.CAN-15-1911. Epub 2016 Feb 15.
962 Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression.Oncol Rep. 2016 Oct;36(4):2349-56. doi: 10.3892/or.2016.5018. Epub 2016 Aug 11.
963 Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression.Oncotarget. 2016 Sep 13;7(37):59589-59603. doi: 10.18632/oncotarget.10729.
964 Transcriptional regulatory networks in human lung adenocarcinoma.Mol Med Rep. 2012 Nov;6(5):961-6. doi: 10.3892/mmr.2012.1034. Epub 2012 Aug 14.
965 miRNA-30a functions as a tumor suppressor by downregulating cyclin E2 expression in castration-resistant prostate cancer.Mol Med Rep. 2016 Sep;14(3):2077-84. doi: 10.3892/mmr.2016.5469. Epub 2016 Jul 6.
966 Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer.Oncotarget. 2014 Feb 15;5(3):667-78. doi: 10.18632/oncotarget.1574.
967 Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression.BMC Cancer. 2014 Mar 5;14:154. doi: 10.1186/1471-2407-14-154.
968 [DTPA-(PABn)-Leu5]-des-acyl ghrelin(1-5) as a new carrier of radionuclides and potential precursor of radiopharmaceuticals.Nucl Med Commun. 2018 Feb;39(2):140-146. doi: 10.1097/MNM.0000000000000790.
969 Circadian clock genes and risk of fatal prostate cancer.Cancer Causes Control. 2015 Jan;26(1):25-33. doi: 10.1007/s10552-014-0478-z. Epub 2014 Nov 12.
970 Increased diacylglycerol kinase expression in human metastatic colon cancer cells augments Rho GTPase activity and contributes to enhanced invasion.BMC Cancer. 2014 Mar 19;14:208. doi: 10.1186/1471-2407-14-208.
971 Cytoplasmic accumulation of ELAVL1 is an independent predictor of biochemical recurrence associated with genomic instability in prostate cancer.Prostate. 2016 Feb 15;76(3):259-72. doi: 10.1002/pros.23120. Epub 2015 Nov 2.
972 miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin.Exp Cell Res. 2016 Nov 1;348(2):190-200. doi: 10.1016/j.yexcr.2016.09.021. Epub 2016 Sep 29.
973 MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7.Biochem Biophys Res Commun. 2016 Jan 15;469(3):633-8. doi: 10.1016/j.bbrc.2015.12.054. Epub 2015 Dec 15.
974 Knockdown of GPR137,G Protein-coupled receptor 137, Inhibits the Proliferation and Migration of Human Prostate Cancer Cells.Chem Biol Drug Des. 2016 May;87(5):704-13. doi: 10.1111/cbdd.12704. Epub 2016 Jan 17.
975 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.FASEB J. 2016 Jun;30(6):2360-9. doi: 10.1096/fj.201500076. Epub 2016 Mar 10.
976 Lack of expression of preproorexin and orexin receptors genes in human normal and prostate cancer cell lines.Folia Histochem Cytobiol. 2015;53(4):333-41. doi: 10.5603/fhc.a2015.0035.
977 Fine-mapping the 2q37 and 17q11.2-q22 loci for novel genes and sequence variants associated with a genetic predisposition to prostate cancer.Int J Cancer. 2015 May 15;136(10):2316-27. doi: 10.1002/ijc.29276. Epub 2014 Nov 8.
978 Expression of hepatocyte growth factor activator inhibitor-1 (HAI-1) gene in prostate cancer: clinical and biological significance.J BUON. 2014 Jan-Mar;19(1):215-20.
979 Ultrasound targeted microbubble destruction for novel dual targeting of HSP72 and HSC70 in prostate cancer.Asian Pac J Cancer Prev. 2014;15(3):1285-90. doi: 10.7314/apjcp.2014.15.3.1285.
980 Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer.Prostate. 2015 May;75(7):723-34. doi: 10.1002/pros.22954. Epub 2015 Feb 7.
981 DNA damage signalling barrier, oxidative stress and treatment-relevant DNA repair factor alterations during progression of human prostate cancer.Mol Oncol. 2016 Jun;10(6):879-94. doi: 10.1016/j.molonc.2016.02.005. Epub 2016 Mar 3.
982 SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination.Oncotarget. 2015 Jan 20;6(2):771-88. doi: 10.18632/oncotarget.2718.
983 Prostate cancer cell phenotypes based on AGR2 and CD10 expression.Mod Pathol. 2013 Jun;26(6):849-59. doi: 10.1038/modpathol.2012.238. Epub 2013 Jan 25.
984 Androgen-induced miR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy.Oncotarget. 2016 Aug 9;7(32):51284-51300. doi: 10.18632/oncotarget.9992.
985 Targeting epithelial to mesenchymal transition in prostate cancer by a novel compound, plectranthoic acid, isolated from Ficus microcarpa.Mol Carcinog. 2018 May;57(5):653-663. doi: 10.1002/mc.22790. Epub 2018 Feb 27.
986 Polymorphisms in NFKB1 and NFKBIA Genes Modulate the Risk of Developing Prostate Cancer among Han Chinese.Med Sci Monit. 2015 Jun 12;21:1707-15. doi: 10.12659/MSM.893471.
987 Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer.Nat Commun. 2016 Mar 15;7:10982. doi: 10.1038/ncomms10982.
988 PGC and PSMA in prostate cancer diagnosis: tissue analysis from biopsy samples.Int Braz J Urol. 2013 Sep-Oct;39(5):649-56. doi: 10.1590/S1677-5538.IBJU.2013.05.06.
989 Pim-3 is a Critical Risk Factor in Development and Prognosis of Prostate Cancer.Med Sci Monit. 2016 Nov 9;22:4254-4260. doi: 10.12659/msm.898223.
990 HES6 promotes prostate cancer aggressiveness independently of Notch signalling.J Cell Mol Med. 2015 Jul;19(7):1624-36. doi: 10.1111/jcmm.12537. Epub 2015 Apr 12.
991 Overexpressed Rce1 is positively correlated with tumor progression and predicts poor prognosis in prostate cancer.Hum Pathol. 2016 Jan;47(1):109-14. doi: 10.1016/j.humpath.2015.08.021. Epub 2015 Sep 28.
992 A CTGF-RUNX2-RANKL Axis in Breast and Prostate Cancer Cells Promotes Tumor Progression in Bone.J Bone Miner Res. 2020 Jan;35(1):155-166. doi: 10.1002/jbmr.3869. Epub 2019 Oct 31.
993 Uric acid: a modulator of prostate cells and activin sensitivity.Mol Cell Biochem. 2016 Mar;414(1-2):187-99. doi: 10.1007/s11010-016-2671-8. Epub 2016 Feb 24.
994 Evaluation of PSF1 as a prognostic biomarker for prostate cancer.Prostate Cancer Prostatic Dis. 2015 Mar;18(1):56-62. doi: 10.1038/pcan.2014.46. Epub 2014 Nov 18.
995 (68)Ga-PSMA I&T PET/CT for primary staging of prostate cancer.Eur J Nucl Med Mol Imaging. 2020 Jan;47(1):168-177. doi: 10.1007/s00259-019-04524-z. Epub 2019 Sep 16.
996 Expression of the TP and TP isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential.Oncotarget. 2016 Nov 8;7(45):73171-73187. doi: 10.18632/oncotarget.12256.
997 Upregulation of Talin-1 expression associates with advanced pathological features and predicts lymph node metastases and biochemical recurrence of prostate cancer.Medicine (Baltimore). 2016 Jul;95(29):e4326. doi: 10.1097/MD.0000000000004326.
998 AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis.Cancer Res. 2014 Aug 15;74(16):4306-17. doi: 10.1158/0008-5472.CAN-13-3233. Epub 2014 Jun 26.
999 Relation of ETS transcription factor family member ERG, androgen receptor and topoisomerase 2 expression to TMPRSS2-ERG fusion status in prostate cancer.Neoplasma. 2014;61(1):9-16.
1000 Effects of TRPC6 on invasibility of low-differentiated prostate cancer cells.Asian Pac J Trop Med. 2014 Jan;7(1):44-7. doi: 10.1016/S1995-7645(13)60190-X.
1001 Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma.Prostate. 2016 Apr;76(5):479-90. doi: 10.1002/pros.23139. Epub 2015 Dec 28.
1002 Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer.Oncotarget. 2015 Aug 28;6(25):21675-84. doi: 10.18632/oncotarget.4328.
1003 Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus.Prostate. 2008 Sep 1;68(12):1354-61. doi: 10.1002/pros.20800.
1004 Protein expressions and genetic variations of SLC5A8 in prostate cancer risk and aggressiveness.Urology. 2011 Oct;78(4):971.e1-9. doi: 10.1016/j.urology.2011.04.055. Epub 2011 Jul 29.
1005 The role of p21 3'UTR gene polymorphism in the risk of prostate cancer: a pilot study.Mol Med Rep. 2013 Mar;7(3):986-90. doi: 10.3892/mmr.2012.1242. Epub 2012 Dec 18.
1006 Expression of the non-gastric H+/K+ ATPase ATP12A in normal and pathological human prostate tissue.Cell Physiol Biochem. 2011;28(6):1287-94. doi: 10.1159/000335860. Epub 2011 Dec 16.
1007 Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue.J Cell Biochem. 2012 Feb;113(2):553-62. doi: 10.1002/jcb.23379.
1008 EGF-activated PI3K/Akt signalling coordinates leucine uptake by regulating LAT3 expression in prostate cancer.Cell Commun Signal. 2019 Jul 25;17(1):83. doi: 10.1186/s12964-019-0400-0.
1009 Identification of a novel first exon of the human ABCA2 transporter gene encoding a unique N-terminus.Biochim Biophys Acta. 2004 Apr 16;1678(1):22-32. doi: 10.1016/j.bbaexp.2004.01.007.
1010 E2F site in the essential promoter region does not confer S phase-specific transcription of the ABCC10 gene in human prostate cancer cells.Acta Biochim Pol. 2017;64(2):371-374. doi: 10.18388/abp.2017_1521. Epub 2017 Jun 13.
1011 Loss of miR-516a-3p mediates upregulation of ABCC5 in prostate cancer and drives its progression.Onco Targets Ther. 2018 Jul 6;11:3853-3867. doi: 10.2147/OTT.S167463. eCollection 2018.
1012 Functional analysis of androgen receptor N-terminal and ligand binding domain interacting coregulators in prostate cancer.J Formos Med Assoc. 2000 Dec;99(12):885-94.
1013 Succinate Accumulation Is Associated with a Shift of Mitochondrial Respiratory Control and HIF-1 Upregulation in PTEN Negative Prostate Cancer Cells.Int J Mol Sci. 2018 Jul 21;19(7):2129. doi: 10.3390/ijms19072129.
1014 Expression of tumor-associated trypsinogens (TAT-1 and TAT-2) in prostate cancer.Prostate. 2005 Jun 15;64(1):29-39. doi: 10.1002/pros.20236.
1015 Glutamine Transporters Are Targets of Multiple Oncogenic Signaling Pathways in Prostate Cancer.Mol Cancer Res. 2017 Aug;15(8):1017-1028. doi: 10.1158/1541-7786.MCR-16-0480. Epub 2017 May 15.
1016 Unbiased data mining identifies cell cycle transcripts that predict non-indolent Gleason score 7 prostate cancer.BMC Urol. 2019 Jan 7;19(1):4. doi: 10.1186/s12894-018-0433-5.
1017 Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences.Oncogene. 2017 Oct 26;36(43):6030-6040. doi: 10.1038/onc.2017.216. Epub 2017 Jul 3.
1018 Up-regulated miR-29c inhibits cell proliferation and glycolysis by inhibiting SLC2A3 expression in prostate cancer.Gene. 2018 Jul 30;665:26-34. doi: 10.1016/j.gene.2018.04.086. Epub 2018 Apr 30.
1019 Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues.Cancer Lett. 2003 Oct 28;200(2):187-95. doi: 10.1016/s0304-3835(03)00441-5.
1020 Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer.Oncogene. 2003 Sep 4;22(38):6005-12. doi: 10.1038/sj.onc.1206797.
1021 Reduced 64Cu uptake and tumor growth inhibition by knockdown of human copper transporter 1 in xenograft mouse model of prostate cancer.J Nucl Med. 2014 Apr;55(4):622-8. doi: 10.2967/jnumed.113.126979. Epub 2014 Mar 17.
1022 A common regulatory variant in SLC35B4 influences the recurrence and survival of prostate cancer.J Cell Mol Med. 2018 Jul;22(7):3661-3670. doi: 10.1111/jcmm.13649. Epub 2018 Apr 23.
1023 Human-like hyperplastic prostate with low ZIP1 induced solely by Zn deficiency in rats.Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):E11091-E11100. doi: 10.1073/pnas.1813956115. Epub 2018 Nov 5.
1024 The role of zinc transporter ZIP4 in prostate carcinoma.Urol Oncol. 2012 Nov-Dec;30(6):906-11. doi: 10.1016/j.urolonc.2010.11.010. Epub 2011 Jul 30.
1025 Novel mechanism of endocrine disruption by fungicides through binding to the membrane androgen receptor, ZIP9 (SLC39A9), and antagonizing rapid testosterone induction of the intrinsic apoptotic pathway. Steroids. 2019 Sep;149:108415. doi: 10.1016/j.steroids.2019.05.007. Epub 2019 May 30.
1026 Extramammary Paget Disease of the Scrotum: A Contemporary Clinicopathologic Analysis of 20 Cases in the United States.Appl Immunohistochem Mol Morphol. 2020 Aug;28(7):524-531. doi: 10.1097/PAI.0000000000000789.
1027 Cross-Kingdom Gene regulation via miRNAs of Hypericum perforatum (St. John's wort) flower dietetically absorbed: An in silico approach to define potential biomarkers for prostate cancer.Comput Biol Chem. 2019 Jun;80:16-22. doi: 10.1016/j.compbiolchem.2019.02.010. Epub 2019 Feb 28.
1028 Delivery of a TNF--derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis.FASEB J. 2018 Aug 30:fj201800377R. doi: 10.1096/fj.201800377R. Online ahead of print.
1029 12 new susceptibility loci for prostate cancer identified by genome-wide association study in Japanese population.Nat Commun. 2019 Sep 27;10(1):4422. doi: 10.1038/s41467-019-12267-6.
1030 Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation.Br J Cancer. 2004 Aug 31;91(5):985-94. doi: 10.1038/sj.bjc.6602030.
1031 Prognostic significance of the TREK-1 K2P potassium channels in prostate cancer.Oncotarget. 2015 Jul 30;6(21):18460-8. doi: 10.18632/oncotarget.3782.
1032 Genetic markers in carcinoma of the prostate.Eur Urol. 1984;10(5):315-6. doi: 10.1159/000463818.
1033 Analysis of Zinc-Exporters Expression in Prostate Cancer.Sci Rep. 2016 Nov 11;6:36772. doi: 10.1038/srep36772.
1034 The UGT1 locus is a determinant of prostate cancer recurrence after prostatectomy.Endocr Relat Cancer. 2015 Feb;22(1):77-85. doi: 10.1530/ERC-14-0423. Epub 2014 Dec 1.
1035 Circulating vitamin D, vitamin D-related genetic variation, and risk of fatal prostate cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium.Cancer. 2015 Jun 15;121(12):1949-56. doi: 10.1002/cncr.29320. Epub 2015 Mar 2.
1036 Searching for candidate genes in familial BRCAX mutation carriers with prostate cancer.Urol Oncol. 2016 Mar;34(3):120.e9-16. doi: 10.1016/j.urolonc.2015.10.009. Epub 2015 Nov 14.
1037 Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma.Prostate. 2007 Sep 15;67(13):1439-46. doi: 10.1002/pros.20630.
1038 The engineered thymidylate kinase (TMPK)/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer.PLoS One. 2013 Oct 23;8(10):e78711. doi: 10.1371/journal.pone.0078711. eCollection 2013.
1039 Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer.Pharmacogenet Genomics. 2011 Oct;21(10):615-23. doi: 10.1097/FPC.0b013e3283493a57.
1040 MicroRNA-135b regulates ER, AR and HIF1AN and affects breast and prostate cancer cell growth.Mol Oncol. 2015 Aug;9(7):1287-300. doi: 10.1016/j.molonc.2015.03.001. Epub 2015 Mar 21.
1041 A- and D-Ring Structural Modifications of an Androsterone Derivative Inhibiting 17-Hydroxysteroid Dehydrogenase Type 3: Chemical Synthesis and Structure-Activity Relationships.J Med Chem. 2019 Aug 8;62(15):7070-7088. doi: 10.1021/acs.jmedchem.9b00624. Epub 2019 Jul 19.
1042 Prevalence of the HOXB13 G84E mutation among unaffected men with a family history of prostate cancer.J Genet Couns. 2014 Jun;23(3):371-6. doi: 10.1007/s10897-013-9672-5. Epub 2013 Dec 7.
1043 Differences in urinary proteins related to surgical margin status after radical prostatectomy.Oncol Rep. 2015 Dec;34(6):3247-55. doi: 10.3892/or.2015.4322.
1044 Circadian genes and risk of prostate cancer: Findings from the EPICAP study.Int J Cancer. 2019 Oct 1;145(7):1745-1753. doi: 10.1002/ijc.32149. Epub 2019 Feb 12.
1045 SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1.Mol Endocrinol. 2014 Jun;28(6):935-48. doi: 10.1210/me.2013-1339. Epub 2014 Apr 16.
1046 Lack of association of CYP1A1 polymorphism with prostate cancer susceptibility of Tunisian men.Genet Test Mol Biomarkers. 2012 Jul;16(7):661-6. doi: 10.1089/gtmb.2011.0212. Epub 2012 Feb 3.
1047 Knockdown of prostaglandin reductase 1 (PTGR1) suppresses prostate cancer cell proliferation by inducing cell cycle arrest and apoptosis.Biosci Trends. 2016 May 23;10(2):133-9. doi: 10.5582/bst.2016.01045. Epub 2016 Apr 30.
1048 Role of dutasteride in pre-clinical ETS fusion-positive prostate cancer models.Prostate. 2012 Oct 1;72(14):1542-9. doi: 10.1002/pros.22509. Epub 2012 Mar 13.
1049 The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Prostate Cancer Patients.Anticancer Res. 2017 Sep;37(9):4961-4965. doi: 10.21873/anticanres.11906.
1050 Aberrant promoter CpG methylation is a mechanism for impaired PHD3 expression in a diverse set of malignant cells.PLoS One. 2011 Jan 28;6(1):e14617. doi: 10.1371/journal.pone.0014617.
1051 Transcriptional regulation of type 11 17beta-hydroxysteroid dehydrogenase expression in prostate cancer cells. Mol Cell Endocrinol. 2011 Jun 6;339(1-2):45-53.
1052 The impact of germline genetic variations in hydroxysteroid (17-beta) dehydrogenases on prostate cancer outcomes after prostatectomy.Eur Urol. 2012 Jul;62(1):88-96. doi: 10.1016/j.eururo.2011.12.021. Epub 2011 Dec 21.
1053 The impact of amyloid precursor protein signalling and histone deacetylase inhibition on neprilysin expression in human prostate cells.Int J Cancer. 2012 Feb 15;130(4):775-86. doi: 10.1002/ijc.26028. Epub 2011 Jun 18.
1054 Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies.PLoS One. 2019 Aug 12;14(8):e0221051. doi: 10.1371/journal.pone.0221051. eCollection 2019.
1055 Association of common variations of 8q24 with the risk of prostate cancer in Koreans and a review of the Asian population.BJU Int. 2012 Sep;110(6 Pt B):E318-25. doi: 10.1111/j.1464-410X.2012.11211.x. Epub 2012 May 15.
1056 A gene signature identified using a mouse model of androgen receptor-dependent prostate cancer predicts biochemical relapse in human disease.Int J Cancer. 2012 Aug 1;131(3):662-72. doi: 10.1002/ijc.26414. Epub 2012 Jan 24.
1057 Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer.Cancer Res. 2011 Feb 15;71(4):1486-96. doi: 10.1158/0008-5472.CAN-10-1343. Epub 2011 Feb 8.
1058 Activation of -catenin signaling in androgen receptor-negative prostate cancer cells.Clin Cancer Res. 2012 Feb 1;18(3):726-36. doi: 10.1158/1078-0432.CCR-11-2521.
1059 Molecular cloning of a novel human acid phosphatase gene (ACPT) that is highly expressed in the testis.Genomics. 2001 Jun 15;74(3):385-95. doi: 10.1006/geno.2001.6556.
1060 Modified frailty index associated with Clavien-Dindo IV complications in robot-assisted radical prostatectomies: A retrospective study.Urol Oncol. 2017 Jun;35(6):425-431. doi: 10.1016/j.urolonc.2017.01.005. Epub 2017 Feb 9.
1061 Involvement of heparin affin regulatory peptide in human prostate cancer.Prostate. 1999 Feb 1;38(2):126-36. doi: 10.1002/(sici)1097-0045(19990201)38:2<126::aid-pros6>3.0.co;2-c.
1062 ALDH1-positive intratumoral stromal cells indicate differentiated epithelial-like phenotype and good prognosis in prostate cancer.Transl Res. 2019 Jan;203:49-56. doi: 10.1016/j.trsl.2018.08.007. Epub 2018 Sep 12.
1063 Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study.Int J Cancer. 2017 Jan 1;140(1):75-85. doi: 10.1002/ijc.30436. Epub 2016 Oct 8.
1064 Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study.Lancet Oncol. 2018 Jan;19(1):76-86. doi: 10.1016/S1470-2045(17)30906-3. Epub 2017 Dec 14.
1065 Single Nucleotide Polymorphisms in -Carotene Oxygenase 1 are Associated with Plasma Lycopene Responses to a Tomato-Soy Juice Intervention in Men with Prostate Cancer.J Nutr. 2019 Mar 1;149(3):381-397. doi: 10.1093/jn/nxy304.
1066 Effective targeting of RNA polymerase I in treatment-resistant prostate cancer.Prostate. 2019 Dec;79(16):1837-1851. doi: 10.1002/pros.23909. Epub 2019 Sep 16.
1067 Inhibitory activity of nm23-H1 on invasion and colonization of human prostate carcinoma cells is not mediated by its NDP kinase activity.Cancer Lett. 1999 Oct 18;145(1-2):93-9. doi: 10.1016/s0304-3835(99)00236-0.
1068 Carboxypeptidase 4 gene variants and early-onset intermediate-to-high risk prostate cancer.BMC Cancer. 2009 Feb 26;9:69. doi: 10.1186/1471-2407-9-69.
1069 Intratumoral Sterol-27-Hydroxylase (CYP27A1) Expression in Relation to Cholesterol Synthesis and Vitamin D Signaling and Its Association with Lethal Prostate Cancer.Cancer Epidemiol Biomarkers Prev. 2019 Jun;28(6):1052-1058. doi: 10.1158/1055-9965.EPI-18-1083. Epub 2019 Mar 13.
1070 The role of drug-drug interactions in prostate cancer treatment: Focus on abiraterone acetate/prednisone and enzalutamide.Cancer Treat Rev. 2017 Apr;55:71-82. doi: 10.1016/j.ctrv.2017.03.001. Epub 2017 Mar 9.
1071 Ligand-binding properties and catalytic activity of the purified human 24-hydroxycholesterol 7-hydroxylase, CYP39A1.J Steroid Biochem Mol Biol. 2019 Oct;193:105416. doi: 10.1016/j.jsbmb.2019.105416. Epub 2019 Jun 24.
1072 Dicarbonyl/L-xylulose reductase: a potential biomarker identified by laser-capture microdissection-micro serial analysis of gene expression of human prostate adenocarcinoma.Cancer Epidemiol Biomarkers Prev. 2007 Dec;16(12):2615-22. doi: 10.1158/1055-9965.EPI-07-0684.
1073 Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA).Angiogenesis. 2018 Feb;21(1):79-94. doi: 10.1007/s10456-017-9587-0. Epub 2017 Nov 17.
1074 DHRS7 (SDR34C1) - A new player in the regulation of androgen receptor function by inactivation of 5-dihydrotestosterone?.J Steroid Biochem Mol Biol. 2017 Jul;171:288-295. doi: 10.1016/j.jsbmb.2017.04.013. Epub 2017 Apr 27.
1075 Gossypol inhibits 5-reductase 1 and 3-hydroxysteroid dehydrogenase: Its possible use for the treatment of prostate cancer.Fitoterapia. 2019 Mar;133:102-108. doi: 10.1016/j.fitote.2018.12.024. Epub 2018 Dec 31.
1076 miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer.Clin Cancer Res. 2014 Dec 15;20(24):6559-69. doi: 10.1158/1078-0432.CCR-14-1784. Epub 2014 Oct 16.
1077 Fatty acid amide hydrolase in prostate cancer: association with disease severity and outcome, CB1 receptor expression and regulation by IL-4.PLoS One. 2010 Aug 19;5(8):e12275. doi: 10.1371/journal.pone.0012275.
1078 Inhibition of GLS suppresses proliferation and promotes apoptosis in prostate cancer.Biosci Rep. 2019 Jun 25;39(6):BSR20181826. doi: 10.1042/BSR20181826. Print 2019 Jun 28.
1079 Glyoxalase 2 Is Involved in Human Prostate Cancer Progression as Part of a Mechanism Driven By PTEN/PI3K/AKT/mTOR Signaling With Involvement of PKM2 and ER.Prostate. 2017 Feb;77(2):196-210. doi: 10.1002/pros.23261. Epub 2016 Oct 3.
1080 Characterization of prostate cancer cell progression in zebrafish xenograft model.Int J Oncol. 2018 Jan;52(1):252-260. doi: 10.3892/ijo.2017.4189. Epub 2017 Nov 6.
1081 HSD3B1 Genotypes Conferring Adrenal-Restrictive and Adrenal-Permissive Phenotypes in Prostate Cancer and Beyond.Endocrinology. 2019 Sep 1;160(9):2180-2188. doi: 10.1210/en.2019-00366.
1082 Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer.Toxicol Appl Pharmacol. 2013 May 1;268(3):278-85. doi: 10.1016/j.taap.2013.02.013. Epub 2013 Mar 4.
1083 Nicotinamide N-methyltransferase enhances the progression of prostate cancer by stabilizing sirtuin 1.Oncol Lett. 2018 Jun;15(6):9195-9201. doi: 10.3892/ol.2018.8474. Epub 2018 Apr 12.
1084 A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR.PLoS One. 2008;3(10):e3617. doi: 10.1371/journal.pone.0003617. Epub 2008 Oct 31.
1085 Inherited Variants in SULT1E1 and Response to Abiraterone Acetate by Men with Metastatic Castration Refractory Prostate Cancer.J Urol. 2016 Oct;196(4):1112-6. doi: 10.1016/j.juro.2016.04.079. Epub 2016 May 3.
1086 JAB1/COPS5 is a putative oncogene that controls critical oncoproteins deregulated in prostate cancer.Biochem Biophys Res Commun. 2019 Oct 15;518(2):374-380. doi: 10.1016/j.bbrc.2019.08.066. Epub 2019 Aug 18.
1087 Inhibiting Glycine Decarboxylase Suppresses Pyruvate-to-Lactate Metabolism in Lung Cancer Cells.Front Oncol. 2018 Jun 1;8:196. doi: 10.3389/fonc.2018.00196. eCollection 2018.
1088 Genetic polymorphisms in MTHFR (C677T, A1298C), MTR (A2756G) and MTRR (A66G) genes associated with pathological characteristics of prostate cancer in the Ecuadorian population.Am J Med Sci. 2013 Dec;346(6):447-54. doi: 10.1097/MAJ.0b013e3182882578.
1089 Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.BMC Cancer. 2017 Sep 6;17(1):631. doi: 10.1186/s12885-017-3589-6.
1090 Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer.PLoS One. 2015 Aug 3;10(8):e0133449. doi: 10.1371/journal.pone.0133449. eCollection 2015.
1091 ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.PLoS One. 2014 Jan 22;9(1):e86089. doi: 10.1371/journal.pone.0086089. eCollection 2014.
1092 A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer.Nat Genet. 2014 Oct;46(10):1103-9. doi: 10.1038/ng.3094. Epub 2014 Sep 14.
1093 SP1 and RAR regulate AGAP2 expression in cancer.Sci Rep. 2019 Jan 23;9(1):390. doi: 10.1038/s41598-018-36888-x.
1094 Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis.Br J Cancer. 2014 May 13;110(10):2593-603. doi: 10.1038/bjc.2014.201. Epub 2014 Apr 24.
1095 Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer.Cell Cycle. 2014;13(11):1798-810. doi: 10.4161/cc.28757. Epub 2014 Apr 14.
1096 Mllerian inhibiting substance type II receptor (MISIIR): a novel, tissue-specific target expressed by gynecologic cancers.Gynecol Oncol. 2008 Jan;108(1):141-8. doi: 10.1016/j.ygyno.2007.09.010. Epub 2007 Nov 7.
1097 D,L-Sulforaphane-induced cell death in human prostate cancer cells is regulated by inhibitor of apoptosis family proteins and Apaf-1.Carcinogenesis. 2007 Jan;28(1):151-62. doi: 10.1093/carcin/bgl144. Epub 2006 Aug 18.
1098 Genetic variants reflecting higher vitamin e status in men are associated with reduced risk of prostate cancer.J Nutr. 2014 May;144(5):729-33. doi: 10.3945/jn.113.189928. Epub 2014 Mar 12.
1099 Expression of DNA cytosine deaminase APOBEC3 proteins, a potential source for producing mutations, in gastric, colorectal and prostate cancers.Tumori. 2014 Jul-Aug;100(4):112e-7e. doi: 10.1700/1636.17922.
1100 BMCC1 is an AP-2 associated endosomal protein in prostate cancer cells.PLoS One. 2013 Sep 6;8(9):e73880. doi: 10.1371/journal.pone.0073880. eCollection 2013.
1101 RhoGDI downregulates androgen receptor signaling in prostate cancer cells.Prostate. 2013 Nov;73(15):1614-22. doi: 10.1002/pros.22615. Epub 2013 Aug 6.
1102 Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia.Cell Physiol Biochem. 2016;39(2):709-20. doi: 10.1159/000445662. Epub 2016 Jul 25.
1103 ASEQ: fast allele-specific studies from next-generation sequencing data.BMC Med Genomics. 2015 Mar 1;8:9. doi: 10.1186/s12920-015-0084-2.
1104 Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP.J Biochem. 2015 Oct;158(4):309-19. doi: 10.1093/jb/mvv039. Epub 2015 Apr 17.
1105 Tumor necrosis factor-related apoptosis-inducing ligand-mediated activation of mitochondria-associated nuclear factor-kappaB in prostatic carcinoma cell lines.Mol Cancer Res. 2004 Oct;2(10):574-84.
1106 ATPase family AAA domain containing 3A is an anti-apoptotic factor and a secretion regulator of PSA in prostate cancer.Int J Mol Med. 2011 Jul;28(1):9-15. doi: 10.3892/ijmm.2011.670. Epub 2011 Apr 6.
1107 Genetic variants in ATP6 and ND3 mitochondrial genes are not associated with aggressive prostate cancer in Mexican-Mestizo men with overweight or obesity.Aging Male. 2016 Sep;19(3):187-191. doi: 10.1080/13685538.2016.1185409. Epub 2016 May 17.
1108 Silencing of vacuolar ATPase csubunit ATP6V0C inhibits the invasion of prostate cancer cells through a LASS2/TMSG1-independent manner.Oncol Rep. 2018 Jan;39(1):298-306. doi: 10.3892/or.2017.6092. Epub 2017 Nov 10.
1109 A novel approach to identify driver genes involved in androgen-independent prostate cancer.Mol Cancer. 2014 May 23;13:120. doi: 10.1186/1476-4598-13-120.
1110 HIF1 Regulates mTOR Signaling and Viability of Prostate Cancer Stem Cells.Mol Cancer Res. 2015 Mar;13(3):556-64. doi: 10.1158/1541-7786.MCR-14-0153-T. Epub 2014 Oct 27.
1111 Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer.Abdom Radiol (NY). 2019 Jun;44(6):2233-2243. doi: 10.1007/s00261-019-01936-1.
1112 BAG-1 inhibits PPARgamma-induced cell death, but not PPARgamma-induced transcription, cell cycle arrest or differentiation in breast cancer cells.Oncol Rep. 2008 Mar;19(3):689-96.
1113 Bcl-2 associated athanogene 5 (Bag5) is overexpressed in prostate cancer and inhibits ER-stress induced apoptosis.BMC Cancer. 2013 Mar 1;13:96. doi: 10.1186/1471-2407-13-96.
1114 BCAS2 promotes prostate cancer cells proliferation by enhancing AR mRNA transcription and protein stability.Br J Cancer. 2015 Jan 20;112(2):391-402. doi: 10.1038/bjc.2014.603. Epub 2014 Dec 2.
1115 Expression of Id proteins is regulated by the Bcl-3 proto-oncogene in prostate cancer.Oncogene. 2013 Mar 21;32(12):1601-8. doi: 10.1038/onc.2012.175. Epub 2012 May 14.
1116 Copy number alterations in prostate tumors and disease aggressiveness.Genes Chromosomes Cancer. 2012 Jan;51(1):66-76. doi: 10.1002/gcc.20932. Epub 2011 Oct 2.
1117 Comparison of prostate-specific promoters and the use of PSP-driven virotherapy for prostate cancer.Biomed Res Int. 2013;2013:624632. doi: 10.1155/2013/624632. Epub 2013 Jan 31.
1118 DNA methylation regulates the expression of Y chromosome specific genes in prostate cancer.J Urol. 2002 Jan;167(1):335-8.
1119 Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence.Cancer Res. 2014 Jun 15;74(12):3228-37. doi: 10.1158/0008-5472.CAN-13-2699. Epub 2014 Apr 8.
1120 Loss of the candidate tumor suppressor BTG3 triggers acute cellular senescence via the ERK-JMJD3-p16(INK4a) signaling axis.Oncogene. 2012 Jul 5;31(27):3287-97. doi: 10.1038/onc.2011.491. Epub 2011 Oct 24.
1121 Predictive and prognostic values of Tau and BubR1 protein in prostate cancer and their relationship to the Gleason score.Med Oncol. 2013 Jun;30(2):526. doi: 10.1007/s12032-013-0526-7. Epub 2013 Mar 9.
1122 Structural analysis of the C-CAM1 molecule for its tumor suppression function in human prostate cancer.Prostate. 1999 Sep 15;41(1):31-8. doi: 10.1002/(sici)1097-0045(19990915)41:1<31::aid-pros5>3.0.co;2-p.
1123 The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation.Cancer Res. 2005 Apr 15;65(8):3108-16. doi: 10.1158/0008-5472.CAN-04-3151.
1124 Capping Protein Regulator and Myosin 1 Linker 3 Is Required for Tumor Metastasis.Mol Cancer Res. 2020 Feb;18(2):240-252. doi: 10.1158/1541-7786.MCR-19-0722. Epub 2019 Nov 6.
1125 Human heterochromatin protein 1 isoforms regulate androgen receptor signaling in prostate cancer.J Mol Endocrinol. 2013 Apr 23;50(3):401-9. doi: 10.1530/JME-13-0024. Print 2013 Jun.
1126 Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma.Prostate. 2019 May;79(6):592-603. doi: 10.1002/pros.23764. Epub 2019 Jan 24.
1127 Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis.J Pathol. 2017 Oct;243(2):208-219. doi: 10.1002/path.4940. Epub 2017 Aug 29.
1128 CDC6 mRNA Expression Is Associated with the Aggressiveness of Prostate Cancer.J Korean Med Sci. 2018 Nov 2;33(47):e303. doi: 10.3346/jkms.2018.33.e303. eCollection 2018 Nov 19.
1129 Downregulation of CENPF Remodels Prostate Cancer Cells and Alters Cellular Metabolism.Proteomics. 2019 Jun;19(11):e1900038. doi: 10.1002/pmic.201900038. Epub 2019 May 8.
1130 FGF-2 disrupts mitotic stability in prostate cancer through the intracellular trafficking protein CEP57.Cancer Res. 2013 Feb 15;73(4):1400-10. doi: 10.1158/0008-5472.CAN-12-1857. Epub 2012 Dec 12.
1131 Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade.Oncotarget. 2017 Apr 21;8(34):56051-56065. doi: 10.18632/oncotarget.17359. eCollection 2017 Aug 22.
1132 Ciz1 promotes tumorigenicity of prostate carcinoma cells.Front Biosci (Landmark Ed). 2015 Jan 1;20(4):705-15. doi: 10.2741/4331.
1133 Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells.PLoS One. 2014 Jan 31;9(1):e86238. doi: 10.1371/journal.pone.0086238. eCollection 2014.
1134 PSMA SPECT/CT with (99m)Tc-MIP-1404 in biochemical recurrence of prostate cancer: predictive factors and efficacy for the detection of PSMA-positive lesions at low and very-low PSA levels.Ann Nucl Med. 2019 Dec;33(12):891-898. doi: 10.1007/s12149-019-01400-6. Epub 2019 Sep 9.
1135 CMTM3 is reduced in prostate cancer and inhibits migration, invasion and growth of LNCaP cells.Clin Transl Oncol. 2015 Aug;17(8):632-9. doi: 10.1007/s12094-015-1288-9. Epub 2015 May 20.
1136 Increased expression of calponin 2 is a positive prognostic factor in pancreatic ductal adenocarcinoma.Oncotarget. 2017 May 9;8(34):56428-56442. doi: 10.18632/oncotarget.17701. eCollection 2017 Aug 22.
1137 Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth.Oncotarget. 2015 Jun 10;6(16):14488-96. doi: 10.18632/oncotarget.3697.
1138 Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans.Mol Vis. 2016 May 16;22:454-71. eCollection 2016.
1139 Carboxypeptidase-D is elevated in prostate cancer and its anti-apoptotic activity is abolished by combined androgen and prolactin receptor targeting.Prostate. 2014 May;74(7):732-42. doi: 10.1002/pros.22793. Epub 2014 Feb 24.
