General Information of Drug Off-Target (DOT) (ID: OTZEXEFH)

DOT Name cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B)
Gene Name PRKAR2B
UniProt ID
KAP3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00027 ; PF02197
Sequence
MSIEIPAGLTELLQGFTVEVLRHQPADLLEFALQHFTRLQQENERKGTARFGHEGRTWGD
LGAAAGGGTPSKGVNFAEEPMQSDSEDGEEEEAAPADAGAFNAPVINRFTRRASVCAEAY
NPDEEEDDAESRIIHPKTDDQRNRLQEACKDILLFKNLDPEQMSQVLDAMFEKLVKDGEH
VIDQGDDGDNFYVIDRGTFDIYVKCDGVGRCVGNYDNRGSFGELALMYNTPRAATITATS
PGALWGLDRVTFRRIIVKNNAKKRKMYESFIESLPFLKSLEFSERLKVVDVIGTKVYNDG
EQIIAQGDSADSFFIVESGEVKITMKRKGKSEVEENGAVEIARCSRGQYFGELALVTNKP
RAASAHAIGTVKCLAMDVQAFERLLGPCMEIMKRNIATYEEQLVALFGTNMDIVEPTA
Function
Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells. Type II regulatory chains mediate membrane association by binding to anchoring proteins, including the MAP2 kinase.
Tissue Specificity Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible.
KEGG Pathway
Insulin sig.ling pathway (hsa04910 )
Reactome Pathway
PKA activation in glucagon signalling (R-HSA-164378 )
DARPP-32 events (R-HSA-180024 )
Regulation of PLK1 Activity at G2/M Transition (R-HSA-2565942 )
Loss of Nlp from mitotic centrosomes (R-HSA-380259 )
Recruitment of mitotic centrosome proteins and complexes (R-HSA-380270 )
Loss of proteins required for interphase microtubule organization from the centrosome (R-HSA-380284 )
Recruitment of NuMA to mitotic centrosomes (R-HSA-380320 )
Glucagon-like Peptide-1 (GLP1) regulates insulin secretion (R-HSA-381676 )
Vasopressin regulates renal water homeostasis via Aquaporins (R-HSA-432040 )
CREB1 phosphorylation through the activation of Adenylate Cyclase (R-HSA-442720 )
Hedgehog 'off' state (R-HSA-5610787 )
Anchoring of the basal body to the plasma membrane (R-HSA-5620912 )
AURKA Activation by TPX2 (R-HSA-8854518 )
GPER1 signaling (R-HSA-9634597 )
ADORA2B mediated anti-inflammatory cytokines production (R-HSA-9660821 )
FCGR3A-mediated IL10 synthesis (R-HSA-9664323 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
PKA activation (R-HSA-163615 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Phenytoin DMNOKBV Approved cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) increases the Hypersensitivity ADR of Phenytoin. [22]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [8]
Microcystin-LR DMTMLRN Investigative Microcystin-LR increases the methylation of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [20]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [4]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [7]
Triclosan DMZUR4N Approved Triclosan decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [9]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [10]
Folic acid DMEMBJC Approved Folic acid decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [11]
Nicotine DMWX5CO Approved Nicotine increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [12]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [14]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [18]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE increases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [19]
Taurine DMVW7N3 Investigative Taurine decreases the expression of cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Long noncoding RNA TDRG1 aggravates doxorubicin-induced cardiomyopathy by binding with miR-873-5p to upregulate PRKAR2. Environ Toxicol. 2022 Aug;37(8):2072-2083. doi: 10.1002/tox.23551. Epub 2022 May 7.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
11 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
12 Effects of tobacco compounds on gene expression in fetal lung fibroblasts. Environ Toxicol. 2008 Aug;23(4):423-34.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
15 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
18 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
19 Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines. Toxicol Appl Pharmacol. 2010 Nov 15;249(1):91-100.
20 Gene expression network regulated by DNA methylation and microRNA during microcystin-leucine arginine induced malignant transformation in human hepatocyte L02 cells. Toxicol Lett. 2018 Jun 1;289:42-53. doi: 10.1016/j.toxlet.2018.03.003. Epub 2018 Mar 5.
21 Taurine-responsive genes related to signal transduction as identified by cDNA microarray analyses of HepG2 cells. J Med Food. 2006 Spring;9(1):33-41. doi: 10.1089/jmf.2006.9.33.
22 Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions. Pharmacogenomics. 2012 Mar;13(4):399-405. doi: 10.2217/pgs.11.165.