General Information of Drug Combination (ID: DC0Q7VJ)

Drug Combination Name
Kanamycin Tetracycline
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Kanamycin   DM2DMPO Tetracycline   DMZA017
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 16.52
Bliss Independence Score: 16.52
Loewe Additivity Score: 28.43
LHighest Single Agent (HSA) Score: 28.44

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Kanamycin
Disease Entry ICD 11 Status REF
Bacteremia 1A73 Approved [2]
Bacterial infection 1A00-1C4Z Approved [3]
Cholangitis N.A. Approved [2]
Urinary tract infection GC08 Approved [2]
Kanamycin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Staphylococcus 30S ribosomal subunit (Stap-coc pbp2) TTQ8KVI F4NA87_STAAU Binder [6]
------------------------------------------------------------------------------------
Kanamycin Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Aminoglycoside O-phosphotransferase (aphA6) DEWPAJD KKA6_ACIBA Metabolism [7]
Aminoglycoside phosphotransferase (aph-Ib) DE5WGIM A0A075C7U3_CAMJU Metabolism [8]
Kanamycin/gentamycin-resistance enzyme (aacA) DECXWN8 J3S7E2_CAMCO Metabolism [8]
Endoglucanase Y (EGY) DE2M583 A0A256VAC0_LACRE Metabolism [9]
Endoglucanase Y (EGY) DE2AZTG A0A256VAC0_LACRE Metabolism [9]
------------------------------------------------------------------------------------
Kanamycin Interacts with 1 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
T-lymphocyte activation antigen CD86 (CD86) OTJCSBPC CD86_HUMAN Increases Expression [10]
------------------------------------------------------------------------------------
Indication(s) of Tetracycline
Disease Entry ICD 11 Status REF
Acne vulgaris ED80 Approved [4]
Actinomycosis N.A. Approved [4]
Acute gonococcal cervicitis N.A. Approved [4]
Acute gonococcal epididymo-orchitis N.A. Approved [4]
Bacterial infection 1A00-1C4Z Approved [5]
Bronchitis CA20 Approved [4]
Brucellosis N.A. Approved [4]
Lymphogranuloma venereum N.A. Approved [4]
Ornithosis N.A. Approved [4]
Pneumonia CA40 Approved [4]
Q fever N.A. Approved [4]
Relapsing fever N.A. Approved [4]
Rickettsialpox N.A. Approved [4]
Rocky mountain spotted fever N.A. Approved [4]
Syphilis N.A. Approved [4]
Trachoma N.A. Approved [4]
Typhus N.A. Approved [4]
Urinary tract infection GC08 Approved [4]
Yaws N.A. Approved [4]
Pelvic inflammatory disease GA05 Investigative [4]
Sinusitis CA0A.Z Investigative [4]
Tetracycline Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Staphylococcus 30S ribosomal subunit (Stap-coc pbp2) TTQ8KVI F4NA87_STAAU Binder [12]
------------------------------------------------------------------------------------
Tetracycline Interacts with 5 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [13]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [14]
Organic anion transporter 2 (SLC22A7) DT0OC1Q S22A7_HUMAN Substrate [15]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [15]
Organic anion transporter 4 (SLC22A11) DT06JWZ S22AB_HUMAN Substrate [15]
------------------------------------------------------------------------------------
Tetracycline Interacts with 44 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Solute carrier family 22 member 7 (SLC22A7) OTKTNH1W S22A7_HUMAN Increases Transport [16]
Organic anion transporter 3 (SLC22A8) OT8BY933 S22A8_HUMAN Increases Uptake [15]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [17]
Glutathione S-transferase Mu 3 (GSTM3) OTLA2WJT GSTM3_HUMAN Decreases Activity [17]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [11]
Alpha-1-antichymotrypsin (SERPINA3) OT9BP2S0 AACT_HUMAN Increases Expression [11]
Asparagine synthetase (ASNS) OT8R922G ASNS_HUMAN Increases Expression [11]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [11]
AP-1 complex subunit sigma-1A (AP1S1) OTQ2H8DN AP1S1_HUMAN Decreases Expression [11]
Transgelin (TAGLN) OTAEZ0KP TAGL_HUMAN Decreases Expression [11]
Fibronectin type III domain-containing protein 4 (FNDC4) OTOQK0WK FNDC4_HUMAN Increases Expression [11]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [11]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [18]
Alternative prion protein (PRNP) OTE85L1Q APRIO_HUMAN Affects Binding [19]
Claudin-11 (CLDN11) OTNN6UTL CLD11_HUMAN Decreases Expression [20]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Activity [21]
Stromelysin-1 (MMP3) OTGBI74Z MMP3_HUMAN Decreases Activity [21]
Integrin alpha-5 (ITGA5) OT3RCI67 ITA5_HUMAN Increases Expression [20]