1140 The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer.Oncogene. 2015 Jan 8;34(2):226-36. doi: 10.1038/onc.2013.538. Epub 2014 Jan 20.
1141 SOST Inhibits Prostate Cancer Invasion.PLoS One. 2015 Nov 6;10(11):e0142058. doi: 10.1371/journal.pone.0142058. eCollection 2015.
1142 Analyzing the Association of Polymorphisms in the CRYBB2 Gene with Prostate Cancer Risk in African Americans.Anticancer Res. 2015 May;35(5):2565-70.
1143 Multivariate gene expression analysis reveals functional connectivity changes between normal/tumoral prostates.BMC Syst Biol. 2008 Dec 5;2:106. doi: 10.1186/1752-0509-2-106.
1144 Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells.Int J Urol. 2012 Jan;19(1):71-9. doi: 10.1111/j.1442-2042.2011.02888.x. Epub 2011 Nov 3.
1145 CUL4B promotes prostate cancer progression by forming positive feedback loop with SOX4.Oncogenesis. 2019 Mar 14;8(3):23. doi: 10.1038/s41389-019-0131-5.
1146 CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and v3 integrin clustering.Oncotarget. 2016 Feb 9;7(6):7343-53. doi: 10.18632/oncotarget.6944.
1147 Identification of novel DNA-methylated genes that correlate with human prostate cancer and high-grade prostatic intraepithelial neoplasia.Prostate Cancer Prostatic Dis. 2013 Dec;16(4):292-300. doi: 10.1038/pcan.2013.21. Epub 2013 Jul 30.
1148 Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy.J Biol Chem. 2015 Jun 19;290(25):15406-15420. doi: 10.1074/jbc.M115.658765. Epub 2015 Apr 22.
1149 Construction of a lncRNA-PCG bipartite network and identification of cancer-related lncRNAs: a case study in prostate cancer.Mol Biosyst. 2015 Feb;11(2):384-93. doi: 10.1039/c4mb00439f. Epub 2014 Nov 11.
1150 Targeting androgen receptor action for prostate cancer treatment: does the post-receptor level provide novel opportunities?.Int J Biol Sci. 2014 Jun 1;10(6):576-87. doi: 10.7150/ijbs.8479. eCollection 2014.
1151 Genome-wide association study of prostate cancer-specific survival.Cancer Epidemiol Biomarkers Prev. 2015 Nov;24(11):1796-800. doi: 10.1158/1055-9965.EPI-15-0543. Epub 2015 Aug 25.
1152 DLEC1, a 3p tumor suppressor, represses NF-B signaling and is methylated in prostate cancer.J Mol Med (Berl). 2015 Jun;93(6):691-701. doi: 10.1007/s00109-015-1255-5. Epub 2015 Feb 5.
1153 Loss of Dlg5 expression promotes the migration and invasion of prostate cancer cells via Girdin phosphorylation.Oncogene. 2015 Feb 26;34(9):1141-9. doi: 10.1038/onc.2014.31. Epub 2014 Mar 24.
1154 Loss of DMBT1 expression in human prostate cancer and its correlation with clinical progressive features.Urology. 2011 Feb;77(2):509.e9-13. doi: 10.1016/j.urology.2010.09.023. Epub 2010 Dec 16.
1155 Effect of radical prostatectomy on levels of cancer related epitopes in circulating macrophages of patients with clinically localized prostate cancer.Prostate. 2017 Sep;77(12):1251-1258. doi: 10.1002/pros.23384. Epub 2017 Jul 20.
1156 Exposure to bisphenol A: current levels from food intake are toxic to human cells.Mol Biol Rep. 2019 Apr;46(2):2555-2559. doi: 10.1007/s11033-019-04666-1. Epub 2019 Feb 7.
1157 Dual specificity phosphatase 6 suppresses the growth and metastasis of prostate cancer cells.Mol Med Rep. 2014 Dec;10(6):3052-8. doi: 10.3892/mmr.2014.2575. Epub 2014 Sep 18.
1158 Metformin Inhibits Prostate Cancer Progression by Targeting Tumor-Associated Inflammatory Infiltration.Clin Cancer Res. 2018 Nov 15;24(22):5622-5634. doi: 10.1158/1078-0432.CCR-18-0420. Epub 2018 Jul 16.
1159 E2F4 regulates a stable G2 arrest response to genotoxic stress in prostate carcinoma.Oncogene. 2007 Mar 22;26(13):1897-909. doi: 10.1038/sj.onc.1209998. Epub 2006 Oct 9.
1160 Conditional Deletion of Eaf1 Induces Murine Prostatic Intraepithelial Neoplasia in Mice.Neoplasia. 2019 Aug;21(8):752-764. doi: 10.1016/j.neo.2019.05.005. Epub 2019 Jun 21.
1161 Decreased expression of EFS is correlated with the advanced prostate cancer.Tumour Biol. 2015 Feb;36(2):799-805. doi: 10.1007/s13277-014-2703-5. Epub 2014 Oct 9.
1162 Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2 phosphorylation in prostate cancer.Cell Signal. 2015 Apr;27(4):789-97. doi: 10.1016/j.cellsig.2014.12.020. Epub 2015 Jan 7.
1163 The oncogenic role of EIF3D is associated with increased cell cycle progression and motility in prostate cancer.Med Oncol. 2015 Jul;32(7):518. doi: 10.1007/s12032-015-0518-x. Epub 2015 Jun 3.
1164 The ternary complex factor protein ELK1 is an independent prognosticator of disease recurrence in prostate cancer.Prostate. 2020 Feb;80(2):198-208. doi: 10.1002/pros.23932. Epub 2019 Dec 3.
1165 A 12-gene expression signature is associated with aggressive histological in prostate cancer: SEC14L1 and TCEB1 genes are potential markers of progression.Am J Pathol. 2012 Nov;181(5):1585-94. doi: 10.1016/j.ajpath.2012.08.005.
1166 Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.J Biol Chem. 2006 Aug 18;281(33):23652-7. doi: 10.1074/jbc.M602930200. Epub 2006 Jun 8.
1167 The role of serum neuron-specific enolase in patients with prostate cancer: a systematic review of the recent literature.Int J Biol Markers. 2018 Jan;33(1):10-21. doi: 10.5301/ijbm.5000286.
1168 Xenobiotic metabolizing gene variants, dietary heterocyclic amine intake, and risk of prostate cancer. Cancer Res. 2009 Mar 1;69(5):1877-84. doi: 10.1158/0008-5472.CAN-08-2447. Epub 2009 Feb 17.
1169 Strong cytoplasmic ETV1 expression has a negative impact on prostate cancer outcome.Virchows Arch. 2019 Oct;475(4):457-466. doi: 10.1007/s00428-019-02573-1. Epub 2019 Apr 23.
1170 Exonuclease 1 expression is associated with clinical progression, metastasis, and survival prognosis of prostate cancer.J Cell Biochem. 2019 Jul;120(7):11383-11389. doi: 10.1002/jcb.28415. Epub 2019 Feb 18.
1171 Genetic variations in TP53 binding sites are predictors of clinical outcomes in prostate cancer patients.Arch Toxicol. 2014 Apr;88(4):901-11. doi: 10.1007/s00204-014-1196-8. Epub 2014 Jan 22.
1172 Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer.Histol Histopathol. 2006 Apr;21(4):415-22. doi: 10.14670/HH-21.415.
1173 Fas Activated Serine-Threonine Kinase Domains 2 (FASTKD2) mediates apoptosis of breast and prostate cancer cells through its novel FAST2 domain.BMC Cancer. 2014 Nov 20;14:852. doi: 10.1186/1471-2407-14-852.
1174 Finasteride upregulates expression of androgen receptor in hyperplastic prostate and LNCaP cells: implications for chemoprevention of prostate cancer.Prostate. 2011 Jul;71(10):1115-21. doi: 10.1002/pros.21325. Epub 2011 Jan 12.
1175 Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer.Sci Rep. 2017 Jul 11;7(1):5124. doi: 10.1038/s41598-017-05209-z.
1176 Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11miRNA-541androgen receptor (AR)MMP9 signaling.Mol Oncol. 2015 Jan;9(1):44-57. doi: 10.1016/j.molonc.2014.07.013. Epub 2014 Jul 29.
1177 Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.J Clin Invest. 2008 Aug;118(8):2697-710. doi: 10.1172/JCI33093.
1178 CpG island hypermethylation frequently silences FILIP1L isoform 2 expression in prostate cancer.J Urol. 2013 Jan;189(1):329-35. doi: 10.1016/j.juro.2012.08.188. Epub 2012 Nov 20.
1179 Strong expression of the neuronal transcription factor FOXP2 is linked to an increased risk of early PSA recurrence in ERG fusion-negative cancers.J Clin Pathol. 2013 Jul;66(7):563-8. doi: 10.1136/jclinpath-2012-201335. Epub 2013 Apr 4.
1180 Human fucosyltransferase 6 enables prostate cancer metastasis to bone.Br J Cancer. 2013 Dec 10;109(12):3014-22. doi: 10.1038/bjc.2013.690. Epub 2013 Oct 31.
1181 Chromium(VI) promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer.Toxicol Lett. 2019 Jan;300:10-17. doi: 10.1016/j.toxlet.2018.10.012. Epub 2018 Oct 10.
1182 Mechanism of androgen receptor corepression by CKBP2/CRIF1, a multifunctional transcription factor coregulator expressed in prostate cancer.Mol Cell Endocrinol. 2014 Jan 25;382(1):302-313. doi: 10.1016/j.mce.2013.09.036. Epub 2013 Oct 5.
1183 microRNA-16-5p enhances radiosensitivity through modulating Cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells.J Cell Physiol. 2019 Aug;234(8):13182-13190. doi: 10.1002/jcp.27989. Epub 2018 Dec 10.
1184 GDF-9 promotes the growth of prostate cancer cells by protecting them from apoptosis.J Cell Physiol. 2010 Nov;225(2):529-36. doi: 10.1002/jcp.22235.
1185 RET Signaling in Prostate Cancer.Clin Cancer Res. 2017 Aug 15;23(16):4885-4896. doi: 10.1158/1078-0432.CCR-17-0528. Epub 2017 May 10.
1186 Type I gonadotropin-releasing hormone receptor mediates the antiproliferative effects of GnRH-II on prostate cancer cells.J Clin Endocrinol Metab. 2009 May;94(5):1761-7. doi: 10.1210/jc.2008-1741. Epub 2009 Feb 3.
1187 GOLPH2, a gene downstream of ras signaling, promotes the progression of pancreatic ductal adenocarcinoma.Mol Med Rep. 2018 Mar;17(3):4187-4194. doi: 10.3892/mmr.2018.8430. Epub 2018 Jan 15.
1188 Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.PLoS One. 2015 Feb 18;10(2):e0117758. doi: 10.1371/journal.pone.0117758. eCollection 2015.
1189 GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer.Int J Cancer. 2020 Mar 1;146(5):1369-1382. doi: 10.1002/ijc.32554. Epub 2019 Jul 22.
1190 Troglitazone inhibits the migration and invasion of PC-3 human prostate cancer cells by upregulating E-cadherin and glutathione peroxidase 3.Oncol Lett. 2018 Oct;16(4):5482-5488. doi: 10.3892/ol.2018.9278. Epub 2018 Aug 8.
1191 Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation.BMC Cancer. 2016 Aug 2;16:567. doi: 10.1186/s12885-016-2632-3.
1192 Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells.J Control Release. 2019 Feb 10;295:102-117. doi: 10.1016/j.jconrel.2018.12.034. Epub 2018 Dec 21.
1193 A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes.PLoS Genet. 2014 Nov 20;10(11):e1004809. doi: 10.1371/journal.pgen.1004809. eCollection 2014 Nov.
1194 HES5 silencing is an early and recurrent change in prostate tumourigenesis.Endocr Relat Cancer. 2015 Apr;22(2):131-44. doi: 10.1530/ERC-14-0454. Epub 2015 Jan 5.
1195 Serum antibodies to huntingtin interacting protein-1: a new blood test for prostate cancer.Cancer Res. 2005 May 15;65(10):4126-33. doi: 10.1158/0008-5472.CAN-04-4658.
1196 microRNA-183-3p Inhibits Progression of Human Prostate Cancer by Downregulating High-Mobility Group Nucleosome Binding Domain 5.DNA Cell Biol. 2019 Aug;38(8):840-848. doi: 10.1089/dna.2019.4642. Epub 2019 Jul 17.
1197 High-Level HOOK3 Expression Is an Independent Predictor of Poor Prognosis Associated with Genomic Instability in Prostate Cancer.PLoS One. 2015 Jul 31;10(7):e0134614. doi: 10.1371/journal.pone.0134614. eCollection 2015.
1198 HOXA1 enhances the cell proliferation, invasion and metastasis of prostate cancer cells.Oncol Rep. 2015 Sep;34(3):1203-10. doi: 10.3892/or.2015.4085. Epub 2015 Jun 26.
1199 HOXA10 expression profiling in prostate cancer.Prostate. 2019 Apr;79(5):554-563. doi: 10.1002/pros.23761. Epub 2019 Jan 6.
1200 Mechanistic studies of the effects of the retinoid N-(4-hydroxyphenyl)retinamide on prostate cancer cell growth and apoptosis.Mol Carcinog. 1999 Mar;24(3):160-8. doi: 10.1002/(sici)1098-2744(199903)24:3<160::aid-mc2>3.0.co;2-m.
1201 Heat-shock factor 2 is a suppressor of prostate cancer invasion.Oncogene. 2016 Apr 7;35(14):1770-84. doi: 10.1038/onc.2015.241. Epub 2015 Jun 29.
1202 Synergistic effect and VEGF/HSP70-hom haplotype analysis: relationship to prostate cancer risk and clinical outcome.Hum Immunol. 2010 Apr;71(4):377-82. doi: 10.1016/j.humimm.2010.01.017. Epub 2010 Feb 4.
1203 Androgen receptor-interacting protein HSPBAP1 facilitates growth of prostate cancer cells in androgen-deficient conditions.Int J Cancer. 2015 Jun 1;136(11):2535-45. doi: 10.1002/ijc.29303. Epub 2014 Nov 20.
1204 Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52.Mol Oncol. 2017 Apr;11(4):337-357. doi: 10.1002/1878-0261.12028. Epub 2017 Mar 2.
1205 IFI16 in human prostate cancer.Mol Cancer Res. 2007 Mar;5(3):251-9. doi: 10.1158/1541-7786.MCR-06-0269. Epub 2007 Mar 5.
1206 Identification of novel genes that regulate androgen receptor signaling and growth of androgen-deprived prostate cancer cells.Oncotarget. 2015 May 30;6(15):13088-104. doi: 10.18632/oncotarget.3743.
1207 Differential expression of IL-17RC isoforms in androgen-dependent and androgen-independent prostate cancers.Neoplasia. 2007 Jun;9(6):464-70. doi: 10.1593/neo.07109.
1208 Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease.Br J Cancer. 2009 Dec 1;101(11):1891-9. doi: 10.1038/sj.bjc.6605379. Epub 2009 Nov 3.
1209 Identification of the inhibitor of growth protein 4 (ING4) as a potential target in prostate cancer therapy.Mol Cell Biochem. 2020 Jan;464(1-2):153-167. doi: 10.1007/s11010-019-03657-x. Epub 2019 Nov 27.
1210 Elevated level of inhibin-alpha subunit is pro-tumourigenic and pro-metastatic and associated with extracapsular spread in advanced prostate cancer.Br J Cancer. 2009 Jun 2;100(11):1784-93. doi: 10.1038/sj.bjc.6605089. Epub 2009 May 12.
1211 Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3.Cancer Res. 2014 May 1;74(9):2591-603. doi: 10.1158/0008-5472.CAN-13-1606. Epub 2014 Mar 7.
1212 IL6 sensitizes prostate cancer to the antiproliferative effect of IFN2 through IRF9.Endocr Relat Cancer. 2013 Aug 23;20(5):677-89. doi: 10.1530/ERC-13-0222. Print 2013 Oct.
1213 Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway.Onco Targets Ther. 2019 Jul 9;12:5485-5497. doi: 10.2147/OTT.S197009. eCollection 2019.
1214 Patients with prostate cancer and androgen deprivation therapy have increased risk of fractures-a study from the fractures and fall injuries in the elderly cohort (FRAILCO).Osteoporos Int. 2019 Jan;30(1):115-125. doi: 10.1007/s00198-018-4722-3. Epub 2018 Oct 15.
1215 Mutational landscape of candidate genes in familial prostate cancer.Prostate. 2014 Oct;74(14):1371-8. doi: 10.1002/pros.22849. Epub 2014 Aug 11.
1216 KIF3a promotes proliferation and invasion via Wnt signaling in advanced prostate cancer.Mol Cancer Res. 2014 Apr;12(4):491-503. doi: 10.1158/1541-7786.MCR-13-0418. Epub 2014 Jan 10.
1217 Krppel-like factor 8 is a novel androgen receptor co-activator in human prostate cancer.Acta Pharmacol Sin. 2013 Feb;34(2):282-8. doi: 10.1038/aps.2012.130. Epub 2012 Oct 1.
1218 Knockdown of KLK12 inhibits viability and inducesapoptosis in human colorectal cancer HT-29 cell line.Int J Mol Med. 2019 Nov;44(5):1667-1676. doi: 10.3892/ijmm.2019.4327. Epub 2019 Aug 30.
1219 Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness.Urol Oncol. 2013 Jul;31(5):635-43. doi: 10.1016/j.urolonc.2011.05.011. Epub 2011 Jul 8.
1220 Biochemical characterization of human tissue kallikrein 15 and examination of its potential role in cancer.Clin Biochem. 2018 Aug;58:108-115. doi: 10.1016/j.clinbiochem.2018.06.007. Epub 2018 Jun 18.
1221 Transcription factor KLLN inhibits tumor growth by AR suppression, induces apoptosis by TP53/TP73 stimulation in prostate carcinomas, and correlates with cellular differentiation.J Clin Endocrinol Metab. 2013 Mar;98(3):E586-94. doi: 10.1210/jc.2012-3490. Epub 2013 Feb 5.
1222 A Mutation in the Carbohydrate Recognition Domain Drives a Phenotypic Switch in the Role of Galectin-7 in Prostate Cancer.PLoS One. 2015 Jul 13;10(7):e0131307. doi: 10.1371/journal.pone.0131307. eCollection 2015.
1223 High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers.Mol Oncol. 2013 Dec;7(6):1001-11. doi: 10.1016/j.molonc.2013.07.009. Epub 2013 Jul 19.
1224 A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men.EBioMedicine. 2015 Oct 31;2(12):1957-64. doi: 10.1016/j.ebiom.2015.10.028. eCollection 2015 Dec.
1225 Prostate cancer in Germany among migrants from the Former Soviet Union.Glob Health Action. 2012;5:9135. doi: 10.3402/gha.v5i0.9135. Epub 2012 Jan 2.
1226 -Mannosidase 2C1 attenuates PTEN function in prostate cancer cells.Nat Commun. 2011;2:307. doi: 10.1038/ncomms1309.
1227 Genistein treatment duration effects biomarkers of cell motility in human prostate.PLoS One. 2019 Mar 27;14(3):e0214078. doi: 10.1371/journal.pone.0214078. eCollection 2019.
1228 Doxorubicin-resistant variants of human prostate cancer cell lines DU 145, PC-3, PPC-1, and TSU-PR1: characterization of biochemical determinants of antineoplastic drug sensitivity.Int J Oncol. 2000 Dec;17(6):1077-86. doi: 10.3892/ijo.17.6.1077.
1229 Heme oxygenase-1 in macrophages controls prostate cancer progression.Oncotarget. 2015 Oct 20;6(32):33675-88. doi: 10.18632/oncotarget.5284.
1230 The Distinct Gene Regulatory Network of Myoglobin in Prostate and Breast Cancer.PLoS One. 2015 Nov 11;10(11):e0142662. doi: 10.1371/journal.pone.0142662. eCollection 2015.
1231 Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotypes.Biosci Rep. 2008 Dec;28(6):319-26. doi: 10.1042/BSR20080032.
1232 Regulation of minichromosome maintenance gene family by microRNA-1296 and genistein in prostate cancer.Cancer Res. 2010 Apr 1;70(7):2809-18. doi: 10.1158/0008-5472.CAN-09-4176. Epub 2010 Mar 23.
1233 MDC1 functionally identified as an androgen receptor co-activator participates in suppression of prostate cancer.Nucleic Acids Res. 2015 May 26;43(10):4893-908. doi: 10.1093/nar/gkv394. Epub 2015 Apr 30.
1234 Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression.Oncotarget. 2017 Apr 25;8(17):27966-27975. doi: 10.18632/oncotarget.15854.
1235 MED15 overexpression in prostate cancer arises during androgen deprivation therapy via PI3K/mTOR signaling.Oncotarget. 2017 Jan 31;8(5):7964-7976. doi: 10.18632/oncotarget.13860.
1236 HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer.Prostate. 2019 Mar;79(4):414-424. doi: 10.1002/pros.23747. Epub 2018 Dec 17.
1237 A genetic screen in Drosophila for regulators of human prostate cancer progression.Biochem Biophys Res Commun. 2014 Sep 5;451(4):548-55. doi: 10.1016/j.bbrc.2014.08.015. Epub 2014 Aug 10.
1238 Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells.Int J Oncol. 2014 May;44(5):1767-73. doi: 10.3892/ijo.2014.2343. Epub 2014 Mar 13.
1239 Coordinated peak expression of MMP-26 and TIMP-4 in preinvasive human prostate tumor.Cell Res. 2006 Sep;16(9):750-8. doi: 10.1038/sj.cr.7310089.
1240 Polymorphisms of DNA repair-related genes with susceptibility and prognosis of prostate cancer.Genet Mol Res. 2014 Jan 24;13(2):4419-24. doi: 10.4238/2014.January.24.20.
1241 A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms after radiotherapy for prostate cancer.J Urol. 2013 Jul;190(1):102-8. doi: 10.1016/j.juro.2013.01.096. Epub 2013 Feb 1.
1242 MPC1 and MPC2 expressions are associated with favorable clinical outcomes in prostate cancer.BMC Cancer. 2016 Nov 16;16(1):894. doi: 10.1186/s12885-016-2941-6.
1243 Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population.Asian Pac J Cancer Prev. 2012;13(12):6055-7. doi: 10.7314/apjcp.2012.13.12.6055.
1244 MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer.Clin Exp Metastasis. 2005;22(7):565-73. doi: 10.1007/s10585-005-5376-z. Epub 2006 Feb 11.
1245 Knockdown of myosin VI by lentivirus-mediated short hairpin RNA suppresses proliferation of melanoma.Mol Med Rep. 2015 Nov;12(5):6801-6. doi: 10.3892/mmr.2015.4261. Epub 2015 Aug 28.
1246 Decreased expression of myosin light chain MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in prostate cancer.Med Oncol. 2014 Jan;31(1):820. doi: 10.1007/s12032-013-0820-4. Epub 2013 Dec 14.
1247 Two susceptibility loci identified for prostate cancer aggressiveness.Nat Commun. 2015 May 5;6:6889. doi: 10.1038/ncomms7889.
1248 Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy.Eur Urol. 2007 Mar;51(3):665-74; discussion 674. doi: 10.1016/j.eururo.2006.08.008. Epub 2006 Aug 23.
1249 Smad7 is inactivated through a direct physical interaction with the LIM protein Hic-5/ARA55.Oncogene. 2008 Nov 20;27(54):6791-805. doi: 10.1038/onc.2008.291. Epub 2008 Sep 1.
1250 The search for secreted proteins in prostate cancer by the Escherichia coli ampicillin secretion trap: expression of NBL1 is highly restricted to the prostate and is related to cancer progression.Pathobiology. 2013;80(2):60-9. doi: 10.1159/000341396. Epub 2012 Aug 29.
1251 Altered corepressor SMRT expression and recruitment to target genes as a mechanism that change the response to androgens in prostate cancer progression.Biochem Biophys Res Commun. 2012 Jul 6;423(3):564-70. doi: 10.1016/j.bbrc.2012.06.005. Epub 2012 Jun 10.
1252 The mitotic regulator Hec1 is a critical modulator of prostate cancer through the long non-coding RNA BX647187 invitro.Biosci Rep. 2015 Nov 26;35(6):e00273. doi: 10.1042/BSR20150003. Print 2015.
1253 A transductionally retargeted adenoviral vector for virotherapy of Her2/neu-expressing prostate cancer.Hum Gene Ther. 2012 Jan;23(1):70-82. doi: 10.1089/hum.2011.016. Epub 2011 Oct 12.
1254 Plasma membrane-associated sialidase (NEU3) regulates progression of prostate cancer to androgen-independent growth through modulation of androgen receptor signaling.Cell Death Differ. 2012 Jan;19(1):170-9. doi: 10.1038/cdd.2011.83. Epub 2011 Jun 17.
1255 Impact of cancer service centralisation on the radical treatment of men with high-risk and locally advanced prostate cancer: A national cross-sectional analysis in England.Int J Cancer. 2019 Jul 1;145(1):40-48. doi: 10.1002/ijc.32068. Epub 2019 Jan 17.
1256 Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis.Cancer Res. 2015 Jul 15;75(14):2949-60. doi: 10.1158/0008-5472.CAN-14-3297. Epub 2015 May 27.
1257 NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1 and p27(Kip1) expression in malignant melanoma and other human tumors.Mol Carcinog. 2017 Dec;56(12):2643-2662. doi: 10.1002/mc.22708. Epub 2017 Aug 30.
1258 Hereditary prostate cancer in African American families: linkage analysis using markers that map to five candidate susceptibility loci.Br J Cancer. 2004 Jan 26;90(2):510-4. doi: 10.1038/sj.bjc.6601417.
1259 Com-1/p8 acts as a putative tumour suppressor in prostate cancer.Int J Mol Med. 2006 Nov;18(5):981-6.
1260 The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.Oncotarget. 2014 Mar 30;5(6):1666-82. doi: 10.18632/oncotarget.1850.
1261 Association of the innate immunity and inflammation pathway with advanced prostate cancer risk.PLoS One. 2012;7(12):e51680. doi: 10.1371/journal.pone.0051680. Epub 2012 Dec 14.
1262 Overexpression of oxidored-nitro domain containing protein 1 induces growth inhibition and apoptosis in human prostate cancer PC3 cells.Oncol Rep. 2014 Nov;32(5):1939-46. doi: 10.3892/or.2014.3407. Epub 2014 Aug 14.
1263 Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors.Neoplasia. 2015 Dec;17(12):871-881. doi: 10.1016/j.neo.2015.11.007.
1264 Surface functionalized folate targeted oleuropein nano-liposomes for prostate tumor targeting: Invitro and invivo activity.Life Sci. 2019 Mar 1;220:136-146. doi: 10.1016/j.lfs.2019.01.053. Epub 2019 Jan 31.
1265 Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer.Cancer Res. 2000 Oct 1;60(19):5522-8.
1266 Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis.J Biol Chem. 2019 Mar 22;294(12):4572-4582. doi: 10.1074/jbc.RA118.006057. Epub 2019 Feb 4.
1267 Regulation of PBX3 expression by androgen and Let-7d in prostate cancer.Mol Cancer. 2011 May 6;10:50. doi: 10.1186/1476-4598-10-50.
1268 Aberrant methylation of protocadherin 17 and its clinical significance in patients with prostate cancer after radical prostatectomy.Med Sci Monit. 2014 Aug 5;20:1376-82. doi: 10.12659/MSM.891247.
1269 MiR-30a-5p frequently downregulated in prostate cancer inhibits cell proliferation via targeting PCLAF.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):278-289. doi: 10.1080/21691401.2018.1553783.
1270 Cisplatin in combination with programmed cell death protein5 increases antitumor activity in prostate cancer cells by promoting apoptosis.Mol Med Rep. 2015 Jun;11(6):4561-6. doi: 10.3892/mmr.2015.3252. Epub 2015 Jan 26.
1271 NF-kappaB activation stimulates transcription and replication of retrovirus XMRV in human B-lineage and prostate carcinoma cells.J Virol. 2011 Apr;85(7):3179-86. doi: 10.1128/JVI.02333-10. Epub 2011 Jan 26.
1272 Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells.J Pineal Res. 2010 Aug;49(1):60-8. doi: 10.1111/j.1600-079X.2010.00767.x. Epub 2010 May 27.
1273 Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival.Cancer Discov. 2012 Apr;2(4):328-43. doi: 10.1158/2159-8290.CD-11-0234. Epub 2012 Mar 22.
1274 Curcumin inhibits prostate cancer by targeting PGK1 in the FOXD3/miR-143 axis.Cancer Chemother Pharmacol. 2017 May;79(5):985-994. doi: 10.1007/s00280-017-3301-1. Epub 2017 Apr 8.
1275 PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/-catenin signaling pathway.J Exp Clin Cancer Res. 2017 Jun 23;36(1):85. doi: 10.1186/s13046-017-0560-y.
1276 A systematic review of replication studies of prostate cancer susceptibility genetic variants in high-risk men originally identified from genome-wide association studies.Cancer Epidemiol Biomarkers Prev. 2011 Aug;20(8):1599-610. doi: 10.1158/1055-9965.EPI-11-0312. Epub 2011 Jun 29.
1277 CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor.Oncogene. 2014 Jan 23;33(4):504-13. doi: 10.1038/onc.2012.602. Epub 2013 Jan 14.
1278 Systematic enrichment analysis of potentially functional regions for 103 prostate cancer risk-associated loci.Prostate. 2015 Sep;75(12):1264-76. doi: 10.1002/pros.23008. Epub 2015 May 25.
1279 TGF- cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy.J Cell Mol Med. 2014 Apr;18(4):555-67. doi: 10.1111/jcmm.12266. Epub 2014 Mar 15.
1280 Pathway specific gene expression profiling reveals oxidative stress genes potentially regulated by transcription co-activator LEDGF/p75 in prostate cancer cells.Prostate. 2012 May 1;72(6):597-611. doi: 10.1002/pros.21463. Epub 2011 Jul 27.
1281 Protein kinase A type II- regulatory subunit regulates the response of prostate cancer cells to taxane treatment.Cell Cycle. 2014;13(20):3292-301. doi: 10.4161/15384101.2014.949501.
1282 Prosaposin is an AR-target gene and its neurotrophic domain upregulates AR expression and activity in prostate stromal cells.J Cell Biochem. 2008 Aug 15;104(6):2272-85. doi: 10.1002/jcb.21786.
1283 Inhibition on Proteasome 1 Subunit Might Contribute to the Anti-Cancer Effects of Fangchinoline in Human Prostate Cancer Cells.PLoS One. 2015 Oct 29;10(10):e0141681. doi: 10.1371/journal.pone.0141681. eCollection 2015.
1284 The role of prostate tumor overexpressed 1 in cancer progression.Oncotarget. 2017 Feb 14;8(7):12451-12471. doi: 10.18632/oncotarget.14104.
1285 Chemotherapy sensitivity recovery of prostate cancer cells by functional inhibition and knock down of multidrug resistance proteins.Prostate. 2011 Dec;71(16):1810-7. doi: 10.1002/pros.21398. Epub 2011 Apr 7.
1286 Receptor-like protein tyrosine phosphatase negatively regulates the apoptosis of prostate cancer cells via the JNK pathway.Int J Oncol. 2013 Nov;43(5):1560-8. doi: 10.3892/ijo.2013.2082. Epub 2013 Aug 29.
1287 The tumor suppressing effects of QKI-5 in prostate cancer: a novel diagnostic and prognostic protein.Cancer Biol Ther. 2014 Jan;15(1):108-18. doi: 10.4161/cbt.26722. Epub 2013 Oct 23.
1288 RAB27A, RAB27B and VPS36 are downregulated in advanced prostate cancer and show functional relevance in prostate cancer cells.Int J Oncol. 2017 Mar;50(3):920-932. doi: 10.3892/ijo.2017.3872. Epub 2017 Feb 10.
1289 Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins.Cell Death Dis. 2015 Jul 16;6(7):e1825. doi: 10.1038/cddis.2015.64.
1290 TCEB1 promotes invasion of prostate cancer cells.Int J Cancer. 2009 Jan 1;124(1):95-102. doi: 10.1002/ijc.23916.
1291 Multiple roles of RARRES1 in prostate cancer: Autophagy induction and angiogenesis inhibition.PLoS One. 2017 Jul 5;12(7):e0180344. doi: 10.1371/journal.pone.0180344. eCollection 2017.
1292 Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis.BMC Cancer. 2016 Feb 29;16:170. doi: 10.1186/s12885-016-2209-1.
1293 Screening biomarkers of prostate cancer by integrating microRNA and mRNA microarrays.Genet Test Mol Biomarkers. 2013 Nov;17(11):807-13. doi: 10.1089/gtmb.2013.0226. Epub 2013 Aug 28.
1294 EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2.Int J Cancer. 2005 Feb 10;113(4):561-7. doi: 10.1002/ijc.20612.
1295 Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth.Mol Endocrinol. 2007 Feb;21(2):343-58. doi: 10.1210/me.2006-0104. Epub 2006 Nov 2.
1296 Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer.Mol Cancer Res. 2011 Jan;9(1):36-50. doi: 10.1158/1541-7786.MCR-10-0158. Epub 2010 Dec 8.
1297 miR-195 Inhibits Tumor Progression by Targeting RPS6KB1 in Human Prostate Cancer.Clin Cancer Res. 2015 Nov 1;21(21):4922-34. doi: 10.1158/1078-0432.CCR-15-0217. Epub 2015 Jun 16.
1298 How to make clinical decisions to avoid unnecessary prostate screening in biopsy-nave men with PI-RADs v2 score??.Int J Clin Oncol. 2020 Jan;25(1):175-186. doi: 10.1007/s10147-019-01524-9. Epub 2019 Aug 31.
1299 Scaffold attachment factor B1 regulates the androgen receptor in concert with the growth inhibitory kinase MST1 and the methyltransferase EZH2.Oncogene. 2014 Jun 19;33(25):3235-45. doi: 10.1038/onc.2013.294. Epub 2013 Jul 29.
1300 Prostate cell lines as models for biomarker discovery: performance of current markers and the search for new biomarkers.Prostate. 2014 May;74(5):547-60. doi: 10.1002/pros.22777. Epub 2014 Jan 16.
1301 Evaluation of pharmacokinetics/pharmacodynamics and efficacy of one-month depots of TAK-448 and TAK-683, investigational kisspeptin analogs, in male rats and an androgen-dependent prostate cancer model.Eur J Pharmacol. 2018 Mar 5;822:138-146. doi: 10.1016/j.ejphar.2018.01.012.
1302 Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells.Int J Cancer. 2011 May 15;128(10):2284-95. doi: 10.1002/ijc.25580.
1303 Interaction of NKX3.1 and SELENOP genotype with prostate cancer recurrence.Prostate. 2019 Apr;79(5):462-467. doi: 10.1002/pros.23752. Epub 2018 Dec 23.
1304 Steroidogenic factor 1 promotes aggressive growth of castration-resistant prostate cancer cells by stimulating steroid synthesis and cell proliferation.Endocrinology. 2014 Feb;155(2):358-69. doi: 10.1210/en.2013-1583. Epub 2013 Nov 21.
1305 Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers.Int J Mol Sci. 2019 Feb 12;20(3):774. doi: 10.3390/ijms20030774.
1306 Substitution at carbon 2 of 19-nor-1,25-dihydroxyvitamin D3 with 3-hydroxypropyl group generates an analogue with enhanced chemotherapeutic potency in PC-3 prostate cancer cells.J Steroid Biochem Mol Biol. 2011 Nov;127(3-5):269-75. doi: 10.1016/j.jsbmb.2011.08.010. Epub 2011 Sep 3.
1307 Adenovirus-mediated PEDF expression inhibits prostate cancer cell growth and results in augmented expression of PAI-2.Cancer Biol Ther. 2007 Mar;6(3):419-25. doi: 10.4161/cbt.6.3.3757. Epub 2007 Mar 28.
1308 Quantitative proteomic study of human prostate cancer cells with different metastatic potentials.Int J Oncol. 2016 Apr;48(4):1437-46. doi: 10.3892/ijo.2016.3378. Epub 2016 Feb 4.
1309 Nrf2 sensitizes prostate cancer cells to radiation via decreasing basal ROS levels.Biofactors. 2015 Jan-Feb;41(1):52-7. doi: 10.1002/biof.1200.
1310 Secreted frizzled-related protein 5 suppresses aggressive phenotype and reverses docetaxel resistance in prostate cancer.J Investig Med. 2019 Aug;67(6):1009-1017. doi: 10.1136/jim-2018-000849. Epub 2019 Feb 20.
1311 GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes.Clin Exp Metastasis. 2015 Dec;32(8):769-82. doi: 10.1007/s10585-015-9745-y. Epub 2015 Oct 1.
1312 Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-)-induced Smad signaling in prostate cancer cells.Carcinogenesis. 2012 Nov;33(11):2054-64. doi: 10.1093/carcin/bgs252. Epub 2012 Jul 27.
1313 Recurrent SKIL-activating rearrangements in ETS-negative prostate cancer.Oncotarget. 2015 Mar 20;6(8):6235-50. doi: 10.18632/oncotarget.3359.
1314 Differential 18F-FDG and 18F-Fluciclovine Uptake Pattern in a Patient With Poorly Differentiated Adenocarcinoma of the Lung and Prostate Cancer Biochemical Recurrence.Clin Nucl Med. 2020 Jan;45(1):e63-e64. doi: 10.1097/RLU.0000000000002781.
1315 Bortezomib prevents oncogenesis and bone metastasis of prostate cancer by inhibiting WWP1, Smurf1 and Smurf2.Int J Oncol. 2014 Oct;45(4):1469-78. doi: 10.3892/ijo.2014.2545. Epub 2014 Jul 17.
1316 Syntaphilin Is a Novel Biphasic Biomarker of Aggressive Prostate Cancer and a Metastasis Predictor.Am J Pathol. 2019 Jun;189(6):1180-1189. doi: 10.1016/j.ajpath.2019.02.009. Epub 2019 May 9.
1317 ErbB-2 signaling in advanced prostate cancer progression and potential therapy.Endocr Relat Cancer. 2019 Apr 1;26(4):R195-R209. doi: 10.1530/ERC-19-0009.
1318 Hepcidin regulation in prostate and its disruption in prostate cancer.Cancer Res. 2015 Jun 1;75(11):2254-63. doi: 10.1158/0008-5472.CAN-14-2465. Epub 2015 Apr 9.
1319 miR-539 inhibits prostate cancer progression by directly targeting SPAG5.J Exp Clin Cancer Res. 2016 Apr 1;35:60. doi: 10.1186/s13046-016-0337-8.
1320 Evidence for downregulation of the negative regulator SPRED2 in clinical prostate cancer.Br J Cancer. 2013 Feb 19;108(3):597-601. doi: 10.1038/bjc.2012.507. Epub 2012 Nov 20.
1321 Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer.Clin Cancer Res. 2016 Apr 1;22(7):1744-56. doi: 10.1158/1078-0432.CCR-15-1606. Epub 2015 Nov 9.
1322 The heat shock protein 70 inhibitor VER155008 suppresses the expression of HSP27, HOP and HSP90 and the androgen receptor, induces apoptosis, and attenuates prostate cancer cell growth.J Cell Biochem. 2020 Jan;121(1):407-417. doi: 10.1002/jcb.29195. Epub 2019 Jun 21.
1323 STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization.J Biol Chem. 2017 Nov 24;292(47):19392-19399. doi: 10.1074/jbc.M117.802884. Epub 2017 Oct 6.
1324 Adenoviral-mediated pHyde gene transfer and cisplatin additively inhibit human prostate cancer growth by enhancing apoptosis.Prostate. 2009 Feb 15;69(3):234-48. doi: 10.1002/pros.20867.
1325 Important role of SUMOylation of Spliceosome factors in prostate cancer cells.J Proteome Res. 2014 Aug 1;13(8):3571-82. doi: 10.1021/pr4012848. Epub 2014 Jul 24.
1326 Synaptopodin-2 induces assembly of peripheral actin bundles and immature focal adhesions to promote lamellipodia formation and prostate cancer cell migration.Oncotarget. 2015 May 10;6(13):11162-74. doi: 10.18632/oncotarget.3578.
1327 A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1.Nat Genet. 2014 Aug;46(8):891-4. doi: 10.1038/ng.3020. Epub 2014 Jun 29.
1328 Expression and purification of TAT-NDRG2 recombinant protein and evaluation of its anti-proliferative effect on LNCaP cell line.Protein Expr Purif. 2017 Oct;138:25-33. doi: 10.1016/j.pep.2017.07.004. Epub 2017 Jul 13.
1329 Tectonic? contributes to the growth and migration of prostate cancer cells invitro.Int J Mol Med. 2015 Oct;36(4):931-8. doi: 10.3892/ijmm.2015.2313. Epub 2015 Aug 14.
1330 TFDP3 was expressed in coordination with E2F1 to inhibit E2F1-mediated apoptosis in prostate cancer.Gene. 2014 Mar 10;537(2):253-9. doi: 10.1016/j.gene.2013.12.051. Epub 2014 Jan 7.
1331 Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients.Mol Cell Proteomics. 2019 Sep;18(9):1807-1823. doi: 10.1074/mcp.RA119.001612. Epub 2019 Jun 27.
1332 PKCalpha activation downregulates ATM and radio-sensitizes androgen-sensitive human prostate cancer cells in vitro and in vivo.Cancer Biol Ther. 2009 Jan;8(1):54-63. doi: 10.4161/cbt.8.1.7119. Epub 2009 Jan 4.
1333 Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer.Oncotarget. 2019 Oct 22;10(58):6234-6244. doi: 10.18632/oncotarget.27263. eCollection 2019 Oct 22.
1334 The mouse thymosin beta15 gene family displays unique complexity and encodes a functional thymosin repeat.J Mol Biol. 2009 Apr 10;387(4):809-25. doi: 10.1016/j.jmb.2009.02.026. Epub 2009 Feb 20.
1335 Identification of a novel microRNA-mRNA regulatory biomodule in human prostate cancer.Cell Death Dis. 2018 Feb 21;9(3):301. doi: 10.1038/s41419-018-0293-7.
1336 Identification of a candidate prognostic gene signature by transcriptome analysis of matched pre- and post-treatment prostatic biopsies from patients with advanced prostate cancer.BMC Cancer. 2014 Dec 18;14:977. doi: 10.1186/1471-2407-14-977.
1337 The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression.Oncogene. 2012 Nov 15;31(46):4878-87. doi: 10.1038/onc.2011.641. Epub 2012 Feb 13.
1338 The Arf-like GTPase Arl8b is essential for three-dimensional invasive growth of prostate cancer in vitro and xenograft formation and growth in vivo.Oncotarget. 2016 May 24;7(21):31037-52. doi: 10.18632/oncotarget.8832.
1339 GCPII modulates oxidative stress and prostate cancer susceptibility through changes in methylation of RASSF1, BNIP3, GSTP1 and Ec-SOD.Mol Biol Rep. 2013 Oct;40(10):5541-50. doi: 10.1007/s11033-013-2655-7. Epub 2013 Aug 24.
1340 BAP18 coactivates androgen receptor action and promotes prostate cancer progression.Nucleic Acids Res. 2016 Sep 30;44(17):8112-28. doi: 10.1093/nar/gkw472. Epub 2016 May 25.
1341 Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.Oncotarget. 2016 Jul 26;7(30):48011-48026. doi: 10.18632/oncotarget.10333.
1342 NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.Anticancer Agents Med Chem. 2013 Mar;13(3):502-14.
1343 Recurrent cis-SAGe chimeric RNA, D2HGDH-GAL3ST2, in prostate cancer.Cancer Lett. 2016 Sep 28;380(1):39-46. doi: 10.1016/j.canlet.2016.06.013. Epub 2016 Jun 17.
1344 Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway.Exp Cell Res. 2016 Nov 15;349(1):77-84. doi: 10.1016/j.yexcr.2016.09.023. Epub 2016 Oct 12.
1345 Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer.Oncotarget. 2016 Aug 23;7(34):54616-54626. doi: 10.18632/oncotarget.10520.
1346 Gene-expression analysis of gleason grade 3 tumor glands embedded in low- and high-risk prostate cancer.Oncotarget. 2016 Jun 21;7(25):37846-37856. doi: 10.18632/oncotarget.9344.
1347 Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers.Eur Urol. 2019 Dec;76(6):831-842. doi: 10.1016/j.eururo.2019.08.019. Epub 2019 Sep 16.
1348 A novel crosstalk between the tumor suppressors ING1 and ING2 regulates androgen receptor signaling.J Mol Med (Berl). 2016 Oct;94(10):1167-1179. doi: 10.1007/s00109-016-1440-1. Epub 2016 Jun 16.
1349 Long noncoding RNA LEF1-AS1 silencing suppresses the initiation and development of prostate cancer by acting as a molecular sponge of miR-330-5p via LEF1 repression.J Cell Physiol. 2019 Aug;234(8):12727-12744. doi: 10.1002/jcp.27893. Epub 2019 Jan 5.
1350 Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover.Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6997-7002. doi: 10.1073/pnas.1304502110. Epub 2013 Apr 4.
1351 Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer.Curr Gene Ther. 2013 Jun 1;13(3):163-74. doi: 10.2174/1566523211313030001.
1352 PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway.J Exp Clin Cancer Res. 2019 Jan 18;38(1):24. doi: 10.1186/s13046-019-1032-3.
1353 PEBP4 silencing inhibits hypoxia-induced epithelial-to-mesenchymal transition in prostate cancer cells.Biomed Pharmacother. 2016 Jul;81:1-6. doi: 10.1016/j.biopha.2016.03.030. Epub 2016 Apr 6.
1354 miR?9a?p targets PMEPA1 and induces prostate cancer cell proliferation, migration and invasion.Mol Med Rep. 2016 May;13(5):4030-8. doi: 10.3892/mmr.2016.5033. Epub 2016 Mar 21.
1355 TXNDC9 regulates oxidative stress-induced androgen receptor signaling to promote prostate cancer progression.Oncogene. 2020 Jan;39(2):356-367. doi: 10.1038/s41388-019-0991-3. Epub 2019 Sep 2.
1356 Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer.Oncotarget. 2016 Aug 16;7(33):53018-53028. doi: 10.18632/oncotarget.10061.
1357 RAMP1 is a direct NKX3.1 target gene up-regulated in prostate cancer that promotes tumorigenesis.Am J Pathol. 2013 Sep;183(3):951-63. doi: 10.1016/j.ajpath.2013.05.021. Epub 2013 Jul 16.
1358 S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer.Tumour Biol. 2016 Sep;37(9):12241-12250. doi: 10.1007/s13277-016-5096-9. Epub 2016 May 30.
1359 Effects of siRNA-mediated silencing of Sal-like 4 expression on proliferation and apoptosis of prostate cancer C4-2 cells.Genet Mol Res. 2016 May 13;15(2). doi: 10.4238/gmr.15027885.
1360 Variation in selenoenzyme genes and prostate cancer risk and survival.Prostate. 2013 May;73(7):734-42. doi: 10.1002/pros.22617. Epub 2012 Nov 9.
1361 Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1.Tumour Biol. 2016 Sep;37(9):12843-12854. doi: 10.1007/s13277-016-5158-z. Epub 2016 Jul 23.
1362 SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.Oncotarget. 2016 Jul 26;7(30):48250-48264. doi: 10.18632/oncotarget.10198.
1363 Folate and B12 in prostate cancer.Adv Clin Chem. 2013;60:1-63. doi: 10.1016/b978-0-12-407681-5.00001-5.
1364 The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex.Nat Genet. 2013 Nov;45(11):1392-8. doi: 10.1038/ng.2771. Epub 2013 Sep 29.
1365 Oncogenic miR-744 promotes prostate cancer growth through direct targeting of LKB1.Oncol Lett. 2019 Feb;17(2):2257-2265. doi: 10.3892/ol.2018.9822. Epub 2018 Dec 11.
1366 Identification of novel oncogenic events occurring early in prostate carcinogenesis using purified autologous malignant and non-malignant prostate epithelial cells.BJU Int. 2019 May;123 Suppl 5:27-35. doi: 10.1111/bju.14695.
1367 Reciprocal regulation of long noncoding RNAs THBS4?03 and THBS4 control migration and invasion in prostate cancer cell lines.Mol Med Rep. 2016 Aug;14(2):1451-8. doi: 10.3892/mmr.2016.5443. Epub 2016 Jun 23.
1368 High NRBP1 expression in prostate cancer is linked with poor clinical outcomes and increased cancer cell growth.Prostate. 2012 Nov;72(15):1678-87. doi: 10.1002/pros.22521. Epub 2012 Apr 2.
1369 Overexpression of the A Disintegrin and Metalloproteinase ADAM15 is linked to a Small but Highly Aggressive Subset of Prostate Cancers.Neoplasia. 2017 Apr;19(4):279-287. doi: 10.1016/j.neo.2017.01.005. Epub 2017 Mar 8.
1370 LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells.Cancer Res. 2011 Dec 1;71(23):7301-11. doi: 10.1158/0008-5472.CAN-11-2381. Epub 2011 Oct 6.
1371 Common polymorphisms in the adiponectin and its receptor genes, adiponectin levels and the risk of prostate cancer.Cancer Epidemiol Biomarkers Prev. 2011 Dec;20(12):2618-27. doi: 10.1158/1055-9965.EPI-11-0434. Epub 2011 Sep 29.
1372 AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer.Mol Cancer Res. 2013 Oct;11(10):1193-202. doi: 10.1158/1541-7786.MCR-13-0145. Epub 2013 Jul 17.
1373 ALDH1A3 correlates with luminal phenotype in prostate cancer.Tumour Biol. 2017 Apr;39(4):1010428317703652. doi: 10.1177/1010428317703652.
1374 Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors.PLoS One. 2017 Aug 2;12(8):e0180541. doi: 10.1371/journal.pone.0180541. eCollection 2017.
1375 gp78 is specifically expressed in human prostate cancer rather than normal prostate tissue.J Mol Histol. 2013 Dec;44(6):653-9. doi: 10.1007/s10735-013-9512-9. Epub 2013 May 12.
1376 Self-Normalized Detection of ANXA3 from Untreated Urine of Prostate Cancer Patients without Digital Rectal Examination.Adv Healthc Mater. 2017 Sep;6(17). doi: 10.1002/adhm.201700449. Epub 2017 Jul 13.
1377 Genetic variants in the LEPR, CRY1, RNASEL, IL4, and ARVCF genes are prognostic markers of prostate cancer-specific mortality.Cancer Epidemiol Biomarkers Prev. 2011 Sep;20(9):1928-36. doi: 10.1158/1055-9965.EPI-11-0236. Epub 2011 Aug 16.
1378 Deprivation of arginine by recombinant human arginase in prostate cancer cells.J Hematol Oncol. 2012 Apr 30;5:17. doi: 10.1186/1756-8722-5-17.
1379 Functional and cancer genomics of ASXL family members.Br J Cancer. 2013 Jul 23;109(2):299-306. doi: 10.1038/bjc.2013.281. Epub 2013 Jun 4.
1380 SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression.J Exp Clin Cancer Res. 2018 Jul 11;37(1):145. doi: 10.1186/s13046-018-0809-0.
1381 Prediction nomogram for (68)Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer.Eur J Nucl Med Mol Imaging. 2020 Jan;47(1):136-146. doi: 10.1007/s00259-019-04505-2. Epub 2019 Sep 6.
1382 Correlation between DEC1/DEC2 and epithelialmesenchymal transition in human prostate cancer PC? cells.Mol Med Rep. 2018 Oct;18(4):3859-3865. doi: 10.3892/mmr.2018.9367. Epub 2018 Aug 9.
1383 PTEN genomic deletions that characterize aggressive prostate cancer originate close to segmental duplications.Genes Chromosomes Cancer. 2012 Feb;51(2):149-60. doi: 10.1002/gcc.20939. Epub 2011 Nov 1.
1384 Expression of EMT-Related Genes CAMK2N1 and WNT5A is increased in Locally Invasive and Metastatic Prostate Cancer.J Cancer. 2019 Oct 15;10(24):5915-5925. doi: 10.7150/jca.34564. eCollection 2019.
1385 High Dimensional Variable Selection with Error Control.Biomed Res Int. 2016;2016:8209453. doi: 10.1155/2016/8209453. Epub 2016 Aug 15.
1386 LSD1 Activates PI3K/AKT Signaling Through Regulating p85 Expression in Prostate Cancer Cells.Front Oncol. 2019 Aug 2;9:721. doi: 10.3389/fonc.2019.00721. eCollection 2019.
1387 A regulatory circuit HP1/miR-451a/c-Myc promotes prostate cancer progression.Oncogene. 2018 Jan 25;37(4):415-426. doi: 10.1038/onc.2017.332. Epub 2017 Oct 2.
1388 Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies.Mol Oncol. 2018 Apr;12(4):545-560. doi: 10.1002/1878-0261.12183. Epub 2018 Mar 13.
1389 CCN3/Nephroblastoma Overexpressed Is a Functional Mediator of Prostate Cancer Bone Metastasis That Is Associated with Poor Patient Prognosis.Am J Pathol. 2019 Jul;189(7):1451-1461. doi: 10.1016/j.ajpath.2019.04.006. Epub 2019 Jun 12.
1390 Identification of transmembrane protein in prostate cancer by the Escherichia coli ampicillin secretion trap: expression of CDON is involved in tumor cell growth and invasion.Pathobiology. 2011;78(5):277-84. doi: 10.1159/000329588. Epub 2011 Aug 17.
1391 Copy number polymorphisms in new HapMap III and Singapore populations.J Hum Genet. 2011 Aug;56(8):552-60. doi: 10.1038/jhg.2011.54. Epub 2011 Jun 16.
1392 Claudin-1 upregulation is associated with favorable tumor features and a reduced risk for biochemical recurrence in ERG-positive prostate cancer.World J Urol. 2020 Sep;38(9):2185-2196. doi: 10.1007/s00345-019-03017-w. Epub 2019 Nov 19.
1393 Mesenchymal stem cells modified to express lentivirus TNF- Tumstatin(45-132) inhibit the growth of prostate cancer.J Cell Mol Med. 2011 Feb;15(2):433-44. doi: 10.1111/j.1582-4934.2009.00920.x.
1394 Identification of new genes downregulated in prostate cancer and investigation of their effects on prognosis.Genet Test Mol Biomarkers. 2013 Jul;17(7):562-6. doi: 10.1089/gtmb.2012.0524. Epub 2013 Apr 27.
1395 COX-2 mediates pro-tumorigenic effects of PKC in prostate cancer.Oncogene. 2018 Aug;37(34):4735-4749. doi: 10.1038/s41388-018-0318-9. Epub 2018 May 16.
1396 Expression of leukemia/lymphoma related factor (LRF/Pokemon) in human benign prostate hyperplasia and prostate cancer.Exp Mol Pathol. 2011 Apr;90(2):226-30. doi: 10.1016/j.yexmp.2011.01.003. Epub 2011 Jan 18.
1397 CTBP1 depletion on prostate tumors deregulates miRNA/mRNA expression and impairs cancer progression in metabolic syndrome mice.Cell Death Dis. 2019 Apr 1;10(4):299. doi: 10.1038/s41419-019-1535-z.
1398 Antimony enhances c-Myc stability in prostate cancer via activating CtBP2-ROCK1 signaling pathway.Ecotoxicol Environ Saf. 2018 Nov 30;164:61-68. doi: 10.1016/j.ecoenv.2018.07.070. Epub 2018 Aug 8.
1399 Expression of CCCTC-binding factor (CTCF) is linked to poor prognosis in prostate cancer.Mol Oncol. 2020 Jan;14(1):129-138. doi: 10.1002/1878-0261.12597. Epub 2019 Nov 29.
1400 Potential use of chymotrypsin-like proteasomal activity as a biomarker for prostate cancer.Oncol Lett. 2018 Apr;15(4):5149-5154. doi: 10.3892/ol.2018.7936. Epub 2018 Feb 2.
1401 NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer.Oncotarget. 2017 Mar 28;8(13):21501-21515. doi: 10.18632/oncotarget.15308.
1402 Inhibition of cytohesin-1 by siRNA leads to reduced IGFR signaling in prostate cancer.Braz J Med Biol Res. 2011 Jul;44(7):642-6. doi: 10.1590/s0100-879x2011007500072. Epub 2011 Jun 10.
1403 Insulin resistance in prostate cancer patients and predisposing them to acute ischemic heart disease.Biosci Rep. 2019 Jul 29;39(7):BSR20182313. doi: 10.1042/BSR20182313. Print 2019 Jul 31.
1404 Diaphanous-related formin-3 overexpression inhibits the migration and invasion of triple-negative breast cancer by inhibiting RhoA-GTP expression.Biomed Pharmacother. 2017 Oct;94:439-445. doi: 10.1016/j.biopha.2017.07.119. Epub 2017 Aug 2.
1405 Multicenter Optimization and Validation of a 2-Gene mRNA Urine Test for Detection of Clinically Significant Prostate Cancer before Initial Prostate Biopsy.J Urol. 2019 Aug;202(2):256-263. doi: 10.1097/JU.0000000000000293. Epub 2019 Jul 8.
1406 Combined analysis of CRMP4 methylation levels and CAPRA-S score predicts metastasis and outcomes in prostate cancer patients.Asian J Androl. 2018 Jan-Feb;20(1):56-61. doi: 10.4103/aja.aja_3_17.
1407 Association of DSC3 mRNA down-regulation in prostate cancer with promoter hypermethylation and poor prognosis.PLoS One. 2014 Mar 24;9(3):e92815. doi: 10.1371/journal.pone.0092815. eCollection 2014.
1408 Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of Wnt-3a and matrix metalloproteinases.Mol Biol Rep. 2013 Jul;40(7):4241-50. doi: 10.1007/s11033-013-2506-6. Epub 2013 May 8.
1409 Geraniol suppresses prostate cancer growth through down-regulation of E2F8. Cancer Med. 2016 Oct;5(10):2899-2908.
1410 Electrochemical detection of methylated DNA on a microfluidic chip with nanoelectrokinetic pre-concentration.Biosens Bioelectron. 2018 Jun 1;107:103-110. doi: 10.1016/j.bios.2018.01.067. Epub 2018 Feb 1.
1411 ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-B and drives prostate cancer progression.Cancer Res. 2013 Jul 15;73(14):4533-47. doi: 10.1158/0008-5472.CAN-12-4537. Epub 2013 May 16.
1412 Linkage between prostate cancer occurrence and Y-chromosomal DYS loci in Malaysian subjects.Asian Pac J Cancer Prev. 2011;12(5):1265-8.
1413 Epithelial membrane protein 1 promotes tumor metastasis by enhancing cell migration via copine-III and Rac1.Oncogene. 2018 Oct;37(40):5416-5434. doi: 10.1038/s41388-018-0286-0. Epub 2018 Jun 4.
1414 Integrative genomic, transcriptomic, and RNAi analysis indicates a potential oncogenic role for FAM110B in castration-resistant prostate cancer.Prostate. 2012 May 15;72(7):789-802. doi: 10.1002/pros.21487. Epub 2011 Sep 14.
1415 Low concentrations of alendronate increase the local invasive potential of osteoblastic sarcoma cell lines via connexin 43 activation.Pathol Res Pract. 2011 Jul 15;207(7):417-22. doi: 10.1016/j.prp.2011.04.007. Epub 2011 Jun 12.
1416 Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer.Oncogene. 2012 Apr 26;31(17):2153-63. doi: 10.1038/onc.2011.401. Epub 2011 Sep 12.
1417 Inflammation-associated DNA methylation patterns in epithelium of ulcerative colitis.Epigenetics. 2017 Aug;12(8):591-606. doi: 10.1080/15592294.2017.1334023. Epub 2017 May 30.
1418 Role and expression of FRS2 and FRS3 in prostate cancer.BMC Cancer. 2011 Nov 11;11:484. doi: 10.1186/1471-2407-11-484.
1419 Role of WNT5A receptors FZD5 and RYK in prostate cancer cells.Oncotarget. 2018 Jun 5;9(43):27293-27304. doi: 10.18632/oncotarget.25551. eCollection 2018 Jun 5.
1420 Frizzled-8 integrates Wnt-11 and transforming growth factor- signaling in prostate cancer.Nat Commun. 2018 May 1;9(1):1747. doi: 10.1038/s41467-018-04042-w.
1421 Genetic variants in the microRNA machinery gene GEMIN4 are associated with risk of prostate cancer: a case-control study of the Chinese Han population.DNA Cell Biol. 2012 Jul;31(7):1296-302. doi: 10.1089/dna.2011.1600. Epub 2012 Apr 16.
1422 G-13 induces CXC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-B.J Biol Chem. 2019 Nov 29;294(48):18192-18206. doi: 10.1074/jbc.RA119.010018. Epub 2019 Oct 21.
1423 G Protein 3 subunit gene C825T polymorphism and its association with the presence and clinicopathological characteristics of prostate cancer.J Urol. 2012 Jul;188(1):287-93. doi: 10.1016/j.juro.2012.02.2557. Epub 2012 May 16.
1424 Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress.Ann Oncol. 2017 Mar 1;28(3):569-575. doi: 10.1093/annonc/mdw646.
1425 Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination.Cancer Res. 2017 Mar 15;77(6):1485-1491. doi: 10.1158/0008-5472.CAN-16-1966. Epub 2017 Jan 20.
1426 Repression of androgen receptor activity by HEYL, a third member of the Hairy/Enhancer-of-split-related family of Notch effectors.J Biol Chem. 2011 May 20;286(20):17796-808. doi: 10.1074/jbc.M110.198655. Epub 2011 Mar 17.
1427 LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.PLoS One. 2016 Jan 15;11(1):e0146549. doi: 10.1371/journal.pone.0146549. eCollection 2016.
1428 Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B.Cancer Med. 2012 Oct;1(2):187-97. doi: 10.1002/cam4.19. Epub 2012 Aug 28.
1429 Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity.Oncogene. 2019 Feb;38(7):1121-1135. doi: 10.1038/s41388-018-0498-3. Epub 2018 Sep 18.
1430 Downregulation of IQGAP2 Correlates with Prostate Cancer Recurrence and Metastasis.Transl Oncol. 2019 Feb;12(2):236-244. doi: 10.1016/j.tranon.2018.10.009. Epub 2018 Nov 11.
1431 SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells.Oncotarget. 2017 Jun 21;8(32):53518-53530. doi: 10.18632/oncotarget.18591. eCollection 2017 Aug 8.
1432 HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population.Gene. 2017 May 20;613:20-24. doi: 10.1016/j.gene.2017.02.031. Epub 2017 Mar 1.
1433 High Expression of KIF22/Kinesin-Like DNA Binding Protein (Kid) as a Poor Prognostic Factor in Prostate Cancer Patients.Med Sci Monit. 2018 Nov 14;24:8190-8197. doi: 10.12659/MSM.912643.
1434 Transcription factor KLF13 inhibits AKT activation and suppresses the growth of prostate carcinoma cells.Cancer Biomark. 2018;22(3):533-541. doi: 10.3233/CBM-181196.
1435 Fine-mapping of prostate cancer aggressiveness loci on chromosome 7q22-35.Prostate. 2011 May 15;71(7):682-9. doi: 10.1002/pros.21284. Epub 2010 Oct 13.
1436 Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.Oncotarget. 2016 Dec 20;7(51):84645-84657. doi: 10.18632/oncotarget.13175.
1437 Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells.J Urol. 2016 May;195(5):1588-1597. doi: 10.1016/j.juro.2015.11.071. Epub 2015 Dec 9.
1438 Ligand-dependent corepressor acts as a novel androgen receptor corepressor, inhibits prostate cancer growth, and is functionally inactivated by the Src protein kinase.J Biol Chem. 2011 Oct 28;286(43):37108-17. doi: 10.1074/jbc.M111.292771. Epub 2011 Aug 19.
1439 Genomic analysis of DNA repair genes and androgen signaling in prostate cancer.BMC Cancer. 2018 Oct 10;18(1):960. doi: 10.1186/s12885-018-4848-x.
1440 LILRA3 is associated with benign prostatic hyperplasia risk in a Chinese Population.Int J Mol Sci. 2013 Apr 24;14(5):8832-40. doi: 10.3390/ijms14058832.
1441 An exome-wide rare variant analysis of Korean men identifies three novel genes predisposing to prostate cancer.Sci Rep. 2019 Nov 20;9(1):17173. doi: 10.1038/s41598-019-53445-2.
1442 Chromosomal structural variations during progression of a prostate epithelial cell line to a malignant metastatic state inactivate the NF2, NIPSNAP1, UGT2B17, and LPIN2 genes.Cancer Biol Ther. 2013 Sep;14(9):840-52. doi: 10.4161/cbt.25329. Epub 2013 Jul 26.
1443 CAPC negatively regulates NF-B activation and suppresses tumor growth and metastasis.Oncogene. 2012 Mar 29;31(13):1673-82. doi: 10.1038/onc.2011.355. Epub 2011 Aug 8.
1444 LRRC3B gene is frequently epigenetically inactivated in several epithelial malignancies and inhibits cell growth and replication.Biochimie. 2012 May;94(5):1151-7. doi: 10.1016/j.biochi.2012.01.019. Epub 2012 Feb 2.
1445 ORCA-010, a novel potency-enhanced oncolytic adenovirus, exerts strong antitumor activity in preclinical models.Hum Gene Ther. 2014 Oct;25(10):897-904. doi: 10.1089/hum.2013.229. Epub 2014 Sep 17.
1446 LZTS2 and PTEN collaboratively regulate -catenin in prostatic tumorigenesis.PLoS One. 2017 Mar 21;12(3):e0174357. doi: 10.1371/journal.pone.0174357. eCollection 2017.
1447 Transforming Growth Factor TGF Increases Levels of Microtubule-Associated Protein MAP1S and Autophagy Flux in Pancreatic Ductal Adenocarcinomas.PLoS One. 2015 Nov 16;10(11):e0143150. doi: 10.1371/journal.pone.0143150. eCollection 2015.
1448 Modulation of androgen receptor signaling in hormonal therapy-resistant prostate cancer cell lines.PLoS One. 2011;6(8):e23144. doi: 10.1371/journal.pone.0023144. Epub 2011 Aug 4.
1449 Identification of functionally active, low frequency copy number variants at 15q21.3 and 12q21.31 associated with prostate cancer risk.Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6686-91. doi: 10.1073/pnas.1117405109. Epub 2012 Apr 10.
1450 p53-induced gene 3 mediates cell death induced by glutathione peroxidase 3.J Biol Chem. 2012 May 11;287(20):16890-902. doi: 10.1074/jbc.M111.322636. Epub 2012 Mar 29.
1451 CNPY2 inhibits MYLIP-mediated AR protein degradation in prostate cancer cells.Oncotarget. 2018 Apr 3;9(25):17645-17655. doi: 10.18632/oncotarget.24824. eCollection 2018 Apr 3.
1452 MYO6 knockdown inhibits the growth and induces the apoptosis of prostate cancer cells by decreasing the phosphorylation of ERK1/2 and PRAS40.Oncol Rep. 2016 Sep;36(3):1285-92. doi: 10.3892/or.2016.4910. Epub 2016 Jun 29.
1453 Characterization of OCT3/4, Nestin, NANOG, CD44 and CD24 as stem cell markers in canine prostate cancer.Int J Biochem Cell Biol. 2019 Mar;108:21-28. doi: 10.1016/j.biocel.2019.01.002. Epub 2019 Jan 8.
1454 Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression.Clin Cancer Res. 2016 Aug 1;22(15):3937-49. doi: 10.1158/1078-0432.CCR-15-1983. Epub 2016 Mar 11.
1455 Human cytosolic sialidase NEU2-low general tissue expression but involvement in PC-3 prostate cancer cell survival.Biochem Biophys Res Commun. 2012 Nov 9;428(1):142-9. doi: 10.1016/j.bbrc.2012.10.028. Epub 2012 Oct 12.
1456 Inducible expression of antizyme 1 in prostate cancer cell lines after lentivirus mediated gene transfer.Amino Acids. 2012 Feb;42(2-3):559-64. doi: 10.1007/s00726-011-1033-9. Epub 2011 Jul 29.
1457 Epigenetic markers of prostate cancer in plasma circulating DNA.Hum Mol Genet. 2012 Aug 15;21(16):3619-31. doi: 10.1093/hmg/dds192. Epub 2012 May 22.
1458 PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis.Prostate. 2018 May;78(7):547-559. doi: 10.1002/pros.23499. Epub 2018 Mar 9.
1459 The RNA-Binding Protein PCBP1 Functions as a Tumor Suppressor in Prostate Cancer by Inhibiting Mitogen Activated Protein Kinase 1.Cell Physiol Biochem. 2018;48(4):1747-1754. doi: 10.1159/000492315. Epub 2018 Aug 3.
1460 Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.Nat Genet. 2018 Feb;50(2):219-228. doi: 10.1038/s41588-017-0026-3. Epub 2018 Jan 15.
1461 FAM84B promotes prostate tumorigenesis through a network alteration.Ther Adv Med Oncol. 2019 May 13;11:1758835919846372. doi: 10.1177/1758835919846372. eCollection 2019.
1462 Induction of retinol-binding protein 4 and placenta-specific 8 expression in human prostate cancer cells remaining in bone following osteolytic tumor growth inhibition by osteoprotegerin.Int J Oncol. 2013 Aug;43(2):365-74. doi: 10.3892/ijo.2013.1954. Epub 2013 May 24.
1463 SEMA3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1.EMBO Mol Med. 2018 Feb;10(2):219-238. doi: 10.15252/emmm.201707689.
1464 PGC1 Suppresses Prostate Cancer Cell Invasion through ERR Transcriptional Control.Cancer Res. 2019 Dec 15;79(24):6153-6165. doi: 10.1158/0008-5472.CAN-19-1231. Epub 2019 Oct 8.
1465 Proteasome inhibitor-I enhances tunicamycin-induced chemosensitization of prostate cancer cells through regulation of NF-B and CHOP expression.Cell Signal. 2011 May;23(5):857-65. doi: 10.1016/j.cellsig.2011.01.010. Epub 2011 Jan 27.
1466 Coordinated regulation of polycomb group complexes through microRNAs in cancer.Cancer Cell. 2011 Aug 16;20(2):187-99. doi: 10.1016/j.ccr.2011.06.016.
1467 PKD2 and PKD3 promote prostate cancer cell invasion by modulating NF-B- and HDAC1-mediated expression and activation of uPA.J Cell Sci. 2012 Oct 15;125(Pt 20):4800-11. doi: 10.1242/jcs.106542. Epub 2012 Jul 13.
1468 Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells.Free Radic Biol Med. 2011 Jul 1;51(1):78-87. doi: 10.1016/j.freeradbiomed.2011.04.001. Epub 2011 Apr 14.
1469 PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer.Mol Cancer Res. 2012 Dec;10(12):1555-66. doi: 10.1158/1541-7786.MCR-12-0314.
1470 Identification of kinases regulating prostate cancer cell growth using an RNAi phenotypic screen.PLoS One. 2012;7(6):e38950. doi: 10.1371/journal.pone.0038950. Epub 2012 Jun 27.
1471 The bispecific anti-CD3anti-CD155 antibody mediates T cell immunotherapy for human prostate cancer.Invest New Drugs. 2019 Oct;37(5):810-817. doi: 10.1007/s10637-018-0683-9. Epub 2018 Oct 29.
1472 Integration of regulatory networks by NKX3-1 promotes androgen-dependent prostate cancer survival.Mol Cell Biol. 2012 Jan;32(2):399-414. doi: 10.1128/MCB.05958-11. Epub 2011 Nov 14.
1473 RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2).Carcinogenesis. 2019 Mar 12;40(1):164-172. doi: 10.1093/carcin/bgy131.
1474 A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions.J Transl Med. 2011 Oct 28;9:185. doi: 10.1186/1479-5876-9-185.
1475 HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes.Genet Mol Res. 2013 Apr 25;12(2):1327-35. doi: 10.4238/2013.April.25.4.
1476 Long noncoding RNA AFAP1-AS1 accelerates the proliferation and metastasis of prostate cancer via inhibiting RBM5 expression.Eur Rev Med Pharmacol Sci. 2019 Apr;23(8):3284-3290. doi: 10.26355/eurrev_201904_17690.
1477 AIM1 promoter hypermethylation as a predictor of decreased risk of recurrence following radical prostatectomy.Prostate. 2012 Jul 1;72(10):1133-9. doi: 10.1002/pros.22461. Epub 2011 Nov 29.
1478 Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth.Mol Cell Endocrinol. 2012 Mar 5;350(1):87-98. doi: 10.1016/j.mce.2011.11.025. Epub 2011 Dec 2.
1479 Pre-diagnostic derivatives of reactive oxygen metabolites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies.Int J Cancer. 2019 Jul 1;145(1):49-57. doi: 10.1002/ijc.32073. Epub 2019 Jan 5.
1480 Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway.PLoS One. 2014 Oct 6;9(10):e108743. doi: 10.1371/journal.pone.0108743. eCollection 2014.
1481 The human ribonucleotide reductase subunit hRRM2 complements p53R2 in response to UV-induced DNA repair in cells with mutant p53.Cancer Res. 2003 Oct 15;63(20):6583-94.
1482 SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia.J Clin Invest. 2011 Nov;121(11):4257-67. doi: 10.1172/JCI58509. Epub 2011 Oct 3.
1483 SEL1L expression in non-small cell lung cancer.Hum Pathol. 2006 May;37(5):505-12. doi: 10.1016/j.humpath.2005.12.012. Epub 2006 Mar 20.
1484 A role for class 3 semaphorins in prostate cancer.Prostate. 2011 May;71(6):649-58. doi: 10.1002/pros.21281. Epub 2010 Oct 14.
1485 Single fraction urethra-sparing prostate cancer SBRT: Phase I results of the ONE SHOT trial.Radiother Oncol. 2019 Oct;139:83-86. doi: 10.1016/j.radonc.2019.07.018. Epub 2019 Aug 17.
1486 ETS1 induces transforming growth factor signaling and promotes epithelial-to-mesenchymal transition in prostate cancer cells.J Cell Biochem. 2019 Jan;120(1):848-860. doi: 10.1002/jcb.27446. Epub 2018 Aug 30.
1487 SPAG9 promotes prostate cancer proliferation and metastasis via MAPK signaling pathway.Am J Transl Res. 2019 Aug 15;11(8):5249-5260. eCollection 2019.
1488 Mutational analysis of SPANX genes in families with X-linked prostate cancer.Prostate. 2007 Jun 1;67(8):820-8. doi: 10.1002/pros.20561.
1489 Cancer/testis antigen SPATA19 is frequently expressed in benign prostatic hyperplasia and prostate cancer.APMIS. 2017 Dec;125(12):1092-1101. doi: 10.1111/apm.12775. Epub 2017 Oct 3.
1490 Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics.J Transl Med. 2017 Aug 15;15(1):175. doi: 10.1186/s12967-017-1276-7.
1491 SWAP70, actin-binding protein, function as an oncogene targeting tumor-suppressive miR-145 in prostate cancer.Prostate. 2011 Oct 1;71(14):1559-67. doi: 10.1002/pros.21372. Epub 2011 Feb 25.
1492 TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer.Mol Endocrinol. 2012 May;26(5):748-61. doi: 10.1210/me.2011-1242. Epub 2012 Mar 28.
1493 Reliable housekeeping gene combination for quantitative PCR of lymph nodes in patients with prostate cancer.Anticancer Res. 2013 Dec;33(12):5243-8.
1494 Identification of phosphorylated proteins involved in the oncogenesis of prostate cancer via Pin1-proteomic analysis.Prostate. 2012 May 1;72(6):626-37. doi: 10.1002/pros.21466. Epub 2011 Aug 1.
1495 Thrombospondin-2 promotes prostate cancer bone metastasis by the up-regulation of matrix metalloproteinase-2 through down-regulating miR-376c expression.J Hematol Oncol. 2017 Jan 25;10(1):33. doi: 10.1186/s13045-017-0390-6.
1496 The expression of Tousled kinases in CaP cell lines and its relation to radiation response and DSB repair.Prostate. 2011 Sep 15;71(13):1367-73. doi: 10.1002/pros.21358. Epub 2011 Feb 14.
1497 TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration.Prostate. 2011 Aug 1;71(11):1239-50. doi: 10.1002/pros.21340. Epub 2011 Jan 12.
1498 Histone H2A.Z prepares the prostate specific antigen (PSA) gene for androgen receptor-mediated transcription and is upregulated in a model of prostate cancer progression.Cancer Lett. 2012 Feb 1;315(1):38-47. doi: 10.1016/j.canlet.2011.10.003. Epub 2011 Oct 12.
1499 High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer.PLoS One. 2012;7(6):e39801. doi: 10.1371/journal.pone.0039801. Epub 2012 Jun 28.
1500 TRAF2 is a Valuable Prognostic Biomarker in Patients with Prostate Cancer.Med Sci Monit. 2017 Aug 31;23:4192-4204. doi: 10.12659/msm.903500.
1501 Transgenic Expression of the Mitochondrial Chaperone TNFR-associated Protein 1 (TRAP1) Accelerates Prostate Cancer Development.J Biol Chem. 2016 Nov 25;291(48):25247-25254. doi: 10.1074/jbc.M116.745950. Epub 2016 Oct 17.
1502 TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways.Cell Death Dis. 2018 Feb 5;9(2):155. doi: 10.1038/s41419-017-0197-y.
1503 PSA-alpha-2-macroglobulin complex is enzymatically active in the serum of patients with advanced prostate cancer and can degrade circulating peptide hormones.Prostate. 2018 Aug;78(11):819-829. doi: 10.1002/pros.23539. Epub 2018 Apr 16.
1504 Doxorubicin induces prostate cancer drug resistance by upregulation of ABCG4 through GSH depletion and CREB activation: Relevance of statins in chemosensitization.Mol Carcinog. 2019 Jul;58(7):1118-1133. doi: 10.1002/mc.22996. Epub 2019 Mar 4.
1505 Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling.Cell Commun Signal. 2019 Sep 18;17(1):120. doi: 10.1186/s12964-019-0410-y.
1506 A hnRNP KAR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer.Int J Mol Sci. 2018 Jun 30;19(7):1920. doi: 10.3390/ijms19071920.
1507 Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer.Prostate. 2005 Jun 1;63(4):316-23. doi: 10.1002/pros.20177.
1508 ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells.Cancer Sci. 2017 Oct;108(10):2011-2021. doi: 10.1111/cas.13339. Epub 2017 Sep 10.
1509 Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression.Biochem Pharmacol. 2019 Jan;159:52-63. doi: 10.1016/j.bcp.2018.11.005. Epub 2018 Nov 9.
1510 Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer.J Steroid Biochem Mol Biol. 2017 Nov;174:56-64. doi: 10.1016/j.jsbmb.2017.07.029. Epub 2017 Jul 27.
1511 BAF53A regulates androgen receptor-mediated gene expression and proliferation in LNCaP cells.Biochem Biophys Res Commun. 2018 Oct 28;505(2):618-623. doi: 10.1016/j.bbrc.2018.09.149. Epub 2018 Sep 29.
1512 Novel biomarkers for prostate cancer including noncoding transcripts.Am J Pathol. 2009 Dec;175(6):2264-76. doi: 10.2353/ajpath.2009.080868. Epub 2009 Nov 5.
1513 Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer.Medicine (Baltimore). 2016 Oct;95(40):e5085. doi: 10.1097/MD.0000000000005085.
1514 Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis.Acta Neuropathol. 2017 Dec;134(6):905-922. doi: 10.1007/s00401-017-1774-y. Epub 2017 Oct 13.
1515 The methionine salvage pathway-involving ADI1 inhibits hepatoma growth by epigenetically altering genes expression via elevating S-adenosylmethionine.Cell Death Dis. 2019 Mar 11;10(3):240. doi: 10.1038/s41419-019-1486-4.
1516 C10orf116 Gene Copy Number Loss in Prostate Cancer: Clinicopathological Correlations and Prognostic Significance.Med Sci Monit. 2017 Oct 30;23:5176-5183. doi: 10.12659/msm.906680.
1517 The role of hypofractionated radiotherapy for the definitive treatment of localized prostate cancer: early results of a randomized trial.J Cancer. 2019 Oct 16;10(25):6217-6224. doi: 10.7150/jca.35510. eCollection 2019.
1518 AFAP-110 is overexpressed in prostate cancer and contributes to tumorigenic growth by regulating focal contacts.J Clin Invest. 2007 Oct;117(10):2962-73. doi: 10.1172/JCI30710.
1519 Stroma-induced Jagged1 expression drives PC3 prostate cancer cell migration; disparate effects of RIP-generated proteolytic fragments on cell behaviour and Notch signaling.Biochem Biophys Res Commun. 2016 Mar 25;472(1):255-61. doi: 10.1016/j.bbrc.2016.02.101. Epub 2016 Feb 26.
1520 Targeting Nucleoporin POM121-Importin Axis in Prostate Cancer.Cell Chem Biol. 2018 Sep 20;25(9):1056-1058. doi: 10.1016/j.chembiol.2018.09.003.
1521 Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2.Int J Oncol. 2014 Jul;45(1):362-72. doi: 10.3892/ijo.2014.2413. Epub 2014 Apr 30.
1522 Phenotype-specific CpG island methylation events in a murine model of prostate cancer.Cancer Res. 2008 Jun 1;68(11):4173-82. doi: 10.1158/0008-5472.CAN-07-6715.
1523 AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment.Oncogenesis. 2018 May 25;7(5):43. doi: 10.1038/s41389-018-0053-7.
1524 Androgen receptor-regulated miRNA-193a-3p targets AJUBA to promote prostate cancer cell migration.Prostate. 2017 Jun;77(9):1000-1011. doi: 10.1002/pros.23356. Epub 2017 Apr 19.
1525 ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding.PLoS Comput Biol. 2017 Feb 23;13(2):e1005345. doi: 10.1371/journal.pcbi.1005345. eCollection 2017 Feb.
1526 Fluorescence Monitoring of the Oxidative Repair of DNA Alkylation Damage by ALKBH3, a Prostate Cancer Marker.J Am Chem Soc. 2016 Mar 23;138(11):3647-50. doi: 10.1021/jacs.6b00986. Epub 2016 Mar 15.
1527 The associations of DNA methylation alterations in oxidative stress-related genes with cancer incidence and mortality outcomes: a population-based cohort study.Clin Epigenetics. 2019 Jan 24;11(1):14. doi: 10.1186/s13148-018-0604-y.
1528 Ambra1 induces autophagy and desensitizes human prostate cancer cells to cisplatin.Biosci Rep. 2019 Aug 23;39(8):BSR20170770. doi: 10.1042/BSR20170770. Print 2019 Aug 30.
1529 A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors. Oncotarget. 2015 Jul 30;6(21):18693-706.
1530 Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway.Oncogene. 2019 Apr;38(14):2516-2532. doi: 10.1038/s41388-018-0602-8. Epub 2018 Dec 7.
1531 Antigen-specific IgG elicited in subjects with prostate cancer treated with flt3 ligand.J Immunother. 2005 May-Jun;28(3):268-75. doi: 10.1097/01.cji.0000158853.15664.0c.
1532 ANKRD22 is involved in the progression of prostate cancer.Oncol Lett. 2019 Oct;18(4):4106-4113. doi: 10.3892/ol.2019.10738. Epub 2019 Aug 9.
1533 Tumor suppression and potentiation by manipulation of pp32 expression.Oncogene. 2001 Apr 19;20(17):2153-60. doi: 10.1038/sj.onc.1204294.
1534 Modulation of oncogenic potential by alternative gene use in human prostate cancer.Nat Med. 1999 Mar;5(3):275-9. doi: 10.1038/6488.
1535 Rap1-GTP-interacting adaptor molecule (RIAM) protein controls invasion and growth of melanoma cells.J Biol Chem. 2011 May 27;286(21):18492-504. doi: 10.1074/jbc.M110.189811. Epub 2011 Mar 26.
1536 Cholesterol Induces Epithelial-to-Mesenchymal Transition of Prostate Cancer Cells by Suppressing Degradation of EGFR through APMAP.Cancer Res. 2019 Jun 15;79(12):3063-3075. doi: 10.1158/0008-5472.CAN-18-3295. Epub 2019 Apr 15.
1537 APOBEC3A/B deletion polymorphism and cancer risk.Carcinogenesis. 2018 Feb 9;39(2):118-124. doi: 10.1093/carcin/bgx131.
1538 Apolipoprotein C1 promotes prostate cancer cell proliferation in vitro.J Biochem Mol Toxicol. 2018 May 2;32(7):e22158. doi: 10.1002/jbt.22158. Online ahead of print.
1539 Apolipoprotein-D: a novel cellular marker for HGPIN and prostate cancer.Prostate. 2004 Feb 1;58(2):103-8. doi: 10.1002/pros.10343.
1540 The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer.Oncotarget. 2017 May 9;8(19):31215-31226. doi: 10.18632/oncotarget.16107.
1541 Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence.Hum Pathol. 2016 Feb;48:102-10. doi: 10.1016/j.humpath.2015.09.026. Epub 2015 Oct 22.
1542 AQP8 inhibits colorectal cancer growth and metastasis by down-regulating PI3K/AKT signaling and PCDH7 expression.Am J Cancer Res. 2018 Feb 1;8(2):266-279. eCollection 2018.
1543 Lentiviral vector-mediated insertional mutagenesis screen identifies genes that influence androgen independent prostate cancer progression and predict clinical outcome.Mol Carcinog. 2016 Nov;55(11):1761-1771. doi: 10.1002/mc.22425. Epub 2015 Oct 29.
1544 ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells.Biochim Biophys Acta. 2013 Feb;1832(2):365-74. doi: 10.1016/j.bbadis.2012.11.010. Epub 2012 Nov 28.
1545 Suppression of PKC causes oncogenic stress for triggering apoptosis in cancer cells.Oncotarget. 2017 May 9;8(19):30992-31002. doi: 10.18632/oncotarget.16047.
1546 Phospholipase C gamma 1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion.Oncogene. 2008 May 1;27(20):2823-32. doi: 10.1038/sj.onc.1210954. Epub 2007 Nov 26.
1547 The role of katanin p60 in breast cancer bone metastasis.Oncol Lett. 2018 Apr;15(4):4963-4969. doi: 10.3892/ol.2018.7942. Epub 2018 Feb 2.
1548 Downregulation of ARID4A and ARID4B promote tumor progression and directly regulated by microRNA-30d in patient with prostate cancer.J Cell Biochem. 2018 Sep;119(9):7245-7255. doi: 10.1002/jcb.26913. Epub 2018 May 24.
1549 Identification of the PTEN-ARID4B-PI3K pathway reveals the dependency on ARID4B by PTEN-deficient prostate cancer.Nat Commun. 2019 Sep 24;10(1):4332. doi: 10.1038/s41467-019-12184-8.
1550 AT-rich interactive domain 5B regulates androgen receptor transcription in human prostate cancer cells.Prostate. 2018 Dec;78(16):1238-1247. doi: 10.1002/pros.23699. Epub 2018 Jul 19.
1551 ARRDC3 Inhibits the Progression of Human Prostate Cancer Through ARRDC3-ITG4 Pathway.Curr Mol Med. 2017;17(3):221-229. doi: 10.2174/1566524017666170807144711.
1552 ASAP1, a gene at 8q24, is associated with prostate cancer metastasis.Cancer Res. 2008 Jun 1;68(11):4352-9. doi: 10.1158/0008-5472.CAN-07-5237.
1553 Exploring targets of TET2-mediated methylation reprogramming as potential discriminators of prostate cancer progression.Clin Epigenetics. 2019 Mar 27;11(1):54. doi: 10.1186/s13148-019-0651-z.
1554 hASH1 nuclear localization persists in neuroendocrine transdifferentiated prostate cancer cells, even upon reintroduction of androgen.Sci Rep. 2019 Dec 13;9(1):19076. doi: 10.1038/s41598-019-55665-y.
1555 Knockdown of anti-silencing function 1B histone chaperone induces cell apoptosis via repressing PI3K/Akt pathway in prostate cancer.Int J Oncol. 2018 Nov;53(5):2056-2066. doi: 10.3892/ijo.2018.4526. Epub 2018 Aug 16.
1556 Correction: ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3--catenin signaling.Oncogene. 2019 Feb;38(8):1354. doi: 10.1038/s41388-018-0561-0.
1557 Reduced Arginyltransferase 1 is a driver and a potential prognostic indicator of prostate cancer metastasis.Oncogene. 2019 Feb;38(6):838-851. doi: 10.1038/s41388-018-0462-2. Epub 2018 Sep 3.
1558 Activation of UPR Signaling Pathway is Associated With the Malignant Progression and Poor Prognosis in Prostate Cancer.Prostate. 2017 Feb;77(3):274-281. doi: 10.1002/pros.23264. Epub 2016 Oct 8.
1559 Dynamics of Atg5-Atg12-Atg16L1 Aggregation and Deaggregation.Methods Enzymol. 2017;587:247-255. doi: 10.1016/bs.mie.2016.09.059. Epub 2016 Dec 3.
1560 Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer.Oncol Rep. 2016 Jan;35(1):64-72. doi: 10.3892/or.2015.4331. Epub 2015 Oct 16.
1561 In Vivo 3D MRI Measurement of Tumour Volume in an Orthotopic Mouse Model of Prostate Cancer.Cancer Control. 2019 Jan-Dec;26(1):1073274819846590. doi: 10.1177/1073274819846590.
1562 Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells.BMC Cancer. 2019 Apr 25;19(1):381. doi: 10.1186/s12885-019-5590-8.
1563 Reduced Levels of ATP Synthase Subunit ATP5F1A Correlate with Earlier-Onset Prostate Cancer.Oxid Med Cell Longev. 2018 Nov 14;2018:1347174. doi: 10.1155/2018/1347174. eCollection 2018.
1564 Ectopic expression of the ATP synthase subunit on the membrane of PC-3M cells supports its potential role in prostate cancer metastasis.Int J Oncol. 2017 Apr;50(4):1312-1320. doi: 10.3892/ijo.2017.3878. Epub 2017 Feb 16.
1565 V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss.Oncotarget. 2019 Aug 13;10(48):4923-4936. doi: 10.18632/oncotarget.27075. eCollection 2019 Aug 13.
1566 Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells.Int J Oncol. 2004 Jan;24(1):97-105.
1567 Mutations in the AXIN1 gene in advanced prostate cancer.Eur Urol. 2009 Sep;56(3):486-94. doi: 10.1016/j.eururo.2008.05.029. Epub 2008 May 23.
1568 The association between three AXIN2 variants and cancer risk.J Cell Biochem. 2019 Sep;120(9):15561-15571. doi: 10.1002/jcb.28823. Epub 2019 Apr 30.
1569 Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel.J Exp Clin Cancer Res. 2017 Dec 8;36(1):178. doi: 10.1186/s13046-017-0649-3.
1570 Cytoprotective effect of neuropeptides on cancer stem cells: vasoactive intestinal peptide-induced antiapoptotic signaling.Cell Death Dis. 2017 Jun 1;8(6):e2844. doi: 10.1038/cddis.2017.226.
1571 Regulation of bombesin-stimulated cyclooxygenase-2 expression in prostate cancer cells.BMC Mol Biol. 2011 Jul 11;12:29. doi: 10.1186/1471-2199-12-29.
1572 High BCAR1 expression is associated with early PSA recurrence in ERG negative prostate cancer.BMC Cancer. 2018 Jan 5;18(1):37. doi: 10.1186/s12885-017-3956-3.
1573 Apoptotic activity and mechanism of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic-acid and related synthetic triterpenoids in prostate cancer.Cancer Res. 2008 Apr 15;68(8):2927-33. doi: 10.1158/0008-5472.CAN-07-5759.
1574 Bcl-B expression in human epithelial and nonepithelial malignancies.Clin Cancer Res. 2008 May 15;14(10):3011-21. doi: 10.1158/1078-0432.CCR-07-1955.
1575 Expression mapping at 12p12-13 in advanced prostate carcinoma.Int J Cancer. 2004 May 1;109(5):668-72. doi: 10.1002/ijc.20060.
1576 -Carotene 9',10' Oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model.Cancer Prev Res (Phila). 2017 Feb;10(2):161-169. doi: 10.1158/1940-6207.CAPR-15-0402. Epub 2016 Nov 2.
1577 Bone mineral density, structure, distribution and strength in men with prostate cancer treated with androgen deprivation therapy.Bone. 2019 Oct;127:367-375. doi: 10.1016/j.bone.2019.06.005. Epub 2019 Jun 9.
1578 CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model.J Exp Clin Cancer Res. 2017 Jun 28;36(1):90. doi: 10.1186/s13046-017-0561-x.
1579 III-tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion.Am J Pathol. 2014 Mar;184(3):609-17. doi: 10.1016/j.ajpath.2013.11.007. Epub 2013 Dec 28.
1580 High levels of glioma tumor suppressor candidate region gene 1 predicts a poor prognosis for prostate cancer.Oncol Lett. 2018 Nov;16(5):6749-6755. doi: 10.3892/ol.2018.9490. Epub 2018 Sep 24.
1581 Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer.Oncogene. 2001 Sep 20;20(42):6073-83. doi: 10.1038/sj.onc.1204736.
1582 KLF4, a miR-32-5p targeted gene, promotes cisplatin-induced apoptosis by upregulating BIK expression in prostate cancer.Cell Commun Signal. 2018 Sep 3;16(1):53. doi: 10.1186/s12964-018-0270-x.
1583 Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma.Int J Cancer. 2000 Apr 15;86(2):155-61. doi: 10.1002/(sici)1097-0215(20000415)86:2<155::aid-ijc2>3.0.co;2-m.
1584 Germline BLM mutations and metastatic prostate cancer.Prostate. 2020 Feb;80(2):235-237. doi: 10.1002/pros.23924. Epub 2019 Nov 5.
1585 Sequence and expression of bone morphogenetic protein 3 mRNA in prolonged cultures of fetal rat calvarial osteoblasts and in rat prostate adenocarcinoma PA III cells.DNA Cell Biol. 1995 Mar;14(3):235-9. doi: 10.1089/dna.1995.14.235.
1586 A miR-125b binding site polymorphism in bone morphogenetic protein membrane receptor type IB gene and prostate cancer risk in China.Mol Biol Rep. 2012 Jan;39(1):369-73. doi: 10.1007/s11033-011-0747-9. Epub 2011 May 10.
1587 BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration.Oncogene. 2020 Feb;39(8):1797-1806. doi: 10.1038/s41388-019-1106-x. Epub 2019 Nov 18.
1588 Breast cancer metastasis suppressor 1 (BRMS1) suppresses prostate cancer progression by inducing apoptosis and regulating invasion.Eur Rev Med Pharmacol Sci. 2017 Jan;21(1):68-75.
1589 Multi-lectin Affinity Chromatography and Quantitative Proteomic Analysis Reveal Differential Glycoform Levels between Prostate Cancer and Benign Prostatic Hyperplasia Sera.Sci Rep. 2018 Apr 25;8(1):6509. doi: 10.1038/s41598-018-24270-w.
1590 BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1.J Exp Clin Cancer Res. 2019 May 28;38(1):227. doi: 10.1186/s13046-019-1222-z.
1591 New Insights into the Binding Mechanism of Co-regulator BUD31 to AR AF2 Site: Structural Determination and Analysis of the Mutation Effect.Curr Comput Aided Drug Des. 2020;16(1):45-53. doi: 10.2174/1573409915666190502153307.
1592 O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer.FASEB J. 2018 Jun 15:fj201800687. doi: 10.1096/fj.201800687. Online ahead of print.
1593 Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration.BMC Cancer. 2017 Jun 26;17(1):447. doi: 10.1186/s12885-017-3413-3.
1594 Overexpression and gene amplification of BAG-1L in hormone-refractory prostate cancer.J Pathol. 2007 Aug;212(4):395-401. doi: 10.1002/path.2186.
1595 RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer.EBioMedicine. 2018 Jun;32:234-244. doi: 10.1016/j.ebiom.2018.05.010. Epub 2018 Jun 1.
1596 Clinical significance of SCCRO (DCUN1D1) in prostate cancer and its proliferation-inhibiting effect on Lncap cells.Eur Rev Med Pharmacol Sci. 2017 Oct;21(19):4283-4291.
1597 Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer.Jpn J Cancer Res. 2002 Jun;93(6):605-9. doi: 10.1111/j.1349-7006.2002.tb01297.x.
1598 Hypoexpression and epigenetic regulation of candidate tumor suppressor gene CADM-2 in human prostate cancer.Clin Cancer Res. 2010 Nov 15;16(22):5390-401. doi: 10.1158/1078-0432.CCR-10-1461. Epub 2010 Nov 9.
1599 Function and therapeutic implication of C-CAM cell-adhesion molecule in prostate cancer.Semin Oncol. 1999 Apr;26(2):227-33.
1600 Repeatability of radiomics and machine learning for DWI: Short-term repeatability study of 112 patients with prostate cancer.Magn Reson Med. 2020 Jun;83(6):2293-2309. doi: 10.1002/mrm.28058. Epub 2019 Nov 8.
1601 NCL1, A Highly Selective Lysine-Specific Demethylase 1 Inhibitor, Suppresses Castration-Resistant Prostate Cancer Growth via Regulation of Apoptosis and Autophagy.J Clin Med. 2019 Mar 31;8(4):442. doi: 10.3390/jcm8040442.
1602 Capn4 expression is modulated by microRNA-520b and exerts an oncogenic role in prostate cancer cells by promoting Wnt/-catenin signaling.Biomed Pharmacother. 2018 Dec;108:467-475. doi: 10.1016/j.biopha.2018.09.019. Epub 2018 Sep 18.
1603 Prostate Cancer-associated SPOP mutations enhance cancer cell survival and docetaxel resistance by upregulating Caprin1-dependent stress granule assembly.Mol Cancer. 2019 Nov 26;18(1):170. doi: 10.1186/s12943-019-1096-x.
1604 The complex genetic epidemiology of prostate cancer.Hum Mol Genet. 2004 Apr 1;13 Spec No 1:R103-21. doi: 10.1093/hmg/ddh072. Epub 2004 Jan 28.
1605 Does Subclassification of Pathologically Organ Confined (pT2) Prostate Cancer Provide Prognostic Discrimination of Outcomes after Radical Prostatectomy?.J Urol. 2018 Jun;199(6):1502-1509. doi: 10.1016/j.juro.2017.12.056. Epub 2018 Jan 4.
1606 Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.PLoS One. 2015 May 5;10(5):e0126056. doi: 10.1371/journal.pone.0126056. eCollection 2015.
1607 The migration and invasion of human prostate cancer cell lines involves CD151 expression.Oncol Rep. 2010 Dec;24(6):1593-7. doi: 10.3892/or_00001022.
1608 Heterochromatin Protein 1 Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer.Cancer Res. 2018 May 15;78(10):2691-2704. doi: 10.1158/0008-5472.CAN-17-3677. Epub 2018 Feb 27.
1609 Deleted in breast cancer 1, a novel androgen receptor (AR) coactivator that promotes AR DNA-binding activity.J Biol Chem. 2009 Mar 13;284(11):6832-40. doi: 10.1074/jbc.M808988200. Epub 2009 Jan 5.
1610 Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.BMC Genomics. 2018 Jun 11;19(1):450. doi: 10.1186/s12864-018-4827-2.
1611 Expression and functional role of CCR9 in prostate cancer cell migration and invasion.Clin Cancer Res. 2004 Dec 15;10(24):8743-50. doi: 10.1158/1078-0432.CCR-04-0266.
1612 Circ_KATNAL1 regulates prostate cancer cell growth and invasiveness through the miR-145-3p/WISP1 pathway.Biochem Cell Biol. 2020 Jun;98(3):396-404. doi: 10.1139/bcb-2019-0211. Epub 2019 Dec 4.
1613 Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-like Prostate Cancer Cells in the Bone Marrow.Cancer Res. 2016 Apr 15;76(8):2453-64. doi: 10.1158/0008-5472.CAN-15-2340. Epub 2016 Feb 26.
1614 MicroRNA-23b and microRNA-27b plus flutamide treatment enhances apoptosis rate and decreases CCNG1 expression in a castration-resistant prostate cancer cell line.Tumour Biol. 2018 Nov;40(11):1010428318803011. doi: 10.1177/1010428318803011.
1615 Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.Int J Cancer. 2017 Oct 15;141(8):1643-1653. doi: 10.1002/ijc.30864. Epub 2017 Jul 12.
1616 Randomised Phase II Feasibility Trial of Image-guided External Beam Radiotherapy With or Without High Dose Rate Brachytherapy Boost in Men with Intermediate-risk Prostate Cancer (CCTG PR15/ NCT01982786).Clin Oncol (R Coll Radiol). 2018 Sep;30(9):527-533. doi: 10.1016/j.clon.2018.05.007. Epub 2018 Jun 11.
1617 Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity.Eur J Med Chem. 2017 Aug 18;136:212-222. doi: 10.1016/j.ejmech.2017.05.017. Epub 2017 May 5.
1618 Comparative transcriptional study of the effects of high intracellular zinc on prostate carcinoma cells.Oncol Rep. 2010 Jun;23(6):1501-16. doi: 10.3892/or_00000789.
1619 Erythropoietin stimulates growth and STAT5 phosphorylation in human prostate epithelial and prostate cancer cells.Prostate. 2006 Feb 1;66(2):135-45. doi: 10.1002/pros.20310.
1620 Bimodal CD40/Fas-Dependent Crosstalk between iNKT Cells and Tumor-Associated Macrophages Impairs Prostate Cancer Progression.Cell Rep. 2018 Mar 13;22(11):3006-3020. doi: 10.1016/j.celrep.2018.02.058.
1621 Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications.Clin Cancer Res. 2006 Mar 1;12(5):1412-9. doi: 10.1158/1078-0432.CCR-05-1906.
1622 A candidate prostate cancer susceptibility gene encodes tRNA 3' processing endoribonuclease.Nucleic Acids Res. 2003 May 1;31(9):2272-8. doi: 10.1093/nar/gkg337.
1623 Androgen regulation of the human pseudoautosomal gene MIC2, a potential marker for prostate cancer.Mol Carcinog. 1998 Sep;23(1):13-9.
1624 Oncogenic Properties of NEAT1 in Prostate Cancer Cells Depend on the CDC5L-AGRN Transcriptional Regulation Circuit.Cancer Res. 2018 Aug 1;78(15):4138-4149. doi: 10.1158/0008-5472.CAN-18-0688. Epub 2018 Jun 5.
1625 R1 Regulates Prostate Tumor Growth and Progression By Transcriptional Suppression of the E3 Ligase HUWE1 to Stabilize c-Myc.Mol Cancer Res. 2018 Dec;16(12):1940-1951. doi: 10.1158/1541-7786.MCR-16-0346. Epub 2018 Jul 24.
1626 Regulation of inside-out 1-integrin activation by CDCP1.Oncogene. 2018 May;37(21):2817-2836. doi: 10.1038/s41388-018-0142-2. Epub 2018 Mar 7.
1627 Gene panel model predictive of outcome in men at high-risk of systemic progression and death from prostate cancer after radical retropubic prostatectomy.J Clin Oncol. 2008 Aug 20;26(24):3930-6. doi: 10.1200/JCO.2007.15.6752.
1628 The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1.J Exp Clin Cancer Res. 2018 Sep 5;37(1):219. doi: 10.1186/s13046-018-0895-z.
1629 Cell cycle regulator cdk2ap1 inhibits prostate cancer cell growth and modifies androgen-responsive pathway function.Prostate. 2009 Oct 1;69(14):1586-97. doi: 10.1002/pros.21007.
1630 Diabetes genes and prostate cancer in the Atherosclerosis Risk in Communities study.Cancer Epidemiol Biomarkers Prev. 2010 Feb;19(2):558-65. doi: 10.1158/1055-9965.EPI-09-0902.
1631 Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling.Biomed Pharmacother. 2017 Dec;96:1109-1118. doi: 10.1016/j.biopha.2017.11.112. Epub 2017 Nov 28.
1632 Challenges in optimizing a prostate carcinoma binding peptide, identified through the phage display technology.Molecules. 2011 Feb 14;16(2):1559-78. doi: 10.3390/molecules16021559.
1633 Long noncoding RNA HCP5 promotes prostate cancer cell proliferation by acting as the sponge of miR?656 to modulate CEMIP expression.Oncol Rep. 2020 Jan;43(1):328-336. doi: 10.3892/or.2019.7404. Epub 2019 Nov 8.
1634 Mapping Complex Traits in a Diversity Outbred F1 Mouse Population Identifies Germline Modifiers of Metastasis in Human Prostate Cancer.Cell Syst. 2017 Jan 25;4(1):31-45.e6. doi: 10.1016/j.cels.2016.10.018. Epub 2016 Dec 1.
1635 MicroRNA-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting CEP55.Am J Transl Res. 2018 Aug 15;10(8):2457-2468. eCollection 2018.
1636 Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation.Mol Cancer Ther. 2018 Sep;17(9):1927-1940. doi: 10.1158/1535-7163.MCT-17-1138. Epub 2018 Jun 11.
1637 DNA methylation and immunohistochemical analysis of the S100A4 calcium binding protein in human prostate cancer.Prostate. 2007 Mar 1;67(4):341-7. doi: 10.1002/pros.20401.
1638 DC-SCRIPT: AR and VDR regulator lost upon transformation of prostate epithelial cells.Prostate. 2012 Dec 1;72(16):1708-17. doi: 10.1002/pros.22522. Epub 2012 Apr 2.
1639 Design and synthesis of substituted dihydropyrimidinone derivatives as cytotoxic and tubulin polymerization inhibitors.Bioorg Chem. 2019 Dec;93:103317. doi: 10.1016/j.bioorg.2019.103317. Epub 2019 Sep 26.
1640 Ursolic acid activates the apoptosis of prostate cancer via ROCK/PTEN mediated mitochondrial translocation of cofilin-1.Oncol Lett. 2018 Mar;15(3):3202-3206. doi: 10.3892/ol.2017.7689. Epub 2017 Dec 27.
1641 Long noncoding RNA SOX2-OT facilitates prostate cancer cell proliferation and migration via miR-369-3p/CFL2 axis.Biochem Biophys Res Commun. 2019 Dec 10;520(3):586-593. doi: 10.1016/j.bbrc.2019.09.108. Epub 2019 Oct 14.
1642 Whole exome sequencing in 75 high-risk families with validation and replication in independent case-control studies identifies TANGO2, OR5H14, and CHAD as new prostate cancer susceptibility genes.Oncotarget. 2017 Jan 3;8(1):1495-1507. doi: 10.18632/oncotarget.13646.
1643 CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis.Cancer Cell. 2019 Apr 15;35(4):603-617.e8. doi: 10.1016/j.ccell.2019.03.001. Epub 2019 Mar 28.
1644 Frequent disruption of chromodomain helicase DNA-binding protein 8 (CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia. 2014 Dec;16(12):1018-27. doi: 10.1016/j.neo.2014.10.003.
1645 Proteomic analysis of urinary extracellular vesicles from high Gleason score prostate cancer.Sci Rep. 2017 Feb 17;7:42961. doi: 10.1038/srep42961.
1646 Polyphyllin I inhibits invasion and epithelial-mesenchymal transition via CIP2A/PP2A/ERK signaling in prostate cancer.Int J Oncol. 2018 Sep;53(3):1279-1288. doi: 10.3892/ijo.2018.4464. Epub 2018 Jun 29.
1647 Down-regulating cold shock protein genes impairs cancer cell survival and enhances chemosensitivity.J Cell Biochem. 2009 May 1;107(1):179-88. doi: 10.1002/jcb.22114.
1648 p27T187A knockin identifies Skp2/Cks1 pocket inhibitors for advanced prostate cancer.Oncogene. 2017 Jan 5;36(1):60-70. doi: 10.1038/onc.2016.175. Epub 2016 May 16.
1649 CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease.Int J Cancer. 2018 Aug 15;143(4):897-906. doi: 10.1002/ijc.31379. Epub 2018 Mar 30.
1650 CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration.Cancer Sci. 2017 Jul;108(7):1386-1393. doi: 10.1111/cas.13269. Epub 2017 Jun 2.
1651 Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis.Viruses. 2018 Aug 7;10(8):412. doi: 10.3390/v10080412.
1652 Heritable methylation marks associated with breast and prostate cancer risk.Prostate. 2018 Sep;78(13):962-969. doi: 10.1002/pros.23654. Epub 2018 May 29.
1653 Age-related DNA methylation changes in normal human prostate tissues.Clin Cancer Res. 2007 Jul 1;13(13):3796-802. doi: 10.1158/1078-0432.CCR-07-0085.
1654 Ginsenoside Rh2 Inhibits Angiogenesis in Prostate Cancer by Targeting CNNM1.J Nanosci Nanotechnol. 2019 Apr 1;19(4):1942-1950. doi: 10.1166/jnn.2019.16404.
1655 COBLL1 modulates cell morphology and facilitates androgen receptor genomic binding in advanced prostate cancer.Proc Natl Acad Sci U S A. 2018 May 8;115(19):4975-4980. doi: 10.1073/pnas.1721957115. Epub 2018 Apr 23.
1656 Screening and identification of key biomarkers in prostate cancer using bioinformatics.Mol Med Rep. 2020 Jan;21(1):311-319. doi: 10.3892/mmr.2019.10799. Epub 2019 Nov 6.
1657 Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells.Mol Cancer Res. 2010 Jan;8(1):119-30. doi: 10.1158/1541-7786.MCR-09-0277. Epub 2010 Jan 12.
1658 COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer.Mol Cancer Ther. 2019 Nov;18(11):2111-2123. doi: 10.1158/1535-7163.MCT-19-0150. Epub 2019 Aug 29.
1659 Cartilage oligomeric matrix protein in patients with osteoarthritis is independently associated with metastatic disease in prostate cancer.Oncotarget. 2019 Jul 30;10(46):4776-4785. doi: 10.18632/oncotarget.27113. eCollection 2019 Jul 30.
1660 Coatomer subunit beta 2 (COPB2), identified by label-free quantitative proteomics, regulates cell proliferation and apoptosis in human prostate carcinoma cells.Biochem Biophys Res Commun. 2018 Jan 1;495(1):473-480. doi: 10.1016/j.bbrc.2017.11.040. Epub 2017 Nov 10.
1661 Silencing of MALAT1 inhibits migration and invasion by sponging miR??p in prostate cancer cells.Mol Med Rep. 2019 Oct;20(4):3499-3508. doi: 10.3892/mmr.2019.10602. Epub 2019 Aug 22.
1662 Identification of PCAG1 as a novel prostate cancer-associated gene.Mol Med Rep. 2013 Mar;7(3):755-60. doi: 10.3892/mmr.2012.1249. Epub 2012 Dec 24.
1663 CPNE1 Is a Useful Prognostic Marker and Is Associated with TNF Receptor-Associated Factor 2 (TRAF2) Expression in Prostate Cancer.Med Sci Monit. 2017 Nov 19;23:5504-5514. doi: 10.12659/msm.904720.
1664 Cellular retinoic acid-binding protein 2 is down-regulated in prostate cancer.Int J Oncol. 2005 Nov;27(5):1273-82.
1665 The role of CREB3L4 in the proliferation of prostate cancer cells.Sci Rep. 2017 Mar 24;7:45300. doi: 10.1038/srep45300.
1666 CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer.Cell Rep. 2019 Nov 19;29(8):2355-2370.e6. doi: 10.1016/j.celrep.2019.10.068.
1667 The expression of inducible cAMP early repressor (ICER) is altered in prostate cancer cells and reverses the transformed phenotype of the LNCaP prostate tumor cell line.Cancer Res. 2001 Aug 15;61(16):6055-9.
1668 Androgen receptor mediated epigenetic regulation of CRISP3 promoter in prostate cancer cells.J Steroid Biochem Mol Biol. 2018 Jul;181:20-27. doi: 10.1016/j.jsbmb.2018.02.012. Epub 2018 Feb 22.
1669 Interaction between AR signalling and CRKL bypasses casodex inhibition in prostate cancer.Cell Signal. 2010 Dec;22(12):1874-81. doi: 10.1016/j.cellsig.2010.07.015. Epub 2010 Aug 2.
1670 Peptide T7-modified polypeptide with disulfide bonds for targeted delivery of plasmid DNA for gene therapy of prostate cancer.Int J Nanomedicine. 2018 Oct 30;13:6913-6927. doi: 10.2147/IJN.S180957. eCollection 2018.
1671 Frequent loss of cystatin E/M expression implicated in the progression of prostate cancer. Oncogene. 2009 Aug 6;28(31):2829-38. doi: 10.1038/onc.2009.134. Epub 2009 Jun 8.
1672 CTHRC1 and PD?/PDL1 expression predicts tumor recurrence in prostate cancer.Mol Med Rep. 2019 Nov;20(5):4244-4252. doi: 10.3892/mmr.2019.10690. Epub 2019 Sep 19.
1673 Links between Fer tyrosine kinase expression levels and prostate cell proliferation.Mol Cell Endocrinol. 2000 Jan 25;159(1-2):63-77. doi: 10.1016/s0303-7207(99)00205-1.
1674 Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia.Proteomics. 2019 Nov;19(21-22):e1900174. doi: 10.1002/pmic.201900174. Epub 2019 Oct 20.
1675 The Expression of the Chemokine CXCL14 Correlates with Several Aggressive Aspects of Glioblastoma and Promotes Key Properties of Glioblastoma Cells.Int J Mol Sci. 2019 May 21;20(10):2496. doi: 10.3390/ijms20102496.
1676 Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties.J Cell Physiol. 2018 Dec;233(12):9247-9260. doi: 10.1002/jcp.27029. Epub 2018 Aug 4.
1677 Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion.Int Urol Nephrol. 2018 May;50(5):861-868. doi: 10.1007/s11255-018-1818-9. Epub 2018 Mar 9.
1678 Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.J Clin Invest. 2018 Jan 2;128(1):248-266. doi: 10.1172/JCI92466. Epub 2017 Nov 27.
1679 Prostate Magnetic Resonance Imaging, with or Without Magnetic Resonance Imaging-targeted Biopsy, and Systematic Biopsy for Detecting Prostate Cancer: A Cochrane Systematic Review and Meta-analysis.Eur Urol. 2020 Jan;77(1):78-94. doi: 10.1016/j.eururo.2019.06.023. Epub 2019 Jul 18.
1680 MiR-93 functions as a tumor promoter in prostate cancer by targeting disabled homolog 2 (DAB2) and an antitumor polysaccharide from green tea (Camellia sinensis) on their expression.Int J Biol Macromol. 2019 Mar 15;125:557-565. doi: 10.1016/j.ijbiomac.2018.12.088. Epub 2018 Dec 10.
1681 A potential clinical significance of DAB2IP and SPRY2 transcript variants in prostate cancer.Pathol Res Pract. 2018 Dec;214(12):2018-2024. doi: 10.1016/j.prp.2018.09.019. Epub 2018 Sep 29.
1682 The cell fate determination factor dachshund inhibits androgen receptor signaling and prostate cancer cellular growth.Cancer Res. 2009 Apr 15;69(8):3347-55. doi: 10.1158/0008-5472.CAN-08-3821. Epub 2009 Apr 7.
1683 Downregulation of DACT-2 by Promoter Methylation and its Clinicopathological Significance in Prostate Cancer.J Cancer. 2019 Apr 20;10(7):1755-1763. doi: 10.7150/jca.28577. eCollection 2019.
1684 The drebrin/EB3 pathway drives invasive activity in prostate cancer.Oncogene. 2017 Jul 20;36(29):4111-4123. doi: 10.1038/onc.2017.45. Epub 2017 Mar 20.
1685 Novel centrosome protein, TCC52, is a cancer-testis antigen.Cancer Sci. 2008 Nov;99(11):2274-9. doi: 10.1111/j.1349-7006.2008.00937.x. Epub 2008 Oct 14.
1686 Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications.Adv Exp Med Biol. 1997;407:41-53. doi: 10.1007/978-1-4899-1813-0_7.
1687 Antitumour and Toxicity Evaluation of a Ru(II)-Cyclopentadienyl Complex in a Prostate Cancer Model by Imaging Tools.Anticancer Agents Med Chem. 2019;19(10):1262-1275. doi: 10.2174/1871520619666190318152726.
1688 Immuno-gene therapy of established prostate tumors using chimeric receptor-redirected human lymphocytes.Cancer Res. 2003 May 15;63(10):2470-6.
1689 Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants.Hum Mutat. 2014 Sep;35(9):1142-51. doi: 10.1002/humu.22614. Epub 2014 Jul 23.
1690 High expression of DDX20 enhances the proliferation and metastatic potential of prostate cancer cells through the NF-B pathway.Int J Mol Med. 2016 Jun;37(6):1551-7. doi: 10.3892/ijmm.2016.2575. Epub 2016 Apr 25.
1691 The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation.Biochem Biophys Res Commun. 2017 Jan 29;483(1):271-276. doi: 10.1016/j.bbrc.2016.12.153. Epub 2016 Dec 23.
1692 Expression and Localization of DDX3 in Prostate Cancer Progression and Metastasis.Am J Pathol. 2019 Jun;189(6):1256-1267. doi: 10.1016/j.ajpath.2019.02.011. Epub 2019 Mar 27.
1693 Hyaluronan stimulates transformation of androgen-independent prostate cancer.Carcinogenesis. 2007 Feb;28(2):310-20. doi: 10.1093/carcin/bgl134. Epub 2006 Jul 24.
1694 p68/DdX5 supports -catenin & RNAP II during androgen receptor mediated transcription in prostate cancer.PLoS One. 2013;8(1):e54150. doi: 10.1371/journal.pone.0054150. Epub 2013 Jan 17.
1695 DNA Methylation-Mediated Downregulation of DEFB1 in Prostate Cancer Cells.PLoS One. 2016 Nov 11;11(11):e0166664. doi: 10.1371/journal.pone.0166664. eCollection 2016.
1696 Genetic variants of the copy number polymorphic beta-defensin locus are associated with sporadic prostate cancer.Tumour Biol. 2008;29(2):83-92. doi: 10.1159/000135688. Epub 2008 Jun 2.
1697 High levels of DEPDC1B predict shorter biochemical recurrence-free survival of patients with prostate cancer.Oncol Lett. 2017 Dec;14(6):6801-6808. doi: 10.3892/ol.2017.7027. Epub 2017 Sep 22.
1698 Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies.Lab Invest. 2019 Oct;99(10):1561-1571. doi: 10.1038/s41374-019-0265-2. Epub 2019 Jun 3.
1699 Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene.Nat Biotechnol. 2017 Jun;35(6):543-550. doi: 10.1038/nbt.3843. Epub 2017 May 1.
1700 Long noncoding RNA TUG1 promotes progression via upregulating DGCR8 in prostate cancer.Eur Rev Med Pharmacol Sci. 2019 Mar;23(6):2391-2398. doi: 10.26355/eurrev_201903_17385.
1701 Lymphadenectomy in Gleason 7 prostate cancer: Adherence to guidelines and effect on clinical outcomes.Urol Oncol. 2018 Jan;36(1):13.e11-13.e18. doi: 10.1016/j.urolonc.2017.08.023. Epub 2017 Sep 14.
1702 DHX15 is up-regulated in castration-resistant prostate cancer and required for androgen receptor sensitivity to low DHT concentrations.Prostate. 2019 May;79(6):657-666. doi: 10.1002/pros.23773. Epub 2019 Feb 3.
1703 Identification of TWIST-interacting genes in prostate cancer.Sci China Life Sci. 2017 Apr;60(4):386-396. doi: 10.1007/s11427-016-0262-6. Epub 2017 Jan 22.
1704 The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance.Oncogene. 2019 May;38(22):4412-4424. doi: 10.1038/s41388-019-0712-y. Epub 2019 Feb 11.
1705 MicroRNAs 221/222 and genistein-mediated regulation of ARHI tumor suppressor gene in prostate cancer.Cancer Prev Res (Phila). 2011 Jan;4(1):76-86. doi: 10.1158/1940-6207.CAPR-10-0167. Epub 2010 Nov 11.
1706 Increased DKC1 expression in glioma and its significance in tumor cell proliferation, migration and invasion.Invest New Drugs. 2019 Dec;37(6):1177-1186. doi: 10.1007/s10637-019-00748-w. Epub 2019 Mar 7.
1707 DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion.Oncogene. 2014 Feb 6;33(6):724-33. doi: 10.1038/onc.2013.7. Epub 2013 Feb 4.
1708 Identification of new octamer transcription factor 1-target genes upregulated in castration-resistant prostate cancer.Cancer Sci. 2019 Nov;110(11):3476-3485. doi: 10.1111/cas.14183. Epub 2019 Sep 16.
1709 Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function.Mol Endocrinol. 2005 Sep;19(9):2273-82. doi: 10.1210/me.2005-0134. Epub 2005 May 26.
1710 Loss of heterozygosity on 8p in prostate cancer implicates a role for dematin in tumor progression.Cancer Genet Cytogenet. 1999 Nov;115(1):65-9. doi: 10.1016/s0165-4608(99)00081-3.
1711 High Norwegian prostate cancer mortality: evidence of over-reporting.Scand J Urol. 2018 Apr;52(2):122-128. doi: 10.1080/21681805.2017.1421260. Epub 2018 Jan 11.
1712 The role of DOC-2/DAB2 in modulating androgen receptor-mediated cell growth via the nongenomic c-Src-mediated pathway in normal prostatic epithelium and cancer.Cancer Res. 2005 Nov 1;65(21):9906-13. doi: 10.1158/0008-5472.CAN-05-1481.
1713 Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling.PLoS One. 2008 Apr 30;3(4):e2079. doi: 10.1371/journal.pone.0002079.
1714 miR-214-5p inhibits human prostate cancer proliferation and migration through regulating CRMP5.Cancer Biomark. 2019;26(2):193-202. doi: 10.3233/CBM-190128.
1715 Differentiation-related gene-1 decreases Bim stability by proteasome-mediated degradation.Cancer Res. 2009 Aug 1;69(15):6115-21. doi: 10.1158/0008-5472.CAN-08-3024. Epub 2009 Jul 21.
1716 Generation and characterization of a specific single-chain antibody against DSPP as a prostate cancer biomarker: Involvement of bioinformatics-based design of novel epitopes.Int Immunopharmacol. 2019 Apr;69:217-224. doi: 10.1016/j.intimp.2019.01.016. Epub 2019 Feb 6.
1717 DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.FASEB J. 2019 Dec;33(12):14653-14667. doi: 10.1096/fj.201802558RR. Epub 2019 Nov 5.
1718 Upregulation and overexpression of DVL1, the human counterpart of the Drosophila dishevelled gene, in prostate cancer.Tumori. 2005 Nov-Dec;91(6):546-51. doi: 10.1177/030089160509100616.
1719 Identification of tumor suppressive role of microRNA-132 and its target gene in tumorigenesis of prostate cancer.Int J Mol Med. 2018 Apr;41(4):2429-2433. doi: 10.3892/ijmm.2018.3421. Epub 2018 Jan 23.
1720 Extracellular vesicle-mediated EBAG9 transfer from cancer cells to tumor microenvironment promotes immune escape and tumor progression.Oncogenesis. 2018 Jan 24;7(1):7. doi: 10.1038/s41389-017-0022-6.
1721 HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression.Oncol Lett. 2019 Jan;17(1):1094-1100. doi: 10.3892/ol.2018.9677. Epub 2018 Nov 8.
1722 Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1.Oncogene. 2018 Sep;37(39):5305-5324. doi: 10.1038/s41388-018-0294-0. Epub 2018 Jun 1.
1723 Elevated levels of epithelial cell transforming sequence 2 predicts poor prognosis for prostate cancer.Med Oncol. 2017 Jan;34(1):13. doi: 10.1007/s12032-016-0872-3. Epub 2016 Dec 23.
1724 Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability.EBioMedicine. 2016 Jun;8:103-116. doi: 10.1016/j.ebiom.2016.04.018. Epub 2016 Apr 20.
1725 Dissecting the expression of EEF1A1/2 genes in human prostate cancer cells: the potential of EEF1A2 as a hallmark for prostate transformation and progression.Br J Cancer. 2012 Jan 3;106(1):166-73. doi: 10.1038/bjc.2011.500. Epub 2011 Nov 17.
1726 The EEF1A2 gene expression as risk predictor in localized prostate cancer.BMC Urol. 2017 Sep 18;17(1):86. doi: 10.1186/s12894-017-0278-3.
1727 Eukaryotic Elongation Factor 2 (eEF2) is a Potential Biomarker of Prostate Cancer.Pathol Oncol Res. 2018 Oct;24(4):885-890. doi: 10.1007/s12253-017-0302-7. Epub 2017 Sep 14.
1728 Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1.Cancer Sci. 2018 Oct;109(10):3159-3170. doi: 10.1111/cas.13754. Epub 2018 Aug 29.
1729 Overexpressing miR?35 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer.Int J Oncol. 2019 Jun;54(6):1981-1994. doi: 10.3892/ijo.2019.4778. Epub 2019 Apr 9.
1730 Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3.Oncotarget. 2016 Sep 6;7(36):57978-57990. doi: 10.18632/oncotarget.11154.
1731 Silencing of translation initiation factor eIF3b promotes apoptosis in osteosarcoma cells.Bone Joint Res. 2017 Mar;6(3):186-193. doi: 10.1302/2046-3758.63.BJR-2016-0151.R2.
1732 Androgen upregulates the palmitoylation of eIF3L in human prostate LNCaP cells.Onco Targets Ther. 2019 Jun 5;12:4451-4459. doi: 10.2147/OTT.S193480. eCollection 2019.
1733 Electrostatic repulsion causes anticooperative DNA binding between tumor suppressor ETS transcription factors and JUN-FOS at composite DNA sites.J Biol Chem. 2018 Nov 30;293(48):18624-18635. doi: 10.1074/jbc.RA118.003352. Epub 2018 Oct 12.
1734 ELF5-Mediated AR Activation Regulates Prostate Cancer Progression.Sci Rep. 2017 Mar 13;7:42759. doi: 10.1038/srep42759.
1735 Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.PLoS One. 2013 Nov 18;8(11):e79542. doi: 10.1371/journal.pone.0079542. eCollection 2013.
1736 ELL2 regulates DNA non-homologous end joining (NHEJ) repair in prostate cancer cells.Cancer Lett. 2018 Feb 28;415:198-207. doi: 10.1016/j.canlet.2017.11.028. Epub 2017 Nov 26.
1737 The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis.Biochim Biophys Acta Gene Regul Mech. 2019 Aug;1862(8):834-845. doi: 10.1016/j.bbagrm.2019.05.005. Epub 2019 May 30.
1738 Maximizing RNA Loading for Gene Silencing Using Porous Silicon Nanoparticles.ACS Appl Mater Interfaces. 2019 Jul 3;11(26):22993-23005. doi: 10.1021/acsami.9b05577. Epub 2019 Jun 24.
1739 Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism.Cancer Res. 2009 Oct 15;69(20):8133-40. doi: 10.1158/0008-5472.CAN-09-0775. Epub 2009 Oct 13.
1740 Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential.Cancer Res. 2018 Nov 1;78(21):6086-6097. doi: 10.1158/0008-5472.CAN-18-0608. Epub 2018 Aug 28.
1741 Is Engrailed-2 (EN2) a truly promising biomarker in prostate cancer detection?.Biomarkers. 2020 Feb;25(1):34-39. doi: 10.1080/1354750X.2019.1690047. Epub 2019 Nov 14.
1742 Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation.Cancer Lett. 2008 Oct 18;270(1):132-43. doi: 10.1016/j.canlet.2008.04.053. Epub 2008 Jun 18.
1743 PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Calpha-mediated Bcl-2 stabilization.Cancer Res. 2009 Jan 1;69(1):102-10. doi: 10.1158/0008-5472.CAN-08-2922.
1744 Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer.Mol Cancer. 2007 Feb 5;6:14. doi: 10.1186/1476-4598-6-14.
1745 Clinical implications of the influence of Ehm2 on the aggressiveness of breast cancer cells through regulation of matrix metalloproteinase-9 expression.Mol Cancer Res. 2010 Nov;8(11):1501-12. doi: 10.1158/1541-7786.MCR-10-0186. Epub 2010 Oct 5.
1746 Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis.J Urol. 2007 May;177(5):1753-8. doi: 10.1016/j.juro.2007.01.010.
1747 Increased ERCC1 expression is linked to chromosomal aberrations and adverse tumor biology in prostate cancer.BMC Cancer. 2017 Jul 26;17(1):504. doi: 10.1186/s12885-017-3489-9.
1748 From androgen receptor to the general transcription factor TFIIH. Identification of cdk activating kinase (CAK) as an androgen receptor NH(2)-terminal associated coactivator.J Biol Chem. 2000 Mar 31;275(13):9308-13. doi: 10.1074/jbc.275.13.9308.
1749 PTX1(ERGIC2)-VP22 fusion protein upregulates interferon-beta in prostate cancer cell line PC-3.DNA Cell Biol. 2006 Sep;25(9):523-9. doi: 10.1089/dna.2006.25.523.
1750 Predisposition for TMPRSS2-ERG fusion in prostate cancer by variants in DNA repair genes.Cancer Epidemiol Biomarkers Prev. 2009 Nov;18(11):3030-5. doi: 10.1158/1055-9965.EPI-09-0772. Epub 2009 Oct 27.
1751 Loss of endothelial cell-specific molecule 1 promotes the tumorigenicity and metastasis of prostate cancer cells through regulation of the TIMP-1/MMP-9 expression.Oncotarget. 2017 Feb 21;8(8):13886-13897. doi: 10.18632/oncotarget.14684.
1752 Optimization of diarylpentadienones as chemotherapeutics for prostate cancer.Bioorg Med Chem. 2018 Sep 1;26(16):4751-4760. doi: 10.1016/j.bmc.2018.08.018. Epub 2018 Aug 13.
1753 Cooperation between ETS variant 2 and Jumonji domaincontaining 2 histone demethylases.Mol Med Rep. 2018 Apr;17(4):5518-5527. doi: 10.3892/mmr.2018.8507. Epub 2018 Jan 26.
1754 Meta-analysis of metabolic syndrome and prostate cancer.Prostate Cancer Prostatic Dis. 2017 Jun;20(2):146-155. doi: 10.1038/pcan.2017.1. Epub 2017 Feb 21.
1755 Clonal evaluation of early onset prostate cancer by expression profiling of ERG, SPINK1, ETV1, and ETV4 on whole-mount radical prostatectomy tissue.Prostate. 2020 Jan;80(1):38-50. doi: 10.1002/pros.23914. Epub 2019 Oct 4.
1756 Functional deficiency of DNA repair gene EXO5 results in androgen-induced genomic instability and prostate tumorigenesis.Oncogene. 2020 Feb;39(6):1246-1259. doi: 10.1038/s41388-019-1061-6. Epub 2019 Oct 15.
1757 Family with sequence similarity 13C (FAM13C) overexpression is an independent prognostic marker in prostate cancer.Oncotarget. 2017 May 9;8(19):31494-31508. doi: 10.18632/oncotarget.16357.
1758 FAM3B promotes progression of oesophageal carcinoma via regulating the AKT-MDM2-p53 signalling axis and the epithelial-mesenchymal transition.J Cell Mol Med. 2019 Feb;23(2):1375-1385. doi: 10.1111/jcmm.14040. Epub 2018 Dec 18.
1759 The ubiquitin ligase UBE4A inhibits prostate cancer progression by targeting interleukin-like EMT inducer (ILEI).IUBMB Life. 2017 Jan;69(1):16-21. doi: 10.1002/iub.1585. Epub 2016 Nov 10.
1760 A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease.Hum Mol Genet. 2013 Jan 15;22(2):408-15. doi: 10.1093/hmg/dds425. Epub 2012 Oct 12.
1761 Identification of Fibulin-1 as a Human Bone Marrow Stromal (HS-5) Cell-Derived Factor That Induces Human Prostate Cancer Cell Death.Prostate. 2017 May;77(7):729-742. doi: 10.1002/pros.23303. Epub 2017 Feb 7.
1762 The involvement of FBP1 in prostate cancer cell epithelial mesenchymal transition, invasion and metastasis by regulating the MAPK signaling pathway.Cell Cycle. 2019 Oct;18(19):2432-2446. doi: 10.1080/15384101.2019.1648956. Epub 2019 Aug 25.
1763 Downregulation of IgG Fc binding protein (Fc gammaBP) in prostate cancer.Cancer Biol Ther. 2008 Jan;7(1):70-5. doi: 10.4161/cbt.7.1.5131. Epub 2007 Oct 8.
1764 Expression of FGD4 positively correlates with the aggressive phenotype of prostate cancer.BMC Cancer. 2018 Dec 17;18(1):1257. doi: 10.1186/s12885-018-5096-9.
1765 FGF-2 is a driving force for chromosomal instability and a stromal factor associated with adverse clinico-pathological features in prostate cancer.Urol Oncol. 2018 Aug;36(8):365.e15-365.e26. doi: 10.1016/j.urolonc.2018.05.020. Epub 2018 Jun 7.
1766 FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia.Prostate. 2004 Jun 15;60(1):18-24. doi: 10.1002/pros.20026.
1767 Aberrant fibroblast growth factor receptor signaling in bladder and other cancers.Differentiation. 2007 Nov;75(9):831-42. doi: 10.1111/j.1432-0436.2007.00210.x. Epub 2007 Aug 14.
1768 Alternol eliminates excessive ATP production by disturbing Krebs cycle in prostate cancer.Prostate. 2019 May;79(6):628-639. doi: 10.1002/pros.23767. Epub 2019 Jan 20.
1769 The FHL2 regulation in the transcriptional circuitry of human cancers.Gene. 2015 Nov 1;572(1):1-7. doi: 10.1016/j.gene.2015.07.043. Epub 2015 Jul 26.
1770 Increasing of FKBP9 can predict poor prognosis in patients with prostate cancer.Pathol Res Pract. 2020 Jan;216(1):152732. doi: 10.1016/j.prp.2019.152732. Epub 2019 Nov 11.
1771 Locus-specific gene repositioning in prostate cancer.Mol Biol Cell. 2016 Jan 15;27(2):236-46. doi: 10.1091/mbc.E15-05-0280. Epub 2015 Nov 12.
1772 Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling.Clin Cancer Res. 2016 Mar 15;22(6):1531-44. doi: 10.1158/1078-0432.CCR-15-1632. Epub 2015 Nov 2.
1773 Vinculin and filamin-C are two potential prognostic biomarkers and therapeutic targets for prostate cancer cell migration.Oncotarget. 2017 Jul 19;8(47):82430-82436. doi: 10.18632/oncotarget.19397. eCollection 2017 Oct 10.
1774 microRNA-802 inhibits epithelial-mesenchymal transition through targeting flotillin-2 in human prostate cancer.Biosci Rep. 2017 Mar 15;37(2):BSR20160521. doi: 10.1042/BSR20160521. Print 2017 Apr 30.
1775 The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue.Cancer Biomark. 2016;16(1):191-202. doi: 10.3233/CBM-150555.
1776 Extensive analysis of the 13q14 region in human prostate tumors: DNA analysis and quantitative expression of genes lying in the interval of deletion.Prostate. 2003 Sep 15;57(1):39-50. doi: 10.1002/pros.10272.
1777 Clinical relevance of gene expression in localized and metastatic prostate cancer exemplified by FABP5.World J Urol. 2020 Mar;38(3):637-645. doi: 10.1007/s00345-019-02651-8. Epub 2019 Jan 30.
1778 Wnt activator FOXB2 drives the neuroendocrine differentiation of prostate cancer.Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22189-22195. doi: 10.1073/pnas.1906484116. Epub 2019 Oct 14.
1779 Gene expression of forkhead transcription factors in the normal and diseased human prostate.BJU Int. 2009 Jun;103(11):1574-80. doi: 10.1111/j.1464-410X.2009.08351.x. Epub 2009 Feb 11.
1780 Significance of the detection of TIM-3 and FOXJ1 in prostate cancer.J BUON. 2017 Jul-Aug;22(4):1017-1021.
1781 Knockdown of FOXK1 Suppresses Proliferation, Migration, and Invasion in Prostate Cancer Cells.Oncol Res. 2017 Sep 21;25(8):1261-1267. doi: 10.3727/096504017X14871164924588. Epub 2017 Mar 2.
1782 Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p.J Cell Mol Med. 2020 Jan;24(1):799-813. doi: 10.1111/jcmm.14791. Epub 2019 Nov 16.
1783 Loss of FOXO1 Cooperates with TMPRSS2-ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion.Cancer Res. 2017 Dec 1;77(23):6524-6537. doi: 10.1158/0008-5472.CAN-17-0686. Epub 2017 Oct 6.
1784 Reduced FRG1 expression promotes prostate cancer progression and affects prostate cancer cell migration and invasion.BMC Cancer. 2019 Apr 11;19(1):346. doi: 10.1186/s12885-019-5509-4.
1785 MicroRNA?98 suppresses prostate tumorigenesis by targeting MIB1.Oncol Rep. 2019 Sep;42(3):1047-1056. doi: 10.3892/or.2019.7234. Epub 2019 Jul 15.
1786 A spliced form of CD44 expresses the unique glycan that is recognized by the prostate cancer specific antibody F77.Oncotarget. 2017 Dec 16;9(3):3631-3640. doi: 10.18632/oncotarget.23341. eCollection 2018 Jan 9.
1787 Overexpression of (1,6) fucosyltransferase in the development of castration-resistant prostate cancer cells.Prostate Cancer Prostatic Dis. 2018 Apr;21(1):137-146. doi: 10.1038/s41391-017-0016-7. Epub 2018 Jan 16.
1788 Wnt receptor Frizzled 8 is a target of ERG in prostate cancer.Prostate. 2018 Dec;78(16):1311-1320. doi: 10.1002/pros.23704. Epub 2018 Jul 26.
1789 A novel non-canonical Wnt signature for prostate cancer aggressiveness.Oncotarget. 2017 Feb 7;8(6):9572-9586. doi: 10.18632/oncotarget.14161.
1790 Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics.Sci Rep. 2018 Jun 4;8(1):8537. doi: 10.1038/s41598-018-26761-2.
1791 E-cadherin gene 3'-UTR C/T polymorphism is associated with prostate cancer.Urol Int. 2005;75(4):350-3. doi: 10.1159/000089173.
1792 beta1A integrin expression is required for type 1 insulin-like growth factor receptor mitogenic and transforming activities and localization to focal contacts.Cancer Res. 2005 Aug 1;65(15):6692-700. doi: 10.1158/0008-5472.CAN-04-4315.
1793 GABARAPL1 Promotes AR+ Prostate Cancer Growth by Increasing FL-AR/AR-V Transcription Activity and Nuclear Translocation.Front Oncol. 2019 Nov 15;9:1254. doi: 10.3389/fonc.2019.01254. eCollection 2019.
1794 GABA promotes gastrin-releasing peptide secretion in NE/NE-like cells: Contribution to prostate cancer progression.Sci Rep. 2018 Jul 6;8(1):10272. doi: 10.1038/s41598-018-28538-z.
1795 Serum GADD45a methylation is a useful biomarker to distinguish benign vs malignant prostate disease.Br J Cancer. 2015 Jul 28;113(3):460-8. doi: 10.1038/bjc.2015.240. Epub 2015 Jul 14.
1796 Isolation and characterization of PAGE-1 and GAGE-7. New genes expressed in the LNCaP prostate cancer progression model that share homology with melanoma-associated antigens.J Biol Chem. 1998 Jul 10;273(28):17618-25. doi: 10.1074/jbc.273.28.17618.
1797 Use of multiple biomarkers for a molecular diagnosis of prostate cancer.Int J Cancer. 2005 May 10;114(6):950-6. doi: 10.1002/ijc.20760.
1798 MiR-506-3p acts as a novel tumor suppressor in prostate cancer through targeting GALNT4.Eur Rev Med Pharmacol Sci. 2019 Jun;23(12):5133-5138. doi: 10.26355/eurrev_201906_18177.
1799 The Pioneering Role of GATA2 in Androgen Receptor Variant Regulation Is Controlled by Bromodomain and Extraterminal Proteins in Castrate-Resistant Prostate Cancer.Mol Cancer Res. 2019 Jun;17(6):1264-1278. doi: 10.1158/1541-7786.MCR-18-1231. Epub 2019 Mar 4.
1800 Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer.Carcinogenesis. 2009 May;30(5):851-60. doi: 10.1093/carcin/bgp052. Epub 2009 Feb 23.
1801 Down-regulation of homeobox gene GBX2 expression inhibits human prostate cancer clonogenic ability and tumorigenicity.Cancer Res. 1998 Apr 1;58(7):1391-4.
1802 Downregulated GBX2 gene suppresses proliferation, invasion and angiogenesis of breast cancer cells through inhibiting the Wnt/-catenin signaling pathway.Cancer Biomark. 2018;23(3):405-418. doi: 10.3233/CBM-181466.
1803 GEN GEN: the genomic genetic analysis of androgen-metabolic genes and prostate cancer as a paradigm for the dissection of complex phenotypes.Front Biosci. 1999 Jul 15;4:D596-600. doi: 10.2741/reichardt.
1804 Growth Factor-Independent 1 Is a Tumor Suppressor Gene in Colorectal Cancer.Mol Cancer Res. 2019 Mar;17(3):697-708. doi: 10.1158/1541-7786.MCR-18-0666. Epub 2019 Jan 3.
1805 Effects of gametogenetin-binding protein 2 on proliferation, invasion and migration of prostate cancer PC-3 cells.Andrologia. 2020 Mar;52(2):e13488. doi: 10.1111/and.13488. Epub 2019 Dec 3.
1806 Targeting protein geranylgeranylation slows tumor development in a murine model of prostate cancer metastasis.Cancer Biol Ther. 2017 Nov 2;18(11):872-882. doi: 10.1080/15384047.2016.1219817. Epub 2016 Sep 13.
1807 Stimulation of neuroendocrine differentiation in prostate cancer cells by GHRH and its blockade by GHRH antagonists.Invest New Drugs. 2020 Jun;38(3):746-754. doi: 10.1007/s10637-019-00831-2. Epub 2019 Jul 17.
1808 Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.Cancer Sci. 2019 Jan;110(1):245-255. doi: 10.1111/cas.13869. Epub 2018 Dec 12.
1809 Phenethyl isothiocyanate inhibits STAT3 activation in prostate cancer cells.Mol Nutr Food Res. 2009 Jul;53(7):878-86. doi: 10.1002/mnfr.200800253.
1810 Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer.Prostate. 2019 Oct;79(14):1629-1639. doi: 10.1002/pros.23887. Epub 2019 Aug 2.
1811 c-Jun Contributes to Transcriptional Control of GNA12 Expression in Prostate Cancer Cells.Molecules. 2017 Apr 10;22(4):612. doi: 10.3390/molecules22040612.
1812 The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2.J Biol Chem. 2002 Apr 12;277(15):12622-31. doi: 10.1074/jbc.M110568200. Epub 2002 Jan 25.
1813 Genetic polymorphisms of the glycine N-methyltransferase and prostate cancer risk in the health professionals follow-up study.PLoS One. 2014 May 6;9(5):e94683. doi: 10.1371/journal.pone.0094683. eCollection 2014.
1814 Paradoxical Role of Glypican-1 in Prostate Cancer Cell and Tumor Growth.Sci Rep. 2019 Aug 7;9(1):11478. doi: 10.1038/s41598-019-47874-2.
1815 Overexpression of Glypican 5 (GPC5) Inhibits Prostate Cancer Cell Proliferation and Invasion via Suppressing Sp1-Mediated EMT and Activation of Wnt/-Catenin Signaling.Oncol Res. 2018 May 7;26(4):565-572. doi: 10.3727/096504017X15044461944385. Epub 2017 Sep 6.
1816 Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes.Cancer Lett. 2018 Jun 1;423:28-35. doi: 10.1016/j.canlet.2018.03.006. Epub 2018 Mar 8.
1817 Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor.Mol Cancer Ther. 2003 Nov;2(11):1139-47.
1818 Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer.J Natl Cancer Inst. 2007 Sep 5;99(17):1313-27. doi: 10.1093/jnci/djm107. Epub 2007 Aug 28.
1819 Activator of G protein signaling 3 modulates prostate tumor development and progression.Carcinogenesis. 2019 Dec 31;40(12):1504-1513. doi: 10.1093/carcin/bgz076.
1820 Proproliferative function of adaptor protein GRB10 in prostate carcinoma.FASEB J. 2019 Mar;33(3):3198-3211. doi: 10.1096/fj.201800265RR. Epub 2018 Oct 31.
1821 Role for Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in Hormone-Dependent Cancers.Int J Mol Sci. 2018 Aug 28;19(9):2543. doi: 10.3390/ijms19092543.
1822 Physiological (68)Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements.Eur J Nucl Med Mol Imaging. 2020 Jan;47(1):115-122. doi: 10.1007/s00259-019-04503-4. Epub 2019 Sep 2.
1823 A DNA Hypermethylation Profile Independently Predicts Biochemical Recurrence Following Radical Prostatectomy.Urol Int. 2016;97(1):16-25. doi: 10.1159/000446446. Epub 2016 May 25.
1824 Bioinformatics Analysis of Stromal Molecular Signatures Associated with Breast and Prostate Cancer.J Comput Biol. 2019 Oct;26(10):1130-1139. doi: 10.1089/cmb.2019.0045. Epub 2019 Jun 11.
1825 KAI1 promoter activity is dependent on p53, junB and AP2: evidence for a possible mechanism underlying loss of KAI1 expression in cancer cells.Oncogene. 2005 Jan 20;24(4):637-49. doi: 10.1038/sj.onc.1208216.
1826 Germline genetic variants in men with prostate cancer and one or more additional cancers.Cancer. 2017 Oct 15;123(20):3925-3932. doi: 10.1002/cncr.30817. Epub 2017 Jun 28.
1827 Metformin alters H2A.Z dynamics and regulates androgen dependent prostate cancer progression.Oncotarget. 2018 Dec 11;9(97):37054-37068. doi: 10.18632/oncotarget.26457. eCollection 2018 Dec 11.
1828 Regulation of protein kinase C-related kinase (PRK) signalling by the TP and TP isoforms of the human thromboxane A(2) receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer.Biochim Biophys Acta Mol Basis Dis. 2017 Apr;1863(4):838-856. doi: 10.1016/j.bbadis.2017.01.011. Epub 2017 Jan 18.
1829 Hyaluronan synthase 3 overexpression promotes the growth of TSU prostate cancer cells.Cancer Res. 2001 Jul 1;61(13):5207-14.
1830 Transcription Factor HBP1 Enhances Radiosensitivity by Inducing Apoptosis in Prostate Cancer Cell Lines.Anal Cell Pathol (Amst). 2016;2016:7015659. doi: 10.1155/2016/7015659. Epub 2016 Jan 28.
1831 Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.Cancer Med. 2018 Apr;7(4):1546-1559. doi: 10.1002/cam4.1419. Epub 2018 Mar 13.
1832 HepaCAM inhibits cell proliferation and invasion in prostate cancer by suppressing nuclear translocation of the androgen receptor via its cytoplasmic domain.Mol Med Rep. 2019 Mar;19(3):2115-2124. doi: 10.3892/mmr.2019.9841. Epub 2019 Jan 10.
1833 Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells.Oncogene. 2002 Dec 12;21(57):8749-58. doi: 10.1038/sj.onc.1205992.
1834 CK2 abrogates the inhibitory effects of PRH/HHEX on prostate cancer cell migration and invasion and acts through PRH to control cell proliferation.Oncogenesis. 2017 Jan 30;6(1):e293. doi: 10.1038/oncsis.2016.82.
1835 HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition.J Pathol. 2017 Aug;242(4):409-420. doi: 10.1002/path.4913. Epub 2017 Jun 13.
1836 Upregulation of Holliday junction recognition protein predicts poor prognosis and biochemical recurrence in patients with prostate cancer.Oncol Lett. 2019 Dec;18(6):6697-6703. doi: 10.3892/ol.2019.11061. Epub 2019 Nov 5.
1837 Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis.J Hum Genet. 2018 Feb;63(2):195-205. doi: 10.1038/s10038-017-0371-1. Epub 2017 Dec 1.
1838 RB Loss Promotes Prostate Cancer Metastasis.Cancer Res. 2017 Feb 15;77(4):982-995. doi: 10.1158/0008-5472.CAN-16-1589. Epub 2016 Dec 6.
1839 Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT19.Cell. 2018 Jul 26;174(3):564-575.e18. doi: 10.1016/j.cell.2018.06.014. Epub 2018 Jul 19.
1840 A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer.Mol Cancer. 2019 Jun 20;18(1):109. doi: 10.1186/s12943-019-1037-8.
1841 HnRNP-L promotes prostate cancer progression by enhancing cell cycling and inhibiting apoptosis.Oncotarget. 2017 Mar 21;8(12):19342-19353. doi: 10.18632/oncotarget.14258.
1842 hnRNPM, a potential mediator of YY1 in promotingthe epithelial-mesenchymal transition of prostate cancer cells.Prostate. 2019 Aug;79(11):1199-1210. doi: 10.1002/pros.23790.
1843 TWIST1-WDR5-Hottip Regulates Hoxa9 Chromatin to Facilitate Prostate Cancer Metastasis.Cancer Res. 2017 Jun 15;77(12):3181-3193. doi: 10.1158/0008-5472.CAN-16-2797. Epub 2017 May 8.
1844 The relationship between homeobox B7 expression and the clinical characteristics of patient with prostate cancer.J Cell Biochem. 2019 Apr;120(4):6395-6401. doi: 10.1002/jcb.27926. Epub 2018 Oct 14.
1845 HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes.Mol Cancer Res. 2010 Dec;8(12):1643-55. doi: 10.1158/1541-7786.MCR-10-0111. Epub 2010 Nov 2.
1846 Decreased HoxD10 Expression Promotes a Proliferative and Aggressive Phenotype in Prostate Cancer.Curr Mol Med. 2017;17(1):70-78. doi: 10.2174/1566524017666170220104920.
1847 A urine-based DNA methylation assay, ProCUrE, to identify clinically significant prostate cancer.Clin Epigenetics. 2018 Nov 23;10(1):147. doi: 10.1186/s13148-018-0575-z.
1848 HRK inactivation associated with promoter methylation and LOH in prostate cancer.Prostate. 2008 Jan 1;68(1):105-13. doi: 10.1002/pros.20600.
1849 A novel human hydroxysteroid dehydrogenase like 1 gene (HSDL1) is highly expressed in reproductive tissues.Mol Biol Rep. 2001;28(4):185-91. doi: 10.1023/a:1015726217890.
1850 The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer.Cancers (Basel). 2019 Aug 16;11(8):1194. doi: 10.3390/cancers11081194.
1851 Mutation detection in the human HSP7OB' gene by denaturing high-performance liquid chromatography.Cell Stress Chaperones. 2000 Nov;5(5):415-24. doi: 10.1379/1466-1268(2000)005<0415:mdithh>2.0.co;2.
1852 Long-term oncologic outcomes of radiotherapy combined with maximal androgen blockade for localized, high-risk prostate cancer.World J Surg Oncol. 2018 Jun 11;16(1):107. doi: 10.1186/s12957-018-1395-5.
1853 Immunohistochemical analysis of Omi/HtrA2 expression in prostate cancer and benign prostatic hyperplasia.APMIS. 2006 Dec;114(12):893-8. doi: 10.1111/j.1600-0463.2006.apm_271.x.
1854 Meta-analysis of gene expression alterations and clinical significance of the HECT domain-containing ubiquitin ligase HUWE1 in cancer.Oncol Lett. 2019 Sep;18(3):2292-2303. doi: 10.3892/ol.2019.10579. Epub 2019 Jul 5.
1855 Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling.Matrix Biol. 2019 May;78-79:165-179. doi: 10.1016/j.matbio.2018.05.002. Epub 2018 May 10.
1856 Antitumor effect of reduction of 150-kDa oxygen-regulated protein expression on human prostate cancer cells.Int J Urol. 2002 Oct;9(10):577-85. doi: 10.1046/j.1442-2042.2002.00519.x.
1857 ICAM gene cluster SNPs and prostate cancer risk in African Americans.Hum Genet. 2006 Aug;120(1):69-76. doi: 10.1007/s00439-006-0184-3. Epub 2006 May 30.
1858 Tumor-suppressive lipoxygenases inhibit the expression of c-myc mRNA coding region determinant-binding protein/insulin-like growth factor II mRNA-binding protein 1 in human prostate carcinoma PC-3 cells.Biosci Biotechnol Biochem. 2009 Aug;73(8):1811-7. doi: 10.1271/bbb.90185. Epub 2009 Aug 7.
1859 Biology of insulin-like growth factor binding protein-4 and its role in cancer (review).Int J Oncol. 2006 Jun;28(6):1317-25.
1860 TET2 binds the androgen receptor and loss is associated with prostate cancer.Oncogene. 2017 Apr;36(15):2172-2183. doi: 10.1038/onc.2016.376. Epub 2016 Nov 7.
1861 Repurposing antitubercular agent isoniazid for treatment of prostate cancer.Biomater Sci. 2018 Dec 18;7(1):296-306. doi: 10.1039/c8bm01189c.
1862 Identification of prognostic biomarkers of prostate cancer with long non-coding RNA-mediated competitive endogenous RNA network.Exp Ther Med. 2019 Apr;17(4):3035-3040. doi: 10.3892/etm.2019.7277. Epub 2019 Feb 14.
1863 Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression.J Cell Physiol. 2016 Jun;231(6):1364-74. doi: 10.1002/jcp.25240. Epub 2015 Nov 24.
1864 Dysregulation of INF2-mediated mitochondrial fission in SPOP-mutated prostate cancer.PLoS Genet. 2017 Apr 27;13(4):e1006748. doi: 10.1371/journal.pgen.1006748. eCollection 2017 Apr.
1865 The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells.J Mol Cell Biol. 2016 Jun;8(3):207-20. doi: 10.1093/jmcb/mjw007. Epub 2016 Mar 18.
1866 Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein.Br J Cancer. 2018 Mar 6;118(5):713-726. doi: 10.1038/bjc.2017.447. Epub 2018 Jan 30.
1867 ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer.Cell Biol Int. 2020 Jan;44(1):242-252. doi: 10.1002/cbin.11227. Epub 2019 Sep 10.
1868 PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions.Mol Endocrinol. 2009 Feb;23(2):169-75. doi: 10.1210/me.2008-0168. Epub 2008 Dec 18.
1869 INSL3 in the benign hyperplastic and neoplastic human prostate gland. Int J Oncol. 2005 Aug;27(2):307-15.
1870 Insulinoma-associated protein 1 is a novel sensitive and specific marker for small cell carcinoma of the prostate.Hum Pathol. 2018 Sep;79:151-159. doi: 10.1016/j.humpath.2018.05.014. Epub 2018 Jun 6.
1871 Racial differences in prostate cancer risk in young HIV-positive and HIV-negative men: a prospective cohort study.Cancer Causes Control. 2017 Jul;28(7):767-777. doi: 10.1007/s10552-017-0896-9. Epub 2017 Apr 27.
1872 Iron-responsive element-binding protein 2 plays an essential role in regulating prostate cancer cell growth.Oncotarget. 2017 Jul 17;8(47):82231-82243. doi: 10.18632/oncotarget.19288. eCollection 2017 Oct 10.
1873 Overexpression of Interferon Regulatory Factor 7 (IRF7) Reduces Bone Metastasis of Prostate Cancer Cells in Mice.Oncol Res. 2017 Apr 14;25(4):511-522. doi: 10.3727/096504016X14756226781802. Epub 2016 Oct 11.
1874 The iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and regulates apoptosis and the cell cycle in LNCaP prostate cancer cells.Clin Cancer Res. 2008 Jun 1;14(11):3562-70. doi: 10.1158/1078-0432.CCR-07-4649.
1875 Transcriptional regulation of inducible nitric oxide synthase gene therapy: targeting early stage and advanced prostate cancer.J Gene Med. 2010 Sep;12(9):755-65. doi: 10.1002/jgm.1495.
1876 Tenascin-C and Integrin 9 Mediate Interactions of Prostate Cancer with the Bone Microenvironment.Cancer Res. 2017 Nov 1;77(21):5977-5988. doi: 10.1158/0008-5472.CAN-17-0064. Epub 2017 Sep 15.
1877 ITGBL1 promotes EMT, invasion and migration by activating NF-B signaling pathway in prostate cancer.Onco Targets Ther. 2019 May 16;12:3753-3763. doi: 10.2147/OTT.S200082. eCollection 2019.
1878 Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl.Oncogenesis. 2019 Feb 19;8(3):14. doi: 10.1038/s41389-019-0122-6.
1879 Stable lower PAR expression decreased DU145 prostate cancer cell growth in SCID mice.Prostate. 2001 Nov 1;49(3):200-7. doi: 10.1002/pros.1135.
1880 GCN5 inhibition prevents IL-6-induced prostate cancer metastases through PI3K/PTEN/Akt signaling by inactivating Egr-1.Biosci Rep. 2018 Nov 30;38(6):BSR20180816. doi: 10.1042/BSR20180816. Print 2018 Dec 21.
1881 GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells.Regul Pept. 2002 Nov 15;109(1-3):141-8. doi: 10.1016/s0167-0115(02)00197-0.
1882 KCTD11 tumor suppressor gene expression is reduced in prostate adenocarcinoma.Biomed Res Int. 2014;2014:380398. doi: 10.1155/2014/380398. Epub 2014 Jun 19.
1883 Upregulated KDM4B promotes prostate cancer cell proliferation by activating autophagy.J Cell Physiol. 2020 Mar;235(3):2129-2138. doi: 10.1002/jcp.29117. Epub 2019 Aug 29.
1884 ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.J Clin Invest. 2018 Jul 2;128(7):2979-2995. doi: 10.1172/JCI96769. Epub 2018 Jun 4.
1885 The histone demethylase UTX/KDM6A in cancer: Progress and puzzles.Int J Cancer. 2019 Aug 1;145(3):614-620. doi: 10.1002/ijc.32116. Epub 2019 Jan 28.
1886 SNORA42 enhances prostate cancer cell viability, migration and EMT and is correlated with prostate cancer poor prognosis.Int J Biochem Cell Biol. 2018 Sep;102:138-150. doi: 10.1016/j.biocel.2018.07.009. Epub 2018 Jul 24.
1887 Overexpression of a novel candidate oncogene KIF14 correlates with tumor progression and poor prognosis in prostate cancer.Oncotarget. 2017 Jul 11;8(28):45459-45469. doi: 10.18632/oncotarget.17564.
1888 Expression of KIF18A Is Associated with Increased Tumor Stage and Cell Proliferation in Prostate Cancer.Med Sci Monit. 2019 Aug 27;25:6418-6428. doi: 10.12659/MSM.917352.
1889 Effects of KIF2A on the prognosis of nasopharyngeal carcinoma and nasopharyngeal carcinoma cells.Oncol Lett. 2019 Sep;18(3):2718-2723. doi: 10.3892/ol.2019.10597. Epub 2019 Jul 9.
1890 Targeting the KIF4A/AR Axis to Reverse Endocrine Therapy Resistance in Castration-resistant Prostate Cancer.Clin Cancer Res. 2020 Mar 15;26(6):1516-1528. doi: 10.1158/1078-0432.CCR-19-0396. Epub 2019 Dec 3.
1891 KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition.Oncotarget. 2017 Apr 26;8(33):54558-54571. doi: 10.18632/oncotarget.17421. eCollection 2017 Aug 15.
1892 KIFC1 Inhibitor CW069 Induces Apoptosis and Reverses Resistance to Docetaxel in Prostate Cancer.J Clin Med. 2019 Feb 9;8(2):225. doi: 10.3390/jcm8020225.
1893 Defining a common region of deletion at 13q21 in human cancers.Genes Chromosomes Cancer. 2001 Aug;31(4):333-44. doi: 10.1002/gcc.1152.
1894 Upregulation of MicroRNA-21 promotes tumorigenesis of prostate cancer cells by targeting KLF5.Cancer Biol Ther. 2019;20(8):1149-1161. doi: 10.1080/15384047.2019.1599659. Epub 2019 Apr 19.
1895 MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression.Biochem Biophys Res Commun. 2017 Jan 22;482(4):1381-1386. doi: 10.1016/j.bbrc.2016.12.045. Epub 2016 Dec 9.
1896 NES1/KLK10 gene represses proliferation, enhances apoptosis and down-regulates glucose metabolism of PC3 prostate cancer cells.Sci Rep. 2015 Nov 30;5:17426. doi: 10.1038/srep17426.
1897 Association of TMPRSS2 and KLK11 gene expression levels with clinical progression of human prostate cancer.Med Oncol. 2010 Mar;27(1):145-51. doi: 10.1007/s12032-009-9185-0. Epub 2009 Feb 26.
1898 Loss of KMT2D induces prostate cancer ROS-mediated DNA damage by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3.Epigenetics. 2019 Dec;14(12):1194-1208. doi: 10.1080/15592294.2019.1634985. Epub 2019 Jun 28.
1899 Septin 9 isoform 1 (SEPT9_i1) specifically interacts with importin-7 to drive hypoxia-inducible factor (HIF)-1 nuclear translocation.Cytoskeleton (Hoboken). 2019 Jan;76(1):123-130. doi: 10.1002/cm.21450. Epub 2018 Aug 24.
1900 KPNA2 expression is an independent adverse predictor of biochemical recurrence after radical prostatectomy.Clin Cancer Res. 2011 Mar 1;17(5):1111-21. doi: 10.1158/1078-0432.CCR-10-0081. Epub 2011 Jan 10.
1901 Inhibition of KPNA4 attenuates prostate cancer metastasis.Oncogene. 2017 May 18;36(20):2868-2878. doi: 10.1038/onc.2016.440. Epub 2016 Dec 12.
1902 Prostate-Derived Ets Factor (PDEF) Inhibits Metastasis by Inducing Epithelial/Luminal Phenotype in Prostate Cancer Cells. Mol Cancer Res. 2018 Sep;16(9):1430-1440.
1903 EMT Markers in Locally-Advanced Prostate Cancer: Predicting Recurrence?.Front Oncol. 2019 Mar 11;9:131. doi: 10.3389/fonc.2019.00131. eCollection 2019.
1904 The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer.Cancer Biol Ther. 2015;16(1):125-36. doi: 10.4161/15384047.2014.987078.
1905 MicroRNA?06b functions as an oncogene and regulates tumor viability and metastasis by targeting LARP4B in prostate cancer.Mol Med Rep. 2019 Aug;20(2):951-958. doi: 10.3892/mmr.2019.10343. Epub 2019 Jun 5.
1906 The study of PSA gene expression on urogenital cell lines.Int J Urol. 1999 Oct;6(10):526-31. doi: 10.1046/j.1442-2042.1999.00104.x.
1907 Limb-bud and Heart Overexpression Inhibits the Proliferation and Migration of PC3M Cells.J Cancer. 2018 Jan 1;9(2):424-432. doi: 10.7150/jca.21375. eCollection 2018.
1908 Loss of LDAH associated with prostate cancer and hearing loss.Hum Mol Genet. 2018 Dec 15;27(24):4194-4203. doi: 10.1093/hmg/ddy310.
1909 Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer.Cancer Res. 2018 Aug 15;78(16):4459-4470. doi: 10.1158/0008-5472.CAN-17-3226. Epub 2018 Jun 11.
1910 Expression of two testis-specific genes, SPATA19 and LEMD1, in prostate cancer.Arch Med Res. 2010 Apr;41(3):195-200. doi: 10.1016/j.arcmed.2010.04.003.
1911 Stable and high expression of Galectin-8 tightly controls metastatic progression of prostate cancer.Oncotarget. 2017 Jul 4;8(27):44654-44668. doi: 10.18632/oncotarget.17963.
1912 Mechanistic insights of epithelial protein lost in neoplasm in prostate cancer metastasis.Int J Cancer. 2018 Nov 15;143(10):2537-2550. doi: 10.1002/ijc.31786. Epub 2018 Sep 19.
1913 Role of BioResponse 3,3'-Diindolylmethane in the Treatment of Human Prostate Cancer: Clinical Experience.Med Princ Pract. 2016;25 Suppl 2(Suppl 2):11-7. doi: 10.1159/000439307. Epub 2015 Oct 27.
1914 LITAF Enhances Radiosensitivity of Human Glioma Cells via the FoxO1 Pathway.Cell Mol Neurobiol. 2019 Aug;39(6):871-882. doi: 10.1007/s10571-019-00686-4. Epub 2019 May 16.
1915 Leupaxin stimulates adhesion and migration of prostate cancer cells through modulation of the phosphorylation status of the actin-binding protein caldesmon.Oncotarget. 2015 May 30;6(15):13591-606. doi: 10.18632/oncotarget.3792.
1916 LRIG1 is a pleiotropic androgen receptor-regulated feedback tumor suppressor in prostate cancer.Nat Commun. 2019 Dec 2;10(1):5494. doi: 10.1038/s41467-019-13532-4.
1917 Overexpressed LRIG3 gene ameliorates prostate cancer through suppression of cell invasion and migration.Int J Biol Macromol. 2019 Mar 1;124:1-9. doi: 10.1016/j.ijbiomac.2018.11.028. Epub 2018 Nov 7.
1918 Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma.Am J Pathol. 2001 Jan;158(1):25-32. doi: 10.1016/S0002-9440(10)63940-5.
1919 Leucine-rich repeat-containing protein 59 mediates nuclear import of cancerous inhibitor of PP2A in prostate cancer cells.Tumour Biol. 2015 Aug;36(8):6383-90. doi: 10.1007/s13277-015-3326-1. Epub 2015 Apr 2.
1920 Bone Microenvironment Changes in Latexin Expression Promote Chemoresistance.Mol Cancer Res. 2017 Apr;15(4):457-466. doi: 10.1158/1541-7786.MCR-16-0392. Epub 2017 Jan 13.
1921 Growth, regeneration, and tumorigenesis of the prostate activates the PSCA promoter.Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):401-6. doi: 10.1073/pnas.012574899. Epub 2001 Dec 18.
1922 Hypermethylation of the tumor necrosis factor receptor superfamily 6 (APT1, Fas, CD95/Apo-1) gene promoter at rel/nuclear factor kappaB sites in prostatic carcinoma.Mol Carcinog. 2001 Sep;32(1):36-43. doi: 10.1002/mc.1062.
1923 Novel fusion transcripts associate with progressive prostate cancer.Am J Pathol. 2014 Oct;184(10):2840-9. doi: 10.1016/j.ajpath.2014.06.025.
1924 Histone variant MacroH2A1 is downregulated in prostate cancer and influences malignant cell phenotype.Cancer Cell Int. 2019 Apr 29;19:112. doi: 10.1186/s12935-019-0835-9. eCollection 2019.
1925 Efficacy of a neoadjuvant gonadotropin-releasing hormone antagonist plus low-dose estramustine phosphate in high-risk prostate cancer: a single-center study.Int Urol Nephrol. 2017 May;49(5):811-816. doi: 10.1007/s11255-017-1546-6. Epub 2017 Feb 17.
1926 Genomic Validation of 3-Tiered Clinical Subclassification of High-Risk Prostate Cancer.Int J Radiat Oncol Biol Phys. 2019 Nov 1;105(3):621-627. doi: 10.1016/j.ijrobp.2019.06.2510. Epub 2019 Jul 2.
1927 MAGI2 is an independent predictor of biochemical recurrence in prostate cancer.Prostate. 2018 Jun;78(8):616-622. doi: 10.1002/pros.23506. Epub 2018 Mar 14.
1928 USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination.Autophagy. 2018;14(11):1976-1990. doi: 10.1080/15548627.2018.1496877. Epub 2018 Aug 10.
1929 Active surveillance outcomes in prostate cancer patients: the use of transperineal template-guided mapping biopsy for patient selection.World J Urol. 2020 Feb;38(2):361-369. doi: 10.1007/s00345-019-02695-w. Epub 2019 Apr 24.
1930 The Role of Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study.Urology. 2018 Jan;111:122-128. doi: 10.1016/j.urology.2017.08.039. Epub 2017 Sep 6.
1931 Consulting prostate cancer cohort data uncovers transcriptional control: Regulation of the MARCH6 gene.Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Nov;1864(11):1656-1668. doi: 10.1016/j.bbalip.2019.08.006. Epub 2019 Aug 15.
1932 A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells.Oncogene. 2009 Jul 16;28(28):2556-68. doi: 10.1038/onc.2009.118. Epub 2009 May 18.
1933 Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis.Cancer Res. 2003 Nov 15;63(22):7936-41.
1934 Italian cultural adaptation of the Memorial Anxiety for Prostate Cancer scale for the population of men on active surveillance.Tumori. 2018 Jun;104(3):172-178. doi: 10.5301/tj.5000646. Epub 2018 May 9.
1935 AKT Inhibition Modulates H3K4 Demethylase Levels in PTEN-Null Prostate Cancer.Mol Cancer Ther. 2019 Feb;18(2):356-363. doi: 10.1158/1535-7163.MCT-18-0141. Epub 2018 Nov 16.
1936 Overexpression of malignant brain tumor domain containing protein 1 predicts a poor prognosis of prostate cancer.Oncol Lett. 2019 May;17(5):4640-4646. doi: 10.3892/ol.2019.10109. Epub 2019 Mar 5.
1937 Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study).Environ Health Perspect. 2018 Apr 23;126(4):047011. doi: 10.1289/EHP1837.
1938 Overexpression of MCM10 promotes cell proliferation and predicts poor prognosis in prostate cancer.Prostate. 2018 Dec;78(16):1299-1310. doi: 10.1002/pros.23703. Epub 2018 Aug 10.
1939 Upregulation of minichromosome maintenance complex component 3 during epithelial-to-mesenchymal transition in human prostate cancer.Oncotarget. 2017 Jun 13;8(24):39209-39217. doi: 10.18632/oncotarget.16835.
1940 Diagnosis of genito-urinary tract cancer by detection of minichromosome maintenance 5 protein in urine sediments.J Natl Cancer Inst. 2002 Jul 17;94(14):1071-9. doi: 10.1093/jnci/94.14.1071.
1941 Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies.Oncogene. 2017 Jun 22;36(25):3629-3639. doi: 10.1038/onc.2017.123. Epub 2017 May 8.
1942 MicroRNA-1291 mediates cell proliferation and tumorigenesis by downregulating MED1 in prostate cancer.Oncol Lett. 2019 Mar;17(3):3253-3260. doi: 10.3892/ol.2019.9980. Epub 2019 Jan 28.
1943 Somatic MED12 mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms.Prostate. 2016 Jan;76(1):22-31. doi: 10.1002/pros.23092. Epub 2015 Sep 18.
1944 Knockdown of Mediator Complex Subunit 19 Suppresses the Growth and Invasion of Prostate Cancer Cells.PLoS One. 2017 Jan 26;12(1):e0171134. doi: 10.1371/journal.pone.0171134. eCollection 2017.
1945 The novel gene EG-1 stimulates cellular proliferation.Cancer Res. 2005 Jul 15;65(14):6159-66. doi: 10.1158/0008-5472.CAN-04-4016.
1946 ETV4 and AP1 Transcription Factors Form Multivalent Interactions with three Sites on the MED25 Activator-Interacting Domain.J Mol Biol. 2017 Oct 13;429(20):2975-2995. doi: 10.1016/j.jmb.2017.06.024. Epub 2017 Jul 17.
1947 Epigenetic silencing of MEIS2 in prostate cancer recurrence.Clin Epigenetics. 2019 Oct 22;11(1):147. doi: 10.1186/s13148-019-0742-x.
1948 Silencing of MEOX1 Gene Inhibits Proliferation and Promotes Apoptosis of LNCaP Cells in Prostate Cancer.Cancer Biother Radiopharm. 2019 Mar;34(2):91-102. doi: 10.1089/cbr.2018.2545. Epub 2018 Dec 12.
1949 RNA m(6)A Methyltransferase METTL3 Promotes The Growth Of Prostate Cancer By Regulating Hedgehog Pathway.Onco Targets Ther. 2019 Nov 5;12:9143-9152. doi: 10.2147/OTT.S226796. eCollection 2019.
1950 Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis.Anticancer Res. 2008 Jul-Aug;28(4A):1993-9.
1951 Race-associated expression of MHC class I polypeptide-related sequence A (MICA) in prostate cancer.Exp Mol Pathol. 2019 Jun;108:173-182. doi: 10.1016/j.yexmp.2019.04.010. Epub 2019 Apr 17.
1952 Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression.Clin Cancer Res. 2006 May 1;12(9):2767-73. doi: 10.1158/1078-0432.CCR-05-1995.
1953 A hormone-dependent feedback-loop controls androgen receptor levels by limiting MID1, a novel translation enhancer and promoter of oncogenic signaling.Mol Cancer. 2014 Jun 9;13:146. doi: 10.1186/1476-4598-13-146.
1954 Correction to: MIIP inhibits the growth of prostate cancer via interaction with PP1 and negative modulation of AKT signaling.Cell Commun Signal. 2019 Oct 21;17(1):130. doi: 10.1186/s12964-019-0441-4.
1955 Volumetric modulated arc therapy with dynamic collimator rotation for improved multileaf collimator tracking of the prostate.Radiother Oncol. 2017 Jan;122(1):109-115. doi: 10.1016/j.radonc.2016.11.004. Epub 2016 Nov 28.
1956 TEX15: A DNA repair gene associated with prostate cancer risk in Han Chinese.Prostate. 2017 Sep;77(12):1271-1278. doi: 10.1002/pros.23387. Epub 2017 Jul 21.
1957 Methylation and MicroRNA Profiling to Understand Racial Disparities of Prostate Cancer.Methods Mol Biol. 2018;1856:255-267. doi: 10.1007/978-1-4939-8751-1_15.
1958 Thioredoxin-interacting protein: an oxidative stress-related gene is upregulated by glucose in human prostate carcinoma cells.J Mol Endocrinol. 2009 Mar;42(3):205-14. doi: 10.1677/JME-08-0033. Epub 2008 Dec 3.
1959 Abituzumab Targeting of V-Class Integrins Inhibits Prostate Cancer Progression.Mol Cancer Res. 2017 Jul;15(7):875-883. doi: 10.1158/1541-7786.MCR-16-0447. Epub 2017 Mar 17.
1960 Mitochondrial pyruvate carrier modulates the epithelial-mesenchymal transition in cholangiocarcinoma.Oncol Rep. 2018 Mar;39(3):1276-1282. doi: 10.3892/or.2017.6172. Epub 2017 Dec 20.
1961 Elevated MRE11 expression associated with progression and poor outcome in prostate cancer.J Cancer. 2019 Jul 10;10(18):4333-4340. doi: 10.7150/jca.31454. eCollection 2019.
1962 Texture analysis of T1-w and T2-w MR images allows a quantitative evaluation of radiation-induced changes of internal obturator muscles after radiotherapy for prostate cancer.Med Phys. 2018 Apr;45(4):1518-1528. doi: 10.1002/mp.12798. Epub 2018 Feb 26.
1963 Design, synthesis and prostate cancer cell-based studies of analogs of the Rho/MKL1 transcriptional pathway inhibitor, CCG-1423. Bioorg Med Chem Lett. 2010 Jan 15;20(2):665-72.
1964 Elevated Expression Levels of PC3-Secreted Microprotein (PSMP) in Prostate Cancer Associated With Increased Xenograft Growth and Modification of Immune-Related Microenvironment.Front Oncol. 2019 Aug 28;9:724. doi: 10.3389/fonc.2019.00724. eCollection 2019.
1965 The role of the intravascular microenvironment in spontaneous metastasis development.Int J Cancer. 2010 Jun 1;126(11):2534-41. doi: 10.1002/ijc.24979.
1966 Circ-MTO1 correlates with favorable prognosis and inhibits cell proliferation, invasion as well as miR-17-5p expression in prostate cancer.J Clin Lab Anal. 2020 Mar;34(3):e23086. doi: 10.1002/jcla.23086. Epub 2019 Nov 11.
1967 Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas.Oncotarget. 2017 Feb 21;8(8):14147-14157. doi: 10.18632/oncotarget.13122.
1968 Mucinous differentiation features associated with hormonal escape in a human prostate cancer xenograft.Br J Cancer. 2004 Feb 9;90(3):720-7. doi: 10.1038/sj.bjc.6601570.
1969 Association between single-nucleotide polymorphisms in DNA double-strand break repair genes and prostate cancer aggressiveness in the Spanish population.Prostate Cancer Prostatic Dis. 2016 Mar;19(1):28-34. doi: 10.1038/pcan.2015.63. Epub 2016 Jan 12.
1970 Commonly occurring loss and mutation of the MXI1 gene in prostate cancer.Genes Chromosomes Cancer. 1998 Aug;22(4):295-304.
1971 Somatic mutation analysis of MYH11 in breast and prostate cancer.BMC Cancer. 2008 Sep 17;8:263. doi: 10.1186/1471-2407-8-263.
1972 Myosin 1b promotes cell proliferation, migration, and invasion in cervical cancer.Gynecol Oncol. 2018 Apr;149(1):188-197. doi: 10.1016/j.ygyno.2018.01.024. Epub 2018 Feb 1.
1973 Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.PLoS One. 2014 Sep 26;9(9):e108609. doi: 10.1371/journal.pone.0108609. eCollection 2014.
1974 Myosin Va plays essential roles in maintaining normal mitosis, enhancing tumor cell motility and viability.Oncotarget. 2017 May 17;8(33):54654-54671. doi: 10.18632/oncotarget.17920. eCollection 2017 Aug 15.
1975 The ultrasound characteristics of regions identified as suspicious by magnetic resonance imaging (MRI) predict the likelihood of clinically significant cancer on MRI-ultrasound fusion-targeted biopsy.BJU Int. 2019 Mar;123(3):439-446. doi: 10.1111/bju.14615. Epub 2018 Nov 30.
1976 MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3 signaling impedes castration-resistant prostate cancer growth.Aging (Albany NY). 2019 Nov 24;11(22):10644-10663. doi: 10.18632/aging.102482. Epub 2019 Nov 24.
1977 ARD1/NAA10 acetylation in prostate cancer.Exp Mol Med. 2018 Jul 27;50(7):1-8. doi: 10.1038/s12276-018-0107-0.
1978 Induction of neuronal apoptosis inhibitory protein expression in response to androgen deprivation in prostate cancer.Cancer Lett. 2010 Jun 28;292(2):176-85. doi: 10.1016/j.canlet.2009.11.023. Epub 2009 Dec 30.
1979 Use of a 17-Gene Prognostic Assay in Contemporary Urologic Practice: Results of an Interim Analysis in an Observational Cohort.Urology. 2017 Sep;107:67-75. doi: 10.1016/j.urology.2017.02.052. Epub 2017 Apr 25.
1980 Inherited NBN Mutations and Prostate Cancer Risk and Survival.Cancer Res Treat. 2019 Jul;51(3):1180-1187. doi: 10.4143/crt.2018.532. Epub 2018 Dec 13.
1981 hCAP-D3 expression marks a prostate cancer subtype with favorable clinical behavior and androgen signaling signature.Am J Surg Pathol. 2008 Feb;32(2):205-9. doi: 10.1097/PAS.0b013e318124a865.
1982 Overexpression of NCAPH is upregulated and predicts a poor prognosis in prostate cancer.Oncol Lett. 2019 Jun;17(6):5768-5776. doi: 10.3892/ol.2019.10260. Epub 2019 Apr 17.
1983 Heredity and prostate cancer: a study of World War II veteran twins.Prostate. 1997 Dec 1;33(4):240-5. doi: 10.1002/(sici)1097-0045(19971201)33:4<240::aid-pros3>3.0.co;2-l.
1984 Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients.Am J Hum Genet. 2010 Dec 10;87(6):802-12. doi: 10.1016/j.ajhg.2010.11.001.
1985 Suppression of microRNA-454 impedes the proliferation and invasion of prostate cancer cells by promoting N-myc downstream-regulated gene 2 and inhibiting WNT/-catenin signaling.Biomed Pharmacother. 2018 Jan;97:120-127. doi: 10.1016/j.biopha.2017.10.115. Epub 2017 Nov 6.
1986 NDRG3 lowers the metastatic potential in prostate cancer as a feedback controller of hypoxia-inducible factors.Exp Mol Med. 2018 May 14;50(5):1-13. doi: 10.1038/s12276-018-0089-y.
1987 Is there any association between nek3 and cancers with frequent 13q14 deletion?.Cancer Invest. 2006 Nov;24(7):682-8. doi: 10.1080/07357900600981364.
1988 BRCA1 Interacting Protein COBRA1 Facilitates Adaptation to Castrate-Resistant Growth Conditions.Int J Mol Sci. 2018 Jul 20;19(7):2104. doi: 10.3390/ijms19072104.
1989 Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: implications for finasteride therapy of prostate carcinoma.Prostate. 2003 Oct 1;57(2):134-9. doi: 10.1002/pros.10284.
1990 NeuroD1 expression in human prostate cancer: can it contribute to neuroendocrine differentiation comprehension?.Eur Urol. 2007 Nov;52(5):1365-73. doi: 10.1016/j.eururo.2006.11.030. Epub 2006 Nov 20.
1991 Down-Regulation of Nfatc1 Suppresses Proliferation, Migration, Invasion, and Warburg Effect in Prostate Cancer Cells.Med Sci Monit. 2019 Feb 28;25:1572-1581. doi: 10.12659/MSM.910998.
1992 Incidental Finding of Intrathyroid Metastases of Prostatic Cancer on 18F-Choline PET/CT.Clin Nucl Med. 2019 Feb;44(2):e101-e103. doi: 10.1097/RLU.0000000000002374.
1993 Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men.Clin Cancer Res. 2010 Jul 15;16(14):3539-47. doi: 10.1158/1078-0432.CCR-09-3342. Epub 2010 Jul 6.
1994 Expression analysis of inflammasome sensors and implication of NLRP12 inflammasome in prostate cancer.Sci Rep. 2017 Jun 29;7(1):4378. doi: 10.1038/s41598-017-04286-4.
1995 The prognostic impact of high Nijmegen breakage syndrome (NBS1) gene expression in ERG-negative prostate cancers lacking PTEN deletion is driven by KPNA2 expression.Int J Cancer. 2014 Sep 15;135(6):1399-407. doi: 10.1002/ijc.28778. Epub 2014 Feb 26.
1996 MiR-192 suppresses the tumorigenicity of prostate cancer cells by targeting and inhibiting nin one binding protein.Int J Mol Med. 2016 Feb;37(2):485-92. doi: 10.3892/ijmm.2016.2449. Epub 2016 Jan 5.
1997 An ALP-activatable and mitochondria-targeted probe for prostate cancer-specific bimodal imaging and aggregation-enhanced photothermal therapy.Nanoscale. 2019 Mar 28;11(13):6307-6314. doi: 10.1039/c9nr00913b.
1998 The BMP antagonist Noggin is produced by osteoblasts in response to the presence of prostate cancer cells.Biotechnol Appl Biochem. 2018 May;65(3):407-418. doi: 10.1002/bab.1619. Epub 2017 Nov 2.
1999 Reproducibility of FCM-DNA ploidy analysis in prostatic cancer: comparison between needle biopsy and surgical specimens.Anal Cell Pathol. 1993 Jan;5(1):17-21.
2000 NOL8, the binding protein for beta-catenin, promoted the growth and migration of prostate cancer cells.Chem Biol Interact. 2018 Oct 1;294:40-47. doi: 10.1016/j.cbi.2018.08.019. Epub 2018 Aug 18.
2001 Genetic variants in the circadian rhythm pathway as indicators of prostate cancer progression.Cancer Cell Int. 2019 Apr 5;19:87. doi: 10.1186/s12935-019-0811-4. eCollection 2019.
2002 NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer.Prostate. 2019 Jan;79(1):44-53. doi: 10.1002/pros.23709. Epub 2018 Sep 3.
2003 TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3.Prostate. 2003 Oct 1;57(2):129-33. doi: 10.1002/pros.10282.
2004 MPC1, a key gene in cancer metabolism, is regulated by COUPTFII in human prostate cancer.Oncotarget. 2016 Mar 22;7(12):14673-83. doi: 10.18632/oncotarget.7405.
2005 Positive expression of NR6A1/CT150 as a predictor of biochemical recurrence-free survival in prostate cancer patients.Oncotarget. 2016 Aug 31;8(38):64427-64439. doi: 10.18632/oncotarget.11749. eCollection 2017 Sep 8.
2006 NSD2 is a conserved driver of metastatic prostate cancer progression.Nat Commun. 2018 Dec 5;9(1):5201.
2007 Germline mutations in the p73 gene do not predispose to familial prostate-brain cancer.Prostate. 2001 Sep 15;48(4):292-6. doi: 10.1002/pros.1109.
2008 High expression of nucleobindin 2 is associated with poor prognosis in gastric cancer.Tumour Biol. 2017 Jul;39(7):1010428317703817. doi: 10.1177/1010428317703817.
2009 CML66, a broadly immunogenic tumor antigen, elicits a humoral immune response associated with remission of chronic myelogenous leukemia.Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7492-7. doi: 10.1073/pnas.131590998.
2010 Numb(-/low) Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling.Clin Cancer Res. 2017 Nov 1;23(21):6744-6756. doi: 10.1158/1078-0432.CCR-17-0913. Epub 2017 Jul 27.
2011 Nucleoporin 153 regulates estrogen-dependent nuclear translocation of endothelial nitric oxide synthase and estrogen receptor beta in prostate cancer.Oncotarget. 2018 Jun 15;9(46):27985-27997. doi: 10.18632/oncotarget.25462. eCollection 2018 Jun 15.
2012 SWATH proteomic profiling of prostate cancer cells identifies NUSAP1 as a potential molecular target for Galiellalactone.J Proteomics. 2019 Feb 20;193:217-229. doi: 10.1016/j.jprot.2018.10.012. Epub 2018 Oct 25.
2013 Histone Deacetylase Inhibition in Prostate Cancer Triggers miR-320-Mediated Suppression of the Androgen Receptor.Cancer Res. 2016 Jul 15;76(14):4192-204. doi: 10.1158/0008-5472.CAN-15-3339. Epub 2016 May 23.
2014 Expression of splice variants of cancer-testis genes ODF3 and ODF4 in the testis of a prostate cancer patient.Genet Mol Res. 2012 Oct 4;11(4):3642-8. doi: 10.4238/2012.October.4.11.
2015 Targeted Notch1 inhibition with a Notch1 antibody, OMP-A2G1, decreases tumor growth in two murine models of prostate cancer in association with differing patterns of DNA damage response gene expression.J Cell Biochem. 2019 Oct;120(10):16946-16955. doi: 10.1002/jcb.28954. Epub 2019 May 17.
2016 ONECUT2 is a driver of neuroendocrine prostate cancer.Nat Commun. 2019 Jan 17;10(1):278. doi: 10.1038/s41467-018-08133-6.
2017 The activation of OR51E1 causes growth suppression of human prostate cancer cells.Oncotarget. 2016 Jul 26;7(30):48231-48249. doi: 10.18632/oncotarget.10197.
2018 Overexpression of certain transient receptor potential and Orai channels in prostate cancer is associated with decreased risk of systemic recurrence after radical prostatectomy.Prostate. 2019 Dec;79(16):1793-1804. doi: 10.1002/pros.23904. Epub 2019 Sep 2.
2019 Ovol2 induces mesenchymal-epithelial transition via targeting ZEB1 in osteosarcoma.Onco Targets Ther. 2018 May 22;11:2963-2973. doi: 10.2147/OTT.S157119. eCollection 2018.
2020 Identification of nucleolar protein No55 as a tumour-associated autoantigen in patients with prostate cancer.Br J Cancer. 2000 Sep;83(6):743-9. doi: 10.1054/bjoc.2000.1365.
2021 The downregulation of ErbB3 binding protein 1 (EBP1) is associated with poor prognosis and enhanced cell proliferation in hepatocellular carcinoma.Mol Cell Biochem. 2014 Nov;396(1-2):175-85. doi: 10.1007/s11010-014-2153-9. Epub 2014 Aug 1.
2022 HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer.Oncotarget. 2017 Dec 8;9(1):512-523. doi: 10.18632/oncotarget.23070. eCollection 2018 Jan 2.
2023 PADI2-Mediated Citrullination Promotes Prostate Cancer Progression.Cancer Res. 2017 Nov 1;77(21):5755-5768. doi: 10.1158/0008-5472.CAN-17-0150. Epub 2017 Aug 17.
2024 Radioablation +/- hormonotherapy for prostate cancer oligorecurrences (Radiosa trial): potential of imaging and biology (AIRC IG-22159).BMC Cancer. 2019 Sep 10;19(1):903. doi: 10.1186/s12885-019-6117-z.
2025 Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer.Cancer Res. 1993 Sep 1;53(17):3869-73.
2026 Human PARM-1 is a novel mucin-like, androgen-regulated gene exhibiting proliferative effects in prostate cancer cells.Int J Cancer. 2008 Mar 15;122(6):1229-35. doi: 10.1002/ijc.23185.
2027 PARP9 is overexpressed in human breast cancer and promotes cancer cell migration.Oncol Lett. 2018 Sep;16(3):4073-4077. doi: 10.3892/ol.2018.9124. Epub 2018 Jul 11.
2028 PATE, a gene expressed in prostate cancer, normal prostate, and testis, identified by a functional genomic approach.Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3058-63. doi: 10.1073/pnas.052713699.
2029 Protocadherin 7 is overexpressed in castration resistant prostate cancer and promotes aberrant MEK and AKT signaling.Prostate. 2019 Nov;79(15):1739-1751. doi: 10.1002/pros.23898. Epub 2019 Aug 26.
2030 Aberrant Promoter Methylation of Protocadherin8 (PCDH8) in Serum is a Potential Prognostic Marker for Low Gleason Score Prostate Cancer.Med Sci Monit. 2017 Oct 13;23:4895-4900. doi: 10.12659/msm.904366.
2031 Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression.Eur Urol. 2018 Mar;73(3):322-339. doi: 10.1016/j.eururo.2017.08.027. Epub 2017 Sep 18.
2032 Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients.Prostate. 2019 Feb;79(2):234-242. doi: 10.1002/pros.23728. Epub 2018 Oct 16.
2033 Analysis of Mel-18 expression in prostate cancer tissues and correlation with clinicopathologic features.Urol Oncol. 2011 May-Jun;29(3):244-51. doi: 10.1016/j.urolonc.2009.02.004. Epub 2009 Apr 22.
2034 Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells.Oncotarget. 2017 Jun 28;8(48):83602-83618. doi: 10.18632/oncotarget.18787. eCollection 2017 Oct 13.
2035 Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression.Cancer Res. 2001 Mar 1;61(5):2212-9.
2036 PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance.Mol Cancer Res. 2019 Feb;17(2):618-627. doi: 10.1158/1541-7786.MCR-18-0837. Epub 2018 Dec 5.
2037 PRLTS gene alterations in human prostate cancer.Jpn J Cancer Res. 1997 Apr;88(4):389-93. doi: 10.1111/j.1349-7006.1997.tb00394.x.
2038 CX4945 suppresses the growth of castration-resistant prostate cancer cells by reducing AR-V7 expression.World J Urol. 2017 Aug;35(8):1213-1221. doi: 10.1007/s00345-016-1996-y. Epub 2017 Jan 19.
2039 AMPK/GSK3/-catenin cascade-triggered overexpression of CEMIP promotes migration and invasion in anoikis-resistant prostate cancer cells by enhancing metabolic reprogramming.FASEB J. 2018 Jul;32(7):3924-3935. doi: 10.1096/fj.201701078R. Epub 2018 Mar 5.
2040 PDLIM4, an actin binding protein, suppresses prostate cancer cell growth.Cancer Invest. 2009 Mar;27(3):264-72. doi: 10.1080/07357900802406319.
2041 Correlation of genomic and expression alterations of AS3 with esophageal squamous cell carcinoma.J Genet Genomics. 2008 May;35(5):267-71. doi: 10.1016/S1673-8527(08)60038-7.
2042 Pre-clinical and clinical evaluation of estramustine, docetaxel and thalidomide combination in androgen-independent prostate cancer.BJU Int. 2007 May;99(5):1047-55. doi: 10.1111/j.1464-410X.2007.06763.x.
2043 PEG10 is associated with treatment-induced neuroendocrine prostate cancer.J Mol Endocrinol. 2019 Jul 1;63(1):39-49. doi: 10.1530/JME-18-0226.
2044 Overexpression of PER3 reverses paclitaxel resistance of prostate cancer cells by inhibiting the Notch pathway.Eur Rev Med Pharmacol Sci. 2018 May;22(9):2572-2579. doi: 10.26355/eurrev_201805_14950.
2045 Downregulation of serum CXCL4L1 predicts progression and poor prognosis in prostate cancer patients treated by radical prostatectomy.Asian J Androl. 2019 Jul-Aug;21(4):387-392. doi: 10.4103/aja.aja_117_18.
2046 Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion.Asian J Androl. 2018 Mar-Apr;20(2):178-183. doi: 10.4103/aja.aja_57_17.
2047 RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.Eur Urol. 2019 Aug;76(2):157-166. doi: 10.1016/j.eururo.2019.03.011. Epub 2019 Mar 23.
2048 Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.Mol Cancer. 2016 Dec 12;15(1):81. doi: 10.1186/s12943-016-0567-6.
2049 The PHLPP2 phosphatase is a druggable driver of prostate cancer progression.J Cell Biol. 2019 Jun 3;218(6):1943-1957. doi: 10.1083/jcb.201902048. Epub 2019 May 15.
2050 Identification, purification and characterization of a novel human blood protein with binding affinity for prostate secretory protein of 94 amino acids.Biochem J. 2005 Jan 1;385(Pt 1):105-14. doi: 10.1042/BJ20040290.
2051 PIAS1 is not suitable as a urothelial carcinoma biomarker protein and pharmacological target.PLoS One. 2019 Oct 22;14(10):e0224085. doi: 10.1371/journal.pone.0224085. eCollection 2019.
2052 The TGF- signalling negative regulator PICK1 represses prostate cancer metastasis to bone.Br J Cancer. 2017 Aug 22;117(5):685-694. doi: 10.1038/bjc.2017.212. Epub 2017 Jul 11.
2053 Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle.Int J Oncol. 2019 Sep;55(3):629-644. doi: 10.3892/ijo.2019.4839. Epub 2019 Jul 15.
2054 Dermcidin expression confers a survival advantage in prostate cancer cells subjected to oxidative stress or hypoxia.Prostate. 2007 Sep 1;67(12):1308-17. doi: 10.1002/pros.20618.
2055 Novel roles for class II Phosphoinositide 3-Kinase C2 in signalling pathways involved in prostate cancer cell invasion.Sci Rep. 2016 Mar 17;6:23277. doi: 10.1038/srep23277.
2056 Pooled analysis of phosphatidylinositol 3-kinase pathway variants and risk of prostate cancer.Cancer Res. 2010 Mar 15;70(6):2389-96. doi: 10.1158/0008-5472.CAN-09-3575. Epub 2010 Mar 2.
2057 PITX2 methylation: a novel and effective biomarker for monitoring biochemical recurrence risk of prostate cancer.Medicine (Baltimore). 2019 Jan;98(1):e13820. doi: 10.1097/MD.0000000000013820.
2058 Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1.Br J Cancer. 2018 Feb 20;118(4):587-599. doi: 10.1038/bjc.2017.431. Epub 2018 Feb 20.
2059 Group IIA phospholipase A as a prognostic marker in prostate cancer: relevance to clinicopathological variables and disease-specific mortality.APMIS. 2009 Mar;117(3):151-61. doi: 10.1111/j.1600-0463.2008.00002.x.
2060 Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection.PLoS One. 2019 Jun 24;14(6):e0218950. doi: 10.1371/journal.pone.0218950. eCollection 2019.
2061 Combination of phospholipase C knockdown with GANT61 sensitizes castrationresistant prostate cancer cells to enzalutamide by suppressing the androgen receptor signaling pathway.Oncol Rep. 2019 May;41(5):2689-2702. doi: 10.3892/or.2019.7054. Epub 2019 Mar 7.
2062 Use of the probasin promoter ARR2PB to express Bax in androgen receptor-positive prostate cancer cells.J Natl Cancer Inst. 2001 Sep 5;93(17):1314-24. doi: 10.1093/jnci/93.17.1314.
2063 Polo-like kinase 3 is associated with poor prognosis and regulates proliferation and metastasis in prostate cancer.Cancer Manag Res. 2019 Feb 14;11:1517-1524. doi: 10.2147/CMAR.S176762. eCollection 2019.
2064 Loss of ABHD5 promotes the aggressiveness of prostate cancer cells.Sci Rep. 2017 Oct 12;7(1):13021. doi: 10.1038/s41598-017-13398-w.
2065 Overexpression of the Pluripotent Stem Cell Marker Podocalyxin in Prostate Cancer.Anticancer Res. 2018 Nov;38(11):6361-6366. doi: 10.21873/anticanres.12994.
2066 Hypothesis driven single nucleotide polymorphism search (HyDn-SNP-S).DNA Repair (Amst). 2013 Sep;12(9):733-40. doi: 10.1016/j.dnarep.2013.06.001. Epub 2013 Jul 5.
2067 The POLR2E rs3787016 polymorphism is strongly associated with the risk of female breast and cervical cancer.Pathol Res Pract. 2019 May;215(5):1061-1065. doi: 10.1016/j.prp.2019.02.015. Epub 2019 Feb 27.
2068 Effects on prostate cancer cells of targeting RNA polymerase III.Nucleic Acids Res. 2019 May 7;47(8):3937-3956. doi: 10.1093/nar/gkz128.
2069 POTE, a highly homologous gene family located on numerous chromosomes and expressed in prostate, ovary, testis, placenta, and prostate cancer.Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16975-80. doi: 10.1073/pnas.262655399. Epub 2002 Dec 10.
2070 Clinical and molecular features of treatment-related neuroendocrine prostate cancer.Int J Urol. 2018 Apr;25(4):345-351. doi: 10.1111/iju.13526. Epub 2018 Feb 3.
2071 Long noncoding RNA POU3F3 promotes cancer cell proliferation in prostate carcinoma by upregulating rho-associated protein kinase 1.J Cell Biochem. 2019 May;120(5):8195-8200. doi: 10.1002/jcb.28101. Epub 2018 Nov 26.
2072 Brn-3a neuronal transcription factor functional expression in human prostate cancer.Prostate Cancer Prostatic Dis. 2006;9(1):83-91. doi: 10.1038/sj.pcan.4500837.
2073 Elimination of SOX2/OCT4-Associated Prostate Cancer Stem Cells Blocks Tumor Development and Enhances Therapeutic Response.Cancers (Basel). 2019 Sep 8;11(9):1331. doi: 10.3390/cancers11091331.
2074 Liprin-alpha2 gene, protein tyrosine phosphatase LAR interacting protein related gene, is downregulated by androgens in the human prostate cancer cell line LNCaP.Int J Mol Med. 2002 Aug;10(2):173-6.
2075 CYP 1A1 polymorphism and organochlorine pesticides levels in the etiology of prostate cancer.Chemosphere. 2010 Sep;81(4):464-8. doi: 10.1016/j.chemosphere.2010.07.067.
2076 Association of imputed prostate cancer transcriptome with disease risk reveals novel mechanisms.Nat Commun. 2019 Jul 15;10(1):3107. doi: 10.1038/s41467-019-10808-7.
2077 PPP2R2A prostate cancer haploinsufficiency is associated with worse prognosis and a high vulnerability to B55/PP2A reconstitution that triggers centrosome destabilization.Oncogenesis. 2019 Dec 10;8(12):72. doi: 10.1038/s41389-019-0180-9.
2078 miR-1301 promotes prostate cancer proliferation through directly targeting PPP2R2C.Biomed Pharmacother. 2016 Jul;81:25-30. doi: 10.1016/j.biopha.2016.03.043. Epub 2016 Apr 8.
2079 Expression of urokinase-type plasminogen activator system in non-metastatic prostate cancer.World J Urol. 2020 Oct;38(10):2501-2511. doi: 10.1007/s00345-019-03038-5. Epub 2019 Dec 4.
2080 Anticancer activity of the PR domain of tumor suppressor RIZ1.Int J Med Sci. 2011 Feb 21;8(2):161-7. doi: 10.7150/ijms.8.161.
2081 Upregulation of PIP3-dependent Rac exchanger 1 (P-Rex1) promotes prostate cancer metastasis.Oncogene. 2009 Apr 23;28(16):1853-63. doi: 10.1038/onc.2009.30. Epub 2009 Mar 23.
2082 The human oncogene SCL/TAL1 interrupting locus (STIL) promotes tumor growth through MAPK/ERK, PI3K/Akt and AMPK pathways in prostate cancer.Gene. 2019 Feb 20;686:220-227. doi: 10.1016/j.gene.2018.11.048. Epub 2018 Nov 16.
2083 The impact of interleukin-10 (IL-10) gene 4 polymorphisms on peripheral blood IL-10 variation and prostate cancer risk based on published studies.Oncotarget. 2017 Jul 11;8(28):45994-46005. doi: 10.18632/oncotarget.17522.
2084 Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate cancer.Oncotarget. 2015 Sep 22;6(28):26437-56. doi: 10.18632/oncotarget.4664.
2085 Identification and characterization of a novel testosterone-regulated prominin-like gene in the rat ventral prostate.Endocrinology. 2002 Dec;143(12):4788-96. doi: 10.1210/en.2002-220522.
2086 Specific expression of lncRNA RP13-650J16.1 and TCONS_00023979 in prostate cancer.Biosci Rep. 2018 Oct 31;38(5):BSR20171571. doi: 10.1042/BSR20171571. Print 2018 Oct 31.
2087 PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3.Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8403-8. doi: 10.1073/pnas.1507882112. Epub 2015 Jun 15.
2088 Predictive value of the UICC and AJCC 8th edition tumor-nodes-metastasis (TNM) classification for patients treated with radical prostatectomy.Cancer Epidemiol. 2018 Oct;56:126-132. doi: 10.1016/j.canep.2018.08.007. Epub 2018 Aug 31.
2089 PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance.Anticancer Drugs. 2019 Aug;30(7):e0773. doi: 10.1097/CAD.0000000000000773.
2090 Targeting POH1 inhibits prostate cancer cell growth and enhances the suppressive efficacy of androgen deprivation and docetaxel.Prostate. 2019 Aug;79(11):1304-1315. doi: 10.1002/pros.23838. Epub 2019 Jun 18.
2091 Knockdown of REG inhibits proliferation by inducing apoptosis and cell cycle arrest in prostate cancer.Am J Transl Res. 2017 Aug 15;9(8):3787-3795. eCollection 2017.
2092 Elevated expression of PTCD3 correlates with tumor progression and predicts poor prognosis in patients with prostate cancer.Mol Med Rep. 2018 Oct;18(4):3914-3922. doi: 10.3892/mmr.2018.9402. Epub 2018 Aug 20.
2093 Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer.Int J Radiat Oncol Biol Phys. 2010 Dec 1;78(5):1292-300. doi: 10.1016/j.ijrobp.2010.07.036.
2094 Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of -catenin activation of the DKK1 promoter in prostate cancer.Oncogene. 2014 May 8;33(19):2464-77. doi: 10.1038/onc.2013.203. Epub 2013 Jun 10.
2095 Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer.Clin Proteomics. 2019 Apr 13;16:15. doi: 10.1186/s12014-019-9236-2. eCollection 2019.
2096 High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer.BMC Cancer. 2019 Oct 12;19(1):944. doi: 10.1186/s12885-019-6182-3.
2097 Identification of a Radiosensitivity Molecular Signature Induced by Enzalutamide in Hormone-sensitive and Hormone-resistant Prostate Cancer Cells.Sci Rep. 2019 Jun 20;9(1):8838. doi: 10.1038/s41598-019-44991-w.
2098 Loss of receptor protein tyrosine phosphatase / (RPTP/) promotes prostate cancer metastasis.J Biol Chem. 2012 Nov 23;287(48):40339-49. doi: 10.1074/jbc.M112.405852. Epub 2012 Oct 11.
2099 Proteomics-Metabolomics Combined Approach Identifies Peroxidasin as a Protector against Metabolic and Oxidative Stress in Prostate Cancer.Int J Mol Sci. 2019 Jun 21;20(12):3046. doi: 10.3390/ijms20123046.
2100 PMP24, a gene identified by MSRF, undergoes DNA hypermethylation-associated gene silencing during cancer progression in an LNCaP model.Oncogene. 2004 Jan 8;23(1):250-9. doi: 10.1038/sj.onc.1207076.
2101 Paxillin regulated genomic networks in prostate cancer.Steroids. 2019 Nov;151:108463. doi: 10.1016/j.steroids.2019.108463. Epub 2019 Jul 22.
2102 Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer.Oncol Lett. 2018 Jan;15(1):731-740. doi: 10.3892/ol.2017.7400. Epub 2017 Nov 14.
2103 PYGOPUS2 expression in prostatic adenocarcinoma is a potential risk stratification marker for PSA progression following radical prostatectomy.J Clin Pathol. 2018 May;71(5):402-411. doi: 10.1136/jclinpath-2017-204718. Epub 2017 Sep 18.
2104 Involvement of the glutamine RFamide peptide and its cognate receptor GPR103 in prostate cancer.Oncol Rep. 2019 Feb;41(2):1140-1150. doi: 10.3892/or.2018.6893. Epub 2018 Nov 27.
2105 A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes.Oncogene. 2009 Oct 29;28(43):3847-56. doi: 10.1038/onc.2009.243. Epub 2009 Aug 17.
2106 Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer.Mol Cancer Res. 2018 Aug;16(8):1319-1331. doi: 10.1158/1541-7786.MCR-17-0589. Epub 2018 May 14.
2107 miR-338-3p targets RAB23 and suppresses tumorigenicity of prostate cancer cells.Am J Cancer Res. 2018 Dec 1;8(12):2564-2574. eCollection 2018.
2108 High expression of Rab25 contributes to malignant phenotypes and biochemical recurrence in patients with prostate cancer after radical prostatectomy.Cancer Cell Int. 2017 Apr 11;17:45. doi: 10.1186/s12935-017-0411-0. eCollection 2017.
2109 Interactive effects of 9-cis-retinoic acid and androgen on proliferation, differentiation, and apoptosis of LNCaP prostate cancer cells.Eur J Cancer Prev. 2017 Jan;26(1):71-77. doi: 10.1097/CEJ.0000000000000230.
2110 PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer.Cancer Res. 2002 Oct 1;62(19):5420-4.
2111 Tissue ACE phenotyping in prostate cancer.Oncotarget. 2019 Oct 29;10(59):6349-6361. doi: 10.18632/oncotarget.27276. eCollection 2019 Oct 29.
2112 CD44 collaborates with ERBB2 mediate radiation resistance via p38 phosphorylation and DNA homologous recombination pathway in prostate cancer.Exp Cell Res. 2018 Sep 1;370(1):58-67. doi: 10.1016/j.yexcr.2018.06.006. Epub 2018 Jun 15.
2113 No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction.PLoS One. 2018 Nov 20;13(11):e0198495. doi: 10.1371/journal.pone.0198495. eCollection 2018.
2114 DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen.Acta Biomater. 2019 Sep 15;96:480-490. doi: 10.1016/j.actbio.2019.07.003. Epub 2019 Jul 9.
2115 Association of genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) with familial prostate cancer risk in a Japanese population.Anticancer Res. 2003 May-Jun;23(3C):2897-902.
2116 SmgGDS is up-regulated in prostate carcinoma and promotes tumour phenotypes in prostate cancer cells.J Pathol. 2009 Feb;217(3):389-97. doi: 10.1002/path.2456.
2117 Serum concentrations of adipokines in men with prostate cancer and benign prostate hyperplasia.Endokrynol Pol. 2018;69(2):120-127. doi: 10.5603/EP.a2018.0006. Epub 2018 Feb 21.
2118 Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming.J Clin Invest. 2018 Oct 1;128(10):4472-4484. doi: 10.1172/JCI99397. Epub 2018 Jul 26.
2119 Evaluation of an Epigenetic Assay for Predicting Repeat Prostate Biopsy Outcome in African American Men.Urology. 2019 Jun;128:62-65. doi: 10.1016/j.urology.2018.04.001. Epub 2018 Apr 13.
2120 Epigenetic down regulation of RASSF10 and its possible clinical implication in prostate carcinoma.Prostate. 2012 Oct 1;72(14):1550-8. doi: 10.1002/pros.22510. Epub 2012 Mar 13.
2121 Impact of RNAbinding motif 3 expression on the whole transcriptome of prostate cancer cells: An RNA sequencing study.Oncol Rep. 2018 Oct;40(4):2307-2315. doi: 10.3892/or.2018.6618. Epub 2018 Aug 1.
2122 CRBP-1 over-expression is associated with poor prognosis in tongue squamous cell carcinoma.BMC Cancer. 2018 May 2;18(1):514. doi: 10.1186/s12885-018-4249-1.
2123 Association of ring box-1 protein overexpression with clinicopathologic prognostic parameters in prostate carcinoma.Urol Oncol. 2016 Aug;34(8):336.e7-336.e12. doi: 10.1016/j.urolonc.2016.03.008. Epub 2016 Apr 13.
2124 CHC1-L, a candidate gene for prostate carcinogenesis at 13q14.2, is frequently affected by loss of heterozygosity and underexpressed in human prostate cancer.Int J Cancer. 2002 Jun 10;99(5):689-96. doi: 10.1002/ijc.10393.
2125 Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer.Mol Cell Biol. 2006 Sep;26(17):6502-10. doi: 10.1128/MCB.00147-06.
2126 Downregulation of reticulocalbin-1 differentially facilitates apoptosis and necroptosis in human prostate cancer cells.Cancer Sci. 2018 Apr;109(4):1147-1157. doi: 10.1111/cas.13541. Epub 2018 Mar 31.
2127 Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.PLoS Genet. 2018 Apr 16;14(4):e1007355. doi: 10.1371/journal.pgen.1007355. eCollection 2018 Apr.
2128 Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF- signaling.Cell Death Dis. 2018 Jul 13;9(7):779. doi: 10.1038/s41419-018-0807-3.
2129 Suppressed glycolytic metabolism in the prostate of transgenic rats overexpressing calcium-binding protein regucalcin underpins reduced cell proliferation.Transgenic Res. 2016 Apr;25(2):139-48. doi: 10.1007/s11248-015-9918-0. Epub 2015 Nov 9.
2130 MiR-203 inhibits the malignant behavior of prostate cancer cells by targeting RGS17.Eur Rev Med Pharmacol Sci. 2019 Jul;23(13):5667-5674. doi: 10.26355/eurrev_201907_18303.
2131 Predictive factors for prolonged hospital stay after retropubic radical prostatectomy in a high-volume teaching center.Int Braz J Urol. 2018 Nov-Dec;44(6):1089-1105. doi: 10.1590/S1677-5538.IBJU.2017.0339.
2132 Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.Prostate. 2010 Jun 1;70(8):866-74. doi: 10.1002/pros.21120.
2133 RhoBTB1 interacts with ROCKs and inhibits invasion.Biochem J. 2019 Sep 13;476(17):2499-2514. doi: 10.1042/BCJ20190203.
2134 Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2.J Exp Clin Cancer Res. 2019 Dec 17;38(1):495. doi: 10.1186/s13046-019-1488-1.
2135 Upregulated expression of polycomb protein Ring1 contributes to poor prognosis and accelerated proliferation in human hepatocellular carcinoma.Tumour Biol. 2015 Dec;36(12):9579-88. doi: 10.1007/s13277-015-3721-7. Epub 2015 Jul 4.
2136 Potential benefits of combining cytosine deaminase/5-fluorocytosine gene therapy and irradiation for prostate cancer: experimental study.Int J Urol. 2002 Oct;9(10):567-76. doi: 10.1046/j.1442-2042.2002.00513.x.
2137 Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells.Int J Oncol. 2016 Jun;48(6):2619-28. doi: 10.3892/ijo.2016.3458. Epub 2016 Mar 24.
2138 Relevance of MIC-1 in the Era of PSA as a Serum Based Predictor of Prostate Cancer: A Critical Evaluation.Sci Rep. 2017 Dec 4;7(1):16824. doi: 10.1038/s41598-017-17207-2.
2139 PTPIP51 mRNA and protein expression in tissue microarrays and promoter methylation of benign prostate hyperplasia and prostate carcinoma.Prostate. 2009 Dec 1;69(16):1751-62. doi: 10.1002/pros.21025.
2140 Identification of novel alternative transcripts of the human Ribonuclease (RNASEK) gene using 3' RACE and high-throughput sequencing approaches.Genomics. 2020 Jan;112(1):943-951. doi: 10.1016/j.ygeno.2019.06.010. Epub 2019 Jun 11.
2141 Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP.Oncotarget. 2017 Jan 17;8(3):5323-5338. doi: 10.18632/oncotarget.14142.
2142 Role of RNF20 in cancer development and progression - a comprehensive review.Biosci Rep. 2018 Jul 12;38(4):BSR20171287. doi: 10.1042/BSR20171287. Print 2018 Aug 31.
2143 Influence of serum cholesterol level and statin treatment on prostate cancer aggressiveness.Oncotarget. 2017 Jul 18;8(29):47110-47120. doi: 10.18632/oncotarget.16943.
2144 Differentially expressed genes in hormone refractory prostate cancer: association with chromosomal regions involved with genetic aberrations.Am J Pathol. 1999 May;154(5):1335-43. doi: 10.1016/S0002-9440(10)65387-4.
2145 siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer.PLoS One. 2011;6(7):e22672. doi: 10.1371/journal.pone.0022672. Epub 2011 Jul 22.
2146 Identification of candidate diagnostic and prognostic biomarkers for human prostate cancer: RPL22L1 and RPS21.Med Oncol. 2019 May 14;36(6):56. doi: 10.1007/s12032-019-1283-z.
2147 Expression of ribosomal proteins in normal and cancerous human prostate tissue.PLoS One. 2017 Oct 10;12(10):e0186047. doi: 10.1371/journal.pone.0186047. eCollection 2017.
2148 RPS7 promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer.Urol Oncol. 2019 May;37(5):297.e1-297.e7. doi: 10.1016/j.urolonc.2019.01.011. Epub 2019 Feb 6.
2149 hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1).Prostate. 2011 Oct 1;71(14):1518-24. doi: 10.1002/pros.21368. Epub 2011 Feb 25.
2150 RRR-alpha-tocopheryl succinate inhibits human prostate cancer cell invasiveness.Oncogene. 2004 Apr 15;23(17):3080-8. doi: 10.1038/sj.onc.1207435.
2151 P53 enhances apoptosis induced by doxorubicin only under conditions of severe DNA damage.Cell Cycle. 2018;17(17):2175-2186. doi: 10.1080/15384101.2018.1520565. Epub 2018 Sep 22.
2152 Dysregulated expression of S100A11 (calgizzarin) in prostate cancer and precursor lesions.Hum Pathol. 2004 Nov;35(11):1385-91. doi: 10.1016/j.humpath.2004.07.015.
2153 Psoriasin (S100A7) is a positive regulator of survival and invasion of prostate cancer cells.Urol Oncol. 2013 Nov;31(8):1576-83. doi: 10.1016/j.urolonc.2012.05.006. Epub 2012 Jun 12.
2154 Paracrine sonic hedgehog signaling contributes significantly to acquired steroidogenesis in the prostate tumor microenvironment.Int J Cancer. 2017 Jan 15;140(2):358-369. doi: 10.1002/ijc.30450. Epub 2016 Oct 20.
2155 miR-4286 promotes prostate cancer progression by targeting the expression of SALL1.J Gene Med. 2023 Jul;25(7):e3127. doi: 10.1002/jgm.3127. Epub 2023 May 30.
2156 SAMD5 mRNA was overexpressed in prostate cancer and can predict biochemical recurrence after radical prostatectomy.Int Urol Nephrol. 2019 Mar;51(3):443-451. doi: 10.1007/s11255-019-02096-3. Epub 2019 Feb 9.
2157 Long non-coding RNA SAP30L-AS1 promotes prostate cancer growth through repressing SAP30L.Gene. 2019 Mar 30;690:120-128. doi: 10.1016/j.gene.2018.12.047. Epub 2018 Dec 29.
2158 HOX genes: Major actors in resistance to selective endocrine response modifiers.Biochim Biophys Acta. 2016 Apr;1865(2):105-10. doi: 10.1016/j.bbcan.2016.01.003. Epub 2016 Jan 22.
2159 Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker.Nanoscale. 2018 Jul 5;10(25):11942-11947. doi: 10.1039/c8nr02820f.
2160 Capability of SART3(109-118) peptide to induce cytotoxic T lymphocytes from prostate cancer patients with HLA class I-A11, -A31 and -A33 alleles.Int J Oncol. 2009 Feb;34(2):529-36.
2161 Cloning of a gene (SR-A1), encoding for a new member of the human Ser/Arg-rich family of pre-mRNA splicing factors: overexpression in aggressive ovarian cancer.Br J Cancer. 2001 Jul 20;85(2):190-8. doi: 10.1054/bjoc.2001.1885.
2162 CSR1 suppresses tumor growth and metastasis of human hepatocellular carcinoma via inhibition of HPIP.Eur Rev Med Pharmacol Sci. 2017 Oct;21(17):3813-3820.
2163 Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer.Clin Cancer Res. 2019 Jan 15;25(2):595-608. doi: 10.1158/1078-0432.CCR-18-0729. Epub 2018 Oct 1.
2164 Loss of scinderin decreased expression of epidermal growth factor receptor and promoted apoptosis of castration-resistant prostate cancer cells.FEBS Open Bio. 2018 Apr 10;8(5):743-750. doi: 10.1002/2211-5463.12412. eCollection 2018 May.
2165 Epigenetic deregulation across chromosome 2q14.2 differentiates normal from prostate cancer and provides a regional panel of novel DNA methylation cancer biomarkers.Cancer Epidemiol Biomarkers Prev. 2011 Jan;20(1):148-59. doi: 10.1158/1055-9965.EPI-10-0719. Epub 2010 Nov 23.
2166 Suppression of Prostate Cancer Pathogenesis Using an MDA-9/Syntenin (SDCBP) PDZ1 Small-Molecule Inhibitor.Mol Cancer Ther. 2019 Nov;18(11):1997-2007. doi: 10.1158/1535-7163.MCT-18-1019. Epub 2019 Jul 25.
2167 In vivo imaging of retinoic acid receptor beta2 transcriptional activation by the histone deacetylase inhibitor MS-275 in retinoid-resistant prostate cancer cells.Prostate. 2005 Jun 15;64(1):20-8. doi: 10.1002/pros.20209.
2168 Molecular cloning and characterization of human homeobox gene Nkx3.1 promoter.Acta Biochim Biophys Sin (Shanghai). 2004 Jan;36(1):64-7. doi: 10.1093/abbs/36.1.64.
2169 miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1.Mol Cancer. 2016 Nov 10;15(1):70. doi: 10.1186/s12943-016-0556-9.
2170 Semaphorin 3B and 3F single nucleotide polymorphisms are associated with prostate cancer risk and poor prognosis.J Urol. 2009 Oct;182(4):1614-20. doi: 10.1016/j.juro.2009.06.016. Epub 2009 Aug 15.
2171 SSeCKS/AKAP12 induces repulsion between human prostate cancer and microvessel endothelial cells through the activation of Semaphorin 3F.Biochem Biophys Res Commun. 2017 Sep 2;490(4):1394-1398. doi: 10.1016/j.bbrc.2017.07.043. Epub 2017 Jul 8.
2172 Semaphorin 4F as a critical regulator of neuroepithelial interactions and a biomarker of aggressive prostate cancer.Clin Cancer Res. 2013 Nov 15;19(22):6101-11. doi: 10.1158/1078-0432.CCR-12-3669. Epub 2013 Oct 4.
2173 Targeting the androgen receptor and overcoming resistance in prostate cancer.Curr Opin Oncol. 2019 May;31(3):175-182. doi: 10.1097/CCO.0000000000000520.
2174 The interaction between androgen receptor and semenogelin I: a synthetic LxxLL peptide antagonist inhibits the growth of prostate cancer cells.Br J Cancer. 2018 Feb 6;118(3):416-420. doi: 10.1038/bjc.2017.404. Epub 2017 Nov 14.
2175 Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.Biopolymers. 2017 Feb;107(2):70-79. doi: 10.1002/bip.22993.
2176 Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+.Prostate. 2009 Nov 1;69(15):1694-703. doi: 10.1002/pros.21020.
2177 Identification of CpG Sites of SERPINA5 Promoter with Opposite Methylation Patterns in Benign and Malignant Prostate Cells.Anticancer Res. 2017 Dec;37(12):6609-6618. doi: 10.21873/anticanres.12118.
2178 Epigenetic Suppression of SERPINB1 Promotes Inflammation-Mediated Prostate Cancer Progression.Mol Cancer Res. 2019 Apr;17(4):845-859. doi: 10.1158/1541-7786.MCR-18-0638. Epub 2019 Jan 4.
2179 Neuroserpin (PI-12) is upregulated in high-grade prostate cancer and is associated with survival.Int J Cancer. 2005 Jul 20;115(6):911-6. doi: 10.1002/ijc.20967.
2180 Sertad1 promotes prostate cancer progression through binding androgen receptor ligand binding domain.Int J Cancer. 2019 Feb 1;144(3):558-568. doi: 10.1002/ijc.31877. Epub 2018 Oct 31.
2181 Transcriptional regulation of FoxM1 by HIF? mediates hypoxiainduced EMT in prostate cancer.Oncol Rep. 2019 Oct;42(4):1307-1318. doi: 10.3892/or.2019.7248. Epub 2019 Jul 25.
2182 PP2A inhibition as a novel therapeutic target in castration-resistant prostate cancer.Tumour Biol. 2015 Aug;36(8):5753-5. doi: 10.1007/s13277-015-3849-5. Epub 2015 Aug 4.
2183 SF3B2-Mediated RNA Splicing Drives Human Prostate Cancer Progression.Cancer Res. 2019 Oct 15;79(20):5204-5217. doi: 10.1158/0008-5472.CAN-18-3965. Epub 2019 Aug 20.
2184 miR-1301-3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3.Biomed Pharmacother. 2018 Mar;99:369-374. doi: 10.1016/j.biopha.2018.01.086.
2185 Genome-wide screening for complete genetic loss in prostate cancer by comparative hybridization onto cDNA microarrays.Oncogene. 2003 Feb 27;22(8):1247-52. doi: 10.1038/sj.onc.1206247.
2186 Implications for prostate cancer of insulin-like growth factor-I (IGF-I) genetic variation and circulating IGF-I levels.J Clin Endocrinol Metab. 2007 Dec;92(12):4820-6. doi: 10.1210/jc.2007-0887. Epub 2007 Oct 2.
2187 Polymorphisms in the androgen receptor and the prostate-specific antigen genes and prostate cancer risk.Prostate. 2005 Sep 15;65(1):58-65. doi: 10.1002/pros.20230.
2188 Tristetraprolin Is a Prognostic Biomarker for Poor Outcomes among Patients with Low-Grade Prostate Cancer.Cancer Epidemiol Biomarkers Prev. 2018 Nov;27(11):1376-1383. doi: 10.1158/1055-9965.EPI-18-0369. Epub 2018 Aug 14.
2189 Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer.EBioMedicine. 2018 May;31:267-275. doi: 10.1016/j.ebiom.2018.05.002. Epub 2018 May 16.
2190 SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade.Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3509-14. doi: 10.1073/pnas.0712269105. Epub 2008 Feb 26.
2191 Elevation of SHARPIN Protein Levels in Prostate Adenocarcinomas Promotes Metastasis and Impairs Patient Survivals.Prostate. 2017 May;77(7):718-728. doi: 10.1002/pros.23302. Epub 2017 Feb 23.
2192 Consumption of caffeinated beverages and serum concentrations of sex steroid hormones in US men.Cancer Causes Control. 2018 Jan;29(1):157-166. doi: 10.1007/s10552-017-0985-9. Epub 2017 Nov 24.
2193 Expression of p66(Shc) protein correlates with proliferation of human prostate cancer cells.Oncogene. 2005 Nov 3;24(48):7203-12. doi: 10.1038/sj.onc.1208852.
2194 DHX15 promotes prostate cancer progression by stimulating Siah2-mediated ubiquitination of androgen receptor.Oncogene. 2018 Feb 1;37(5):638-650. doi: 10.1038/onc.2017.371. Epub 2017 Oct 9.
2195 Reduced number of CD169(+) macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients.Prostate. 2017 Nov;77(15):1468-1477. doi: 10.1002/pros.23407. Epub 2017 Sep 7.
2196 Circulating mRNAs and miRNAs as candidate markers for the diagnosis and prognosis of prostate cancer.PLoS One. 2017 Sep 14;12(9):e0184094. doi: 10.1371/journal.pone.0184094. eCollection 2017.
2197 Chromatin-Associated Protein SIN3B Prevents Prostate Cancer Progression by Inducing Senescence.Cancer Res. 2017 Oct 1;77(19):5339-5348. doi: 10.1158/0008-5472.CAN-16-3410. Epub 2017 Aug 14.
2198 Sirtuin 7: a new marker of aggressiveness in prostate cancer.Oncotarget. 2017 Aug 24;8(44):77309-77316. doi: 10.18632/oncotarget.20468. eCollection 2017 Sep 29.
2199 New sparse implantation technique of I-125 low-dose-rate brachytherapy using concomitant short-term hormonal treatment for low and intermediate-risk prostate cancer: An initial study of therapeutic feasibility.Sci Rep. 2019 Dec 10;9(1):18674. doi: 10.1038/s41598-019-55317-1.
2200 MicroRNA-30a functions as tumor suppressor and inhibits the proliferation and invasion of prostate cancer cells by down-regulation of SIX1.Hum Cell. 2017 Oct;30(4):290-299. doi: 10.1007/s13577-017-0170-1. Epub 2017 Jun 1.
2201 Overexpression of spindle and kinetochore-associated protein 1 contributes to the progression of prostate cancer.Tumour Biol. 2017 Jun;39(6):1010428317701918. doi: 10.1177/1010428317701918.
2202 Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity.Mol Endocrinol. 2006 May;20(5):1061-72. doi: 10.1210/me.2005-0346. Epub 2005 Dec 29.
2203 miR-582-3p and miR-582-5p Suppress Prostate Cancer Metastasis to Bone by Repressing TGF- Signaling.Mol Ther Nucleic Acids. 2019 Jun 7;16:91-104. doi: 10.1016/j.omtn.2019.01.004. Epub 2019 Jan 15.
2204 Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer.Biochem Biophys Res Commun. 2017 Nov 25;493(3):1217-1223. doi: 10.1016/j.bbrc.2017.07.162. Epub 2017 Jul 29.
2205 Aberrant BAF57 signaling facilitates prometastatic phenotypes.Clin Cancer Res. 2013 May 15;19(10):2657-67. doi: 10.1158/1078-0432.CCR-12-3049. Epub 2013 Mar 14.
2206 SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties.Mol Carcinog. 2019 Jan;58(1):113-125. doi: 10.1002/mc.22913. Epub 2018 Oct 5.
2207 Incubation with somatostatin, 5-aza decitabine and trichostatin up-regulates somatostatin receptor expression in prostate cancer cells. Oncol Rep. 2008 Jul;20(1):151-4.
2208 Variants of the hK2 protein gene (KLK2) are associated with serum hK2 levels and predict the presence of prostate cancer at biopsy.Clin Cancer Res. 2006 Nov 1;12(21):6452-8. doi: 10.1158/1078-0432.CCR-06-1485.
2209 SNW1 is a prognostic biomarker in prostate cancer.Diagn Pathol. 2019 May 1;14(1):33. doi: 10.1186/s13000-019-0810-8.
2210 MiR-492 exerts tumor-promoting function in prostate cancer through repressing SOCS2 expression.Eur Rev Med Pharmacol Sci. 2019 Feb;23(3):992-1001. doi: 10.26355/eurrev_201902_16986.
2211 SOCS6 Functions as a Tumor Suppressor by Inducing Apoptosis and Inhibiting Angiogenesis in Human Prostate Cancer.Curr Cancer Drug Targets. 2018;18(9):894-904. doi: 10.2174/1568009618666180102101442.
2212 SOD3 acts as a tumor suppressor in PC-3 prostate cancer cells via hydrogen peroxide accumulation.Anticancer Res. 2014 Jun;34(6):2821-31.
2213 Vav3 enhances androgen receptor splice variant activity and is critical for castration-resistant prostate cancer growth and survival.Mol Endocrinol. 2012 Dec;26(12):1967-79. doi: 10.1210/me.2012-1165. Epub 2012 Sep 28.
2214 Promoter hypermethylation of SOX11 correlates with adverse clinicopathological features of human prostate cancer.Int J Exp Pathol. 2017 Dec;98(6):341-346. doi: 10.1111/iep.12257. Epub 2018 Jan 8.
2215 PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers.Gigascience. 2019 May 1;8(5):giz046. doi: 10.1093/gigascience/giz046.
2216 MicroRNA-140 inhibits proliferation and promotes apoptosis and cell cycle arrest of prostate cancer via degrading SOX4.J BUON. 2019 Jan-Feb;24(1):249-255.
2217 miR-671 promotes prostate cancer cell proliferation by targeting tumor suppressor SOX6.Eur J Pharmacol. 2018 Mar 15;823:65-71. doi: 10.1016/j.ejphar.2018.01.016. Epub 2018 Jan 31.
2218 Interplay Between SOX9, Wnt/-Catenin and Androgen Receptor Signaling in Castration-Resistant Prostate Cancer.Int J Mol Sci. 2019 Apr 26;20(9):2066. doi: 10.3390/ijms20092066.
2219 Entering an era of radiogenomics in prostate cancer risk stratification.Transl Androl Urol. 2018 Sep;7(Suppl 4):S443-S452. doi: 10.21037/tau.2018.07.04.
2220 Hyaluronidase gene profiling and role of hyal-1 overexpression in an orthotopic model of prostate cancer.Int J Cancer. 2002 Feb 1;97(4):416-24. doi: 10.1002/ijc.1638.
2221 Androgen-Regulated SPARCL1 in the Tumor Microenvironment Inhibits Metastatic Progression.Cancer Res. 2015 Oct 15;75(20):4322-34. doi: 10.1158/0008-5472.CAN-15-0024. Epub 2015 Aug 20.
2222 The Immune Checkpoint Regulator PDL1 is an Independent Prognostic Biomarker for Biochemical Recurrence in Prostate Cancer Patients Following Adjuvant Hormonal Therapy.J Cancer. 2019 Jun 2;10(14):3102-3111. doi: 10.7150/jca.30384. eCollection 2019.
2223 Knockdown of spindle pole body component 25 homolog inhibits cell proliferation and cycle progression in prostate cancer.Oncol Lett. 2018 Apr;15(4):5712-5720. doi: 10.3892/ol.2018.8003. Epub 2018 Feb 8.
2224 SHARP hypofractionated stereotactic radiotherapy for localized prostate cancer: a biochemical response to treatment.J BUON. 2019 Sep-Oct;24(5):2099-2106.
2225 Analysis of Over 140,000 European Descendants Identifies Genetically Predicted Blood Protein Biomarkers Associated with Prostate Cancer Risk.Cancer Res. 2019 Sep 15;79(18):4592-4598. doi: 10.1158/0008-5472.CAN-18-3997. Epub 2019 Jul 23.
2226 Serum BSP, PSADT, and Spondin-2 levels in prostate cancer and the diagnostic significance of their ROC curves in bone metastasis.Eur Rev Med Pharmacol Sci. 2017 Jan;21(1):61-67.
2227 Long non-coding RNA CASC2 regulates Sprouty2 via functioning as a competing endogenous RNA for miR-183 to modulate the sensitivity of prostate cancer cells to docetaxel.Arch Biochem Biophys. 2019 Apr 15;665:69-78. doi: 10.1016/j.abb.2018.01.013. Epub 2018 Jan 31.
2228 The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells.J Cell Physiol. 2010 Aug;224(2):369-75. doi: 10.1002/jcp.22132.
2229 Knockdown of SRPX2 inhibits the proliferation, migration, and invasion of prostate cancer cells through the PI3K/Akt/mTOR signaling pathway.J Biochem Mol Toxicol. 2018 Dec 9:e22237. doi: 10.1002/jbt.22237. Online ahead of print.
2230 SRRM4 gene expression correlates with neuroendocrine prostate cancer.Prostate. 2019 Jan;79(1):96-104. doi: 10.1002/pros.23715. Epub 2018 Aug 28.
2231 A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk.Cancer Res. 2005 Feb 15;65(4):1213-22. doi: 10.1158/0008-5472.CAN-04-4249.
2232 ssDNA-binding protein 2 is frequently hypermethylated and suppresses cell growth in human prostate cancer.Clin Cancer Res. 2008 Jun 15;14(12):3754-60. doi: 10.1158/1078-0432.CCR-07-4763.
2233 Inducible expression of cancer-testis antigens in human prostate cancer.Oncotarget. 2016 Dec 20;7(51):84359-84374. doi: 10.18632/oncotarget.12711.
2234 Gene structure and transcriptional regulation of human Gal beta1,4(3) GlcNAc alpha2,3-sialyltransferase VI (hST3Gal VI) gene in prostate cancer cell line.Biochem Biophys Res Commun. 2001 Oct 12;287(5):1148-56. doi: 10.1006/bbrc.2001.5709.
2235 Sialyltransferase-Based Chemoenzymatic Histology for the Detection of N- and O-Glycans.Bioconjug Chem. 2018 Apr 18;29(4):1231-1239. doi: 10.1021/acs.bioconjchem.8b00021. Epub 2018 Mar 23.
2236 Prostate--specific G protein couple receptor genes and STAG1/PMEPA1 in peripheral blood from patients with prostatic cancer.Int J Immunopathol Pharmacol. 2006 Oct-Dec;19(4):871-8. doi: 10.1177/039463200601900416.
2237 Inhibition of miR-9-5p suppresses prostate cancer progress by targeting StarD13.Cell Mol Biol Lett. 2019 Mar 8;24:20. doi: 10.1186/s11658-019-0145-1. eCollection 2019.
2238 Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer.J Endocrinol. 2007 Jul;194(1):55-61. doi: 10.1677/JOE-07-0131.
2239 Deleted in liver cancer 3 (DLC-3), a novel Rho GTPase-activating protein, is downregulated in cancer and inhibits tumor cell growth.Oncogene. 2007 Jul 5;26(31):4580-9. doi: 10.1038/sj.onc.1210244. Epub 2007 Feb 5.
2240 Direct Targeting Options for STAT3 and STAT5 in Cancer.Cancers (Basel). 2019 Dec 3;11(12):1930. doi: 10.3390/cancers11121930.
2241 Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer.PLoS One. 2019 Aug 8;14(8):e0220456. doi: 10.1371/journal.pone.0220456. eCollection 2019.
2242 Suppression of STIM1 inhibits the migration and invasion of human prostate cancer cells and is associated with PI3K/Akt signaling inactivation.Oncol Rep. 2017 Nov;38(5):2629-2636. doi: 10.3892/or.2017.5961. Epub 2017 Sep 18.
2243 The Ste20 kinase MST4 plays a role in prostate cancer progression.Cancer Res. 2003 Jun 15;63(12):3356-63.
2244 Proteostasis by STUB1/HSP70 complex controls sensitivity to androgen receptor targeted therapy in advanced prostate cancer.Nat Commun. 2018 Nov 16;9(1):4700. doi: 10.1038/s41467-018-07178-x.
2245 Microdissection, DOP-PCR, and comparative genomic hybridization of paraffin-embedded familial prostate cancers.Cancer Genet Cytogenet. 2000 Oct 1;122(1):43-8. doi: 10.1016/s0165-4608(00)00276-4.
2246 Syntaxin 6-mediated exosome secretion regulates enzalutamide resistance in prostate cancer.Mol Carcinog. 2020 Jan;59(1):62-72. doi: 10.1002/mc.23129. Epub 2019 Nov 1.
2247 High sulfite oxidase expression could predict postoperative biochemical recurrence in patients with prostate cancer.Med Mol Morphol. 2019 Sep;52(3):164-172. doi: 10.1007/s00795-018-00214-1. Epub 2019 Jan 10.
2248 Molecular characterization of prostatic small-cell neuroendocrine carcinoma.Prostate. 2003 Apr 1;55(1):55-64. doi: 10.1002/pros.10217.
2249 Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer.BJU Int. 2019 Nov;124(5):758-767. doi: 10.1111/bju.14800. Epub 2019 Jun 2.
2250 A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?.Oncotarget. 2017 Aug 24;8(59):99601-99611. doi: 10.18632/oncotarget.20448. eCollection 2017 Nov 21.
2251 Downregulation of SYT7 inhibits glioblastoma growth by promoting cellular apoptosis.Mol Med Rep. 2017 Dec;16(6):9017-9022. doi: 10.3892/mmr.2017.7723. Epub 2017 Oct 4.
2252 Assessment of the Utility of Gene Positioning Biomarkers in the Stratification of Prostate Cancers.Front Genet. 2019 Oct 17;10:1029. doi: 10.3389/fgene.2019.01029. eCollection 2019.
2253 Differential expression of the multidrug resistance 1 (MDR1) protein in prostate cancer cells is independent from anticancer drug treatment and Y box binding protein 1 (YB-1) activity.World J Urol. 2015 Oct;33(10):1481-6. doi: 10.1007/s00345-014-1469-0. Epub 2014 Dec 28.
2254 NF-B Mediates the Expression of TBX15 in Cancer Cells.PLoS One. 2016 Jun 21;11(6):e0157761. doi: 10.1371/journal.pone.0157761. eCollection 2016.
2255 Bone Metastasis of Prostate Cancer Can Be Therapeutically Targeted at the TBX2-WNT Signaling Axis.Cancer Res. 2017 Mar 15;77(6):1331-1344. doi: 10.1158/0008-5472.CAN-16-0497. Epub 2017 Jan 20.
2256 Decreased expression of TCF12 contributes to progression and predicts biochemical recurrence in patients with prostate cancer.Tumour Biol. 2017 Jun;39(6):1010428317703924. doi: 10.1177/1010428317703924.
2257 TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers.Epigenetics. 2011 Sep 1;6(9):1120-30. doi: 10.4161/epi.6.9.16376. Epub 2011 Sep 1.
2258 TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer.Prostate Cancer Prostatic Dis. 2017 Jun;20(2):172-178. doi: 10.1038/pcan.2017.2. Epub 2017 Feb 21.
2259 Associations of folate, vitamin B12, homocysteine, and folate-pathway polymorphisms with prostate-specific antigen velocity in men with localized prostate cancer.Cancer Epidemiol Biomarkers Prev. 2010 Nov;19(11):2833-8. doi: 10.1158/1055-9965.EPI-10-0582. Epub 2010 Sep 17.
2260 FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of -catenin.Exp Mol Med. 2018 Dec 10;50(12):1-12. doi: 10.1038/s12276-018-0184-0.
2261 Association of testis derived transcript gene variants and prostate cancer risk.J Urol. 2007 Mar;177(3):894-8. doi: 10.1016/j.juro.2006.10.057.
2262 Association of a TFAM haplotype with aggressive prostate cancer in overweight or obese Mexican Mestizo men.Urol Oncol. 2017 Mar;35(3):111.e9-111.e14. doi: 10.1016/j.urolonc.2016.10.011. Epub 2016 Nov 11.
2263 Development of Bispecific NT-PSMA Heterodimer for Prostate Cancer Imaging: A Potential Approach to Address Tumor Heterogeneity.Bioconjug Chem. 2019 May 15;30(5):1314-1322. doi: 10.1021/acs.bioconjchem.9b00252. Epub 2019 May 7.
2264 TGFBR3 loss and consequences in prostate cancer.Prostate. 2007 Feb 15;67(3):301-11. doi: 10.1002/pros.20526.
2265 Association of TGIFLX/Y mRNA expression with prostate cancer.Med Oncol. 2009;26(1):73-7. doi: 10.1007/s12032-008-9086-7. Epub 2008 Jul 29.
2266 Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer?.Prostate. 2019 Feb;79(3):320-330. doi: 10.1002/pros.23738. Epub 2018 Nov 28.
2267 TIMP4 expression is regulated by miR-200b-3p in prostate cancer cells.APMIS. 2017 Feb;125(2):101-105. doi: 10.1111/apm.12638. Epub 2016 Dec 28.
2268 Splice variants of TLE family genes and up-regulation of a TLE3 isoform in prostate tumors.Biochem Biophys Res Commun. 2007 Dec 28;364(4):918-23. doi: 10.1016/j.bbrc.2007.10.097. Epub 2007 Oct 26.
2269 Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer.Cancer Sci. 2017 Apr;108(4):744-752. doi: 10.1111/cas.13187. Epub 2017 Apr 12.
2270 Transmembrane Channel-Like 5 (TMC5) promotes prostate cancer cell proliferation through cell cycle regulation.Biochimie. 2019 Oct;165:115-122. doi: 10.1016/j.biochi.2019.07.017. Epub 2019 Jul 26.
2271 TMEM45B is a novel predictive biomarker for prostate cancer progression and metastasis.Neoplasma. 2018 Sep 19;65(5):815-821. doi: 10.4149/neo_2018_170822N551. Epub 2018 Sep 4.
2272 In vitro gene expression changes of androgen receptor coactivators after hormone deprivation in an androgen-dependent prostate cancer cell line.J Formos Med Assoc. 2005 Sep;104(9):652-8.
2273 TMPRSS4 Upregulates TWIST1 Expression through STAT3 Activation to Induce Prostate Cancer Cell Migration.Pathol Oncol Res. 2018 Apr;24(2):251-257. doi: 10.1007/s12253-017-0237-z. Epub 2017 May 2.
2274 Oncogenic Role of Tumor Necrosis Factor -Induced Protein 8 (TNFAIP8).Cells. 2018 Dec 24;8(1):9. doi: 10.3390/cells8010009.
2275 Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer.Prostate. 2009 Feb 15;69(3):327-35. doi: 10.1002/pros.20882.
2276 Differential gene methylation patterns in cancerous and noncancerous cells.Oncol Rep. 2019 Jul;42(1):43-54. doi: 10.3892/or.2019.7159. Epub 2019 May 15.
2277 4-1BBL has a Possible Role in Mediating Castration-Resistant Conversion of Prostate Cancer via Up-Regulation of Androgen Receptor.J Cancer. 2019 Jun 2;10(11):2464-2471. doi: 10.7150/jca.29648. eCollection 2019.
2278 Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-B signaling pathway.Mol Cancer. 2017 Jul 10;16(1):117. doi: 10.1186/s12943-017-0688-6.
2279 Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1.J Biol Chem. 2008 Feb 22;283(8):4834-40. doi: 10.1074/jbc.M708630200. Epub 2007 Dec 12.
2280 Vasitis nodosa and related lesions: a modern immunohistochemical staining profile with special emphasis on novel diagnostic dilemmas.Hum Pathol. 2018 Mar;73:164-170. doi: 10.1016/j.humpath.2017.12.001. Epub 2017 Dec 11.
2281 Tumor protein D52 (isoform 3) interacts with and promotes peroxidase activity of Peroxiredoxin 1 in prostate cancer cells implicated in cell growth and migration.Biochim Biophys Acta Mol Cell Res. 2019 Aug;1866(8):1298-1309. doi: 10.1016/j.bbamcr.2019.04.007. Epub 2019 Apr 11.
2282 Increased expression of tumor protein D54 is associated with clinical progression and poor prognosis in patients with prostate cancer.Oncol Lett. 2017 Dec;14(6):7739-7744. doi: 10.3892/ol.2017.7214. Epub 2017 Oct 18.
2283 A novel splice variant of the beta-tropomyosin (TPM2) gene in prostate cancer.Mol Carcinog. 2010 Jun;49(6):525-31. doi: 10.1002/mc.20626.
2284 MicroRNA-1180 is associated with growth and apoptosis in prostate cancer via TNF receptor associated factor 1 expression regulation and nuclear factor-B signaling pathway activation.Oncol Lett. 2018 Apr;15(4):4775-4780. doi: 10.3892/ol.2018.7914. Epub 2018 Jan 31.
2285 Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1.J Clin Med. 2019 Mar 12;8(3):348. doi: 10.3390/jcm8030348.
2286 Expression profiles of androgen independent bone metastatic prostate cancer cells indicate up-regulation of the putative serine-threonine kinase GS3955.J Urol. 2004 Sep;172(3):1145-50. doi: 10.1097/01.ju.0000135117.40086.fa.
2287 Expression of Tripartite Motif-Containing Proteactiin 11 (TRIM11) is Associated with the Progression of Human Prostate Cancer and is Downregulated by MicroRNA-5193.Med Sci Monit. 2019 Jan 4;25:98-106. doi: 10.12659/MSM.911818.
2288 TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway.Int J Mol Med. 2016 Dec;38(6):1734-1742. doi: 10.3892/ijmm.2016.2774. Epub 2016 Oct 17.
2289 TRIM25 enhances cell growth and cell survival by modulating p53 signals via interaction with G3BP2 in prostate cancer.Oncogene. 2018 Apr;37(16):2165-2180. doi: 10.1038/s41388-017-0095-x. Epub 2018 Jan 30.
2290 Up-regulation of TIF1 by valproic acid inhibits the epithelial mesenchymal transition in prostate carcinoma through TGF-/Smad signaling pathway.Eur J Pharmacol. 2019 Oct 5;860:172551. doi: 10.1016/j.ejphar.2019.172551. Epub 2019 Jul 16.
2291 Knockdown of TRIM44 Inhibits the Proliferation and Invasion in Prostate Cancer Cells.Oncol Res. 2017 Sep 21;25(8):1253-1259. doi: 10.3727/096504017X14854310794561. Epub 2017 Feb 3.
2292 Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion.Epigenetics. 2012 Aug;7(8):940-9. doi: 10.4161/epi.21236. Epub 2012 Jul 18.
2293 TRIP13 is a predictor for poor prognosis and regulates cell proliferation, migration and invasion in prostate cancer.Int J Biol Macromol. 2019 Jan;121:200-206. doi: 10.1016/j.ijbiomac.2018.09.168. Epub 2018 Sep 26.
2294 TROAP regulates prostate cancer progression via the WNT3/survivin signalling pathways.Oncol Rep. 2019 Feb;41(2):1169-1179. doi: 10.3892/or.2018.6854. Epub 2018 Nov 9.
2295 Quantitative immunohistochemical analysis and prognostic significance of TRPS-1, a new GATA transcription factor family member, in breast cancer.Horm Cancer. 2010 Feb;1(1):21-33. doi: 10.1007/s12672-010-0008-8. Epub 2010 Feb 13.
2296 Rare and frequent promoter methylation, respectively, of TSHZ2 and 3 genes that are both downregulated in expression in breast and prostate cancers.PLoS One. 2011 Mar 14;6(3):e17149. doi: 10.1371/journal.pone.0017149.
2297 The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration.Sci Rep. 2017 Jul 12;7(1):5249. doi: 10.1038/s41598-017-05489-5.
2298 Localization of candidate genes in a region of high frequency of microvariant alleles for prostate cancer susceptibility: the chromosome region Yp11.2 genetic variation.DNA Cell Biol. 2010 Jan;29(1):3-7. doi: 10.1089/dna.2009.0905.
2299 Testis specific Y-like 5: gene expression, methylation and implications for drug sensitivity in prostate carcinoma.BMC Cancer. 2017 Feb 24;17(1):158. doi: 10.1186/s12885-017-3134-7.
2300 Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy.Int J Cancer. 2010 Dec 1;127(11):2542-53. doi: 10.1002/ijc.25261.
2301 Abhydrolase domain containing 2, an androgen target gene, promotes prostate cancer cell proliferation and migration.Eur J Cancer. 2016 Apr;57:39-49. doi: 10.1016/j.ejca.2016.01.002. Epub 2016 Feb 6.
2302 Genetic and cellular studies highlight that A Disintegrin and Metalloproteinase 19 is a protective biomarker in human prostate cancer.BMC Cancer. 2016 Feb 24;16:151. doi: 10.1186/s12885-016-2178-4.
2303 XB130 is overexpressed in prostate cancer and involved in cell growth and invasion.Oncotarget. 2016 Sep 13;7(37):59377-59387. doi: 10.18632/oncotarget.11074.
2304 SEC-induced activation of ANXA7 GTPase suppresses prostate cancer metastasis.Cancer Lett. 2018 Mar 1;416:11-23. doi: 10.1016/j.canlet.2017.12.008. Epub 2017 Dec 13.
2305 Impact of prostate-specific antigen on a baseline prostate cancer risk assessment including genetic risk.Urology. 2015 Jan;85(1):165-70. doi: 10.1016/j.urology.2014.07.081.
2306 miR?0c suppresses prostate cancer survival by targeting the ASF/SF2 splicing factor oncoprotein.Mol Med Rep. 2017 Sep;16(3):2431-2438. doi: 10.3892/mmr.2017.6910. Epub 2017 Jul 4.
2307 Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma.Metallomics. 2019 Aug 1;11(8):1430-1440. doi: 10.1039/c9mt00042a. Epub 2019 Jul 18.
2308 MiR-185 attenuates androgen receptor function in prostate cancer indirectly by targeting bromodomain containing 8 isoform 2, an androgen receptor co-activator.Mol Cell Endocrinol. 2016 May 15;427:13-20. doi: 10.1016/j.mce.2016.02.023. Epub 2016 Mar 3.
2309 Analysis of the Expression and Single-Nucleotide Variant Frequencies of the Butyrophilin-like 2 Gene in Patients With Uveal Melanoma.JAMA Ophthalmol. 2016 Oct 1;134(10):1125-1133. doi: 10.1001/jamaophthalmol.2016.2691.
2310 A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk.Eur Urol. 2014 Jan;65(1):169-76. doi: 10.1016/j.eururo.2012.07.027. Epub 2012 Jul 20.
2311 Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer.Clin Epigenetics. 2016 Feb 12;8:16. doi: 10.1186/s13148-016-0182-9. eCollection 2016.
2312 Sex steroid-induced DNA methylation changes and inflammation response in prostate cancer.Cytokine. 2016 Oct;86:110-118. doi: 10.1016/j.cyto.2016.07.006. Epub 2016 Aug 5.
2313 The effect of CCL19/CCR7 on the proliferation and migration of cell in prostate cancer.Tumour Biol. 2015 Jan;36(1):329-35. doi: 10.1007/s13277-014-2642-1. Epub 2014 Sep 26.
2314 CDO1 promoter methylation is associated with gene silencing and is a prognostic biomarker for biochemical recurrence-free survival in prostate cancer patients.Epigenetics. 2016 Dec;11(12):871-880. doi: 10.1080/15592294.2016.1241931. Epub 2016 Sep 30.
2315 The combination of the prodrugs perforin-CEBPD and perforin-granzyme B efficiently enhances the activation of caspase signaling and kills prostate cancer.Cell Death Dis. 2014 May 8;5(5):e1220. doi: 10.1038/cddis.2014.106.
2316 Overexpression of LLT1 (OCIL, CLEC2D) on prostate cancer cells inhibits NK cell-mediated killing through LLT1-NKRP1A (CD161) interaction.Oncotarget. 2016 Oct 18;7(42):68650-68661. doi: 10.18632/oncotarget.11896.
2317 Inhibition of DIXDC1 by microRNA-1271 suppresses the proliferation and invasion of prostate cancer cells.Biochem Biophys Res Commun. 2017 Mar 18;484(4):794-800. doi: 10.1016/j.bbrc.2017.01.169. Epub 2017 Jan 31.
2318 Identifying cancer origin using circulating tumor cells.Cancer Biol Ther. 2016 Apr 2;17(4):430-8. doi: 10.1080/15384047.2016.1141839.
2319 Lapatinib-resistant cancer cells possessing epithelial cancer stem cell properties develop sensitivity during sphere formation by activation of the ErbB/AKT/cyclinD2 pathway.Oncol Rep. 2016 Nov;36(5):3058-3064. doi: 10.3892/or.2016.5073. Epub 2016 Sep 7.
2320 PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer.Cancer Med. 2015 Aug;4(8):1258-71. doi: 10.1002/cam4.463. Epub 2015 May 29.
2321 Syndecan-1 up-regulates microRNA-331-3p and mediates epithelial-to-mesenchymal transition in prostate cancer.Mol Carcinog. 2016 Sep;55(9):1378-86. doi: 10.1002/mc.22381. Epub 2015 Aug 10.
2322 Diagnostic and prognostic value of tissue and circulating levels of Ephrin-A2 in prostate cancer.Tumour Biol. 2016 Apr;37(4):5365-74. doi: 10.1007/s13277-015-4398-7. Epub 2015 Nov 11.
2323 The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance.Oncotarget. 2016 Dec 13;7(50):82783-82797. doi: 10.18632/oncotarget.12635.
2324 Methylation profiling identified novel differentially methylated markers including OPCML and FLRT2 in prostate cancer.Epigenetics. 2016 Apr 2;11(4):247-58. doi: 10.1080/15592294.2016.1148867. Epub 2016 Feb 18.
2325 Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer.BMC Genomics. 2008 Jul 16;9:337. doi: 10.1186/1471-2164-9-337.
2326 Increased expression of GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate cancers.Prostate. 2014 Jul;74(10):1059-67. doi: 10.1002/pros.22826. Epub 2014 May 22.
2327 D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells.Tumour Biol. 2014 Apr;35(4):3237-45. doi: 10.1007/s13277-013-1423-6. Epub 2013 Nov 22.
2328 PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence.Oncotarget. 2016 Aug 16;7(33):53837-53852. doi: 10.18632/oncotarget.10782.
2329 GPX2 overexpression is involved in cell proliferation and prognosis of castration-resistant prostate cancer.Carcinogenesis. 2014 Sep;35(9):1962-7. doi: 10.1093/carcin/bgu048. Epub 2014 Feb 22.
2330 Plasma antioxidants, genetic variation in SOD2, CAT, GPX1, GPX4, and prostate cancer survival.Cancer Epidemiol Biomarkers Prev. 2014 Jun;23(6):1037-46. doi: 10.1158/1055-9965.EPI-13-0670. Epub 2014 Apr 7.
2331 Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.Mol Cancer. 2014 Mar 31;13:74. doi: 10.1186/1476-4598-13-74.
2332 The microRNA-23b/-27b cluster suppresses prostate cancer metastasis via Huntingtin-interacting protein 1-related.Oncogene. 2016 Sep 8;35(36):4752-61. doi: 10.1038/onc.2016.6. Epub 2016 Feb 22.
2333 The tyrphostin NT157 suppresses insulin receptor substrates and augments therapeutic response of prostate cancer.Mol Cancer Ther. 2014 Dec;13(12):2827-39. doi: 10.1158/1535-7163.MCT-13-0842. Epub 2014 Sep 29.
2334 Genetic Variants of DICE1/INTS6 in German Prostate Cancer Families with Linkage to 13q14.Urol Int. 2015;95(4):386-9. doi: 10.1159/000366229. Epub 2015 Jan 31.
2335 Variants at IRX4 as prostate cancer expression quantitative trait loci.Eur J Hum Genet. 2014 Apr;22(4):558-63. doi: 10.1038/ejhg.2013.195. Epub 2013 Sep 11.
2336 miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer.Mol Endocrinol. 2015 Jul;29(7):1037-54. doi: 10.1210/me.2014-1358. Epub 2015 Jun 8.
2337 An NKX3.1 binding site polymorphism in the l-plastin promoter leads to differential gene expression in human prostate cancer.Int J Cancer. 2016 Jan 1;138(1):74-86. doi: 10.1002/ijc.29677. Epub 2015 Jul 17.
2338 A novel DNA methylation score accurately predicts death from prostate cancer in men with low to intermediate clinical risk factors.Oncotarget. 2016 Nov 1;7(44):71833-71840. doi: 10.18632/oncotarget.12377.
2339 Single-nucleotide polymorphism rs13426236 contributes to an increased prostate cancer risk via regulating MLPH splicing variant 4.Mol Carcinog. 2020 Jan;59(1):45-55. doi: 10.1002/mc.23127. Epub 2019 Oct 29.
2340 mLST8 Promotes mTOR-Mediated Tumor Progression.PLoS One. 2015 Apr 23;10(4):e0119015. doi: 10.1371/journal.pone.0119015. eCollection 2015.
2341 BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts.Int J Oncol. 2015 Aug;47(2):719-27. doi: 10.3892/ijo.2015.3060. Epub 2015 Jun 22.
2342 Gene and pathway level analyses of germline DNA-repair gene variants and prostate cancer susceptibility using the iCOGS-genotyping array.Br J Cancer. 2016 Apr 12;114(8):945-52. doi: 10.1038/bjc.2016.50.
2343 Interferon inducible antiviral MxA is inversely associated with prostate cancer and regulates cell cycle, invasion and Docetaxel induced apoptosis.Prostate. 2015 Feb 15;75(3):266-79. doi: 10.1002/pros.22912. Epub 2014 Oct 18.
2344 NKAIN2 functions as a novel tumor suppressor in prostate cancer.Oncotarget. 2016 Sep 27;7(39):63793-63803. doi: 10.18632/oncotarget.11690.
2345 Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression.Oncotarget. 2016 Oct 18;7(42):68688-68707. doi: 10.18632/oncotarget.11925.
2346 Aberrant methylation of PCDH10 predicts worse biochemical recurrence-free survival in patients with prostate cancer after radical prostatectomy.Med Sci Monit. 2014 Aug 3;20:1363-8. doi: 10.12659/MSM.891241.
2347 MicroRNA-103 suppresses tumor cell proliferation by targeting PDCD10 in prostate cancer.Prostate. 2016 May;76(6):543-51. doi: 10.1002/pros.23143. Epub 2016 Jan 15.
2348 PDLIM2 suppression efficiently reduces tumor growth and invasiveness of human castration-resistant prostate cancer-like cells.Prostate. 2016 Feb 15;76(3):273-85. doi: 10.1002/pros.23118. Epub 2015 Oct 26.
2349 A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis.Prostate. 2014 Sep;74(12):1171-82. doi: 10.1002/pros.22833. Epub 2014 Jun 24.
2350 Strong cis-acting expression quantitative trait loci for the genes encoding SNHG5 and PEX6.Medicine (Baltimore). 2016 Dec;95(52):e5793. doi: 10.1097/MD.0000000000005793.
2351 Cathepsin X Cleaves Profilin 1 C-Terminal Tyr139 and Influences Clathrin-Mediated Endocytosis.PLoS One. 2015 Sep 1;10(9):e0137217. doi: 10.1371/journal.pone.0137217. eCollection 2015.
2352 Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression.Tumour Biol. 2015 Dec;36(12):9567-77. doi: 10.1007/s13277-015-3628-3. Epub 2015 Jul 4.
2353 MicroRNA124 regulate cell growth of prostate cancer cells by targeting iASPP.Int J Clin Exp Pathol. 2014 Apr 15;7(5):2283-90. eCollection 2014.
2354 Protein regulator of cytokinesis 1 overexpression predicts biochemical recurrence in men with prostate cancer.Biomed Pharmacother. 2016 Mar;78:116-120. doi: 10.1016/j.biopha.2016.01.004. Epub 2016 Jan 24.
2355 Silencing of CD24 Enhances the PRIMA-1-Induced Restoration of Mutant p53 in Prostate Cancer Cells.Clin Cancer Res. 2016 May 15;22(10):2545-54. doi: 10.1158/1078-0432.CCR-15-1927. Epub 2015 Dec 28.
2356 DAB2IP regulates EMT and metastasis of prostate cancer through targeting PROX1 transcription and destabilizing HIF1 protein.Cell Signal. 2016 Nov;28(11):1623-30. doi: 10.1016/j.cellsig.2016.07.011. Epub 2016 Jul 27.
2357 Expression of RABEX-5 and its clinical significance in prostate cancer.J Exp Clin Cancer Res. 2014 Apr 9;33(1):31. doi: 10.1186/1756-9966-33-31.
2358 Upregulation of RASGRP3 expression in prostate cancer correlates with aggressive capabilities and predicts biochemical recurrence after radical prostatectomy.Prostate Cancer Prostatic Dis. 2014 Jun;17(2):119-25. doi: 10.1038/pcan.2013.51. Epub 2014 Jan 14.
2359 Role of RbBP5 and H3K4me3 in the vicinity of Snail transcription start site during epithelial-mesenchymal transition in prostate cancer cell.Oncotarget. 2016 Oct 4;7(40):65553-65567. doi: 10.18632/oncotarget.11549.
2360 miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration.Cell Cycle. 2014;13(2):227-39. doi: 10.4161/cc.26984. Epub 2013 Nov 7.
2361 Identification of a novel fusion transcript between human relaxin-1 (RLN1) and human relaxin-2 (RLN2) in prostate cancer.Mol Cell Endocrinol. 2016 Jan 15;420:159-68. doi: 10.1016/j.mce.2015.10.011. Epub 2015 Oct 21.
2362 Clinical significance of RKIP mRNA expression in non-small cell lung cancer.Tumour Biol. 2014 May;35(5):4377-80. doi: 10.1007/s13277-013-1575-4. Epub 2014 Jan 14.
2363 Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer.Endocr Relat Cancer. 2015 Jun;22(3):369-86. doi: 10.1530/ERC-15-0021. Epub 2015 Mar 10.
2364 Molecular cloning of canine co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein (SGTA) and investigation of its ability to suppress androgen receptor signalling in androgen-independent prostate cancer.Vet J. 2015 Nov;206(2):143-8. doi: 10.1016/j.tvjl.2015.08.002. Epub 2015 Aug 7.
2365 SHISA2 enhances the aggressive phenotype in prostate cancer through the regulation of WNT5A expression.Oncol Lett. 2017 Dec;14(6):6650-6658. doi: 10.3892/ol.2017.7099. Epub 2017 Sep 28.
2366 Androgens regulate SMAD ubiquitination regulatory factor-1 expression and prostate cancer cell invasion.Prostate. 2015 May;75(6):561-72. doi: 10.1002/pros.22935. Epub 2015 Jan 28.
2367 The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells.Oncogene. 2014 Jul 17;33(29):3794-802. doi: 10.1038/onc.2013.360. Epub 2013 Sep 2.
2368 TCF4 induces enzalutamide resistance via neuroendocrine differentiation in prostate cancer.PLoS One. 2019 Sep 19;14(9):e0213488. doi: 10.1371/journal.pone.0213488. eCollection 2019.
2369 Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1.Oncotarget. 2016 Apr 26;7(17):24326-38. doi: 10.18632/oncotarget.8220.
2370 Gelsolin-like actin-capping proteinis associated with patient prognosis, cellular apoptosis and proliferation in prostate cancer.Biomark Med. 2016 Dec;10(12):1251-1260. doi: 10.2217/bmm-2016-0186. Epub 2016 Dec 7.
2371 TIPE2 Overexpression Suppresses the Proliferation, Migration, and Invasion in Prostate Cancer Cells by Inhibiting PI3K/Akt Signaling Pathway.Oncol Res. 2016;24(5):305-313. doi: 10.3727/096504016X14666990347437.
2372 Truncating mutations of TP53AIP1 gene predispose to cutaneous melanoma.Genes Chromosomes Cancer. 2018 Jun;57(6):294-303. doi: 10.1002/gcc.22528. Epub 2018 Feb 21.
2373 MiR-205 suppresses autophagy and enhances radiosensitivity of prostate cancer cells by targeting TP53INP1.Eur Rev Med Pharmacol Sci. 2016;20(1):92-100.
2374 Steroid Receptor-Associated Immunophilins: Candidates for Diverse Drug-Targeting Approaches in Disease.Curr Mol Pharmacol. 2015;9(1):66-95. doi: 10.2174/1874467208666150519113639.
2375 TRIM29 as a novel prostate basal cell marker for diagnosis of prostate cancer.Acta Histochem. 2014 Jun;116(5):708-12. doi: 10.1016/j.acthis.2013.12.009. Epub 2014 Jan 30.
2376 Germline Variants of Prostate Cancer in Japanese Families.PLoS One. 2016 Oct 4;11(10):e0164233. doi: 10.1371/journal.pone.0164233. eCollection 2016.
2377 Urinary Nucleic Acid TSPAN13-to-S100A9 Ratio as a Diagnostic Marker in Prostate Cancer.J Korean Med Sci. 2015 Dec;30(12):1784-92. doi: 10.3346/jkms.2015.30.12.1784. Epub 2015 Nov 30.
2378 TM4SF3 and AR: A Nuclear Complex that Stabilizes Both Proteins.Mol Endocrinol. 2016 Jan;30(1):13-25. doi: 10.1210/me.2015-1075. Epub 2015 Dec 9.