Insulin-like growth factor-binding protein 1 (IGFBP1) OT6UQV2K IBP1_HUMAN Increases Expression [22]
Integrin alpha-M (ITGAM) OTAG6HWU ITAM_HUMAN Decreases Expression [20]
DNA topoisomerase 2-alpha (TOP2A) OT6LPS08 TOP2A_HUMAN Decreases Expression [23]
Integrin alpha-L (ITGAL) OTCUQAIS ITAL_HUMAN Decreases Expression [20]
Neutrophil collagenase (MMP8) OTZXH19L MMP8_HUMAN Decreases Activity [21]
Integrin alpha-3 (ITGA3) OTBCH21D ITA3_HUMAN Decreases Expression [20]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [24]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [24]
Sterol regulatory element-binding protein 1 (SREBF1) OTWBRPAI SRBP1_HUMAN Increases Expression [22]
Collagenase 3 (MMP13) OTY8BZIE MMP13_HUMAN Decreases Activity [21]
Gap junction alpha-8 protein (GJA8) OTZCPRKD CXA8_HUMAN Decreases Expression [20]
Microsomal triglyceride transfer protein large subunit (MTTP) OTNUVSDT MTP_HUMAN Decreases Expression [22]
Claudin-15 (CLDN15) OT9K0KI7 CLD15_HUMAN Decreases Expression [20]
Claudin-6 (CLDN6) OTEN8ID2 CLD6_HUMAN Decreases Expression [20]
Claudin-8 (CLDN8) OT7IIWXG CLD8_HUMAN Decreases Expression [20]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Decreases Expression [20]
Claudin-10 (CLDN10) OT2CVAKY CLD10_HUMAN Decreases Expression [20]
Peroxisomal bifunctional enzyme (EHHADH) OTBAAHL5 ECHP_HUMAN Decreases Expression [22]
Diacylglycerol O-acyltransferase 2 (DGAT2) OTE5PDD0 DGAT2_HUMAN Increases Expression [24]
Neurogenic locus notch homolog protein 4 (NOTCH4) OTBCHB61 NOTC4_HUMAN Decreases Expression [20]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Increases Expression [25]
Gap junction delta-2 protein (GJD2) OTDR288R CXD2_HUMAN Decreases Expression [20]
Neurogenic locus notch homolog protein 3 (NOTCH3) OTMVVA7F NOTC3_HUMAN Decreases Expression [20]
Solute carrier family 22 member 6 (SLC22A6) OTKRCBVM S22A6_HUMAN Increases Export [15]
ATP-binding cassette sub-family C member 4 (ABCC4) OTO27PAL MRP4_HUMAN Increases Transport [26]
Organic anion transporter 7 (SLC22A9) OTO4BJCC S22A9_HUMAN Increases Export [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 44 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Kanamycin FDA Label
3 Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007;14(18):2000-8.
4 Tetracycline FDA Label
5 How many modes of action should an antibiotic have Curr Opin Pharmacol. 2008 Oct;8(5):564-73.
6 SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in Escherichia coli. Genes Cells. 2002 Jul;7(7):629-38.
7 Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii. Chin Med J (Engl). 2005 Jan 20;118(2):141-5.
8 Cloning and expression of novel aminoglycoside phosphotransferase genes from Campylobacter and their role in the resistance to six aminoglycosides. Antimicrob Agents Chemother. 2017 Dec 21;62(1). pii: e01682-17.
9 Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic lactobacilli. Curr Microbiol. 2000 Apr;40(4):257-63.
10 A plasmacytoid dendritic cell (CD123+/CD11c-) based assay system to predict contact allergenicity of chemicals. Toxicology. 2009 Oct 1;264(1-2):1-9. doi: 10.1016/j.tox.2009.07.021. Epub 2009 Aug 7.
11 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
12 The glycylcyclines: a comparative review with the tetracyclines. Drugs. 2004;64(1):63-88.
13 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
14 Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochem J. 2005 Jan 15;385(Pt 2):419-26.
15 Human organic anion transporters mediate the transport of tetracycline. Jpn J Pharmacol. 2002 Jan;88(1):69-76.
16 Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005 May;57(5):573-8.
17 Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int J Cancer. 2002 Feb 10;97(5):700-5.
18 A comprehensive in vitro and in silico analysis of antibiotics that activate pregnane X receptor and induce CYP3A4 in liver and intestine. Drug Metab Dispos. 2008 Aug;36(8):1689-97.
19 Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol. 2000 Jul 28;300(5):1309-22. doi: 10.1006/jmbi.2000.3840.
20 Effects of residual levels of tetracycline on the barrier functions of human intestinal epithelial cells. Food Chem Toxicol. 2017 Nov;109(Pt 1):253-263. doi: 10.1016/j.fct.2017.09.004. Epub 2017 Sep 4.
21 Synthesis and in vitro evaluation of targeted tetracycline derivatives: effects on inhibition of matrix metalloproteinases. Bioorg Med Chem. 2007 Mar 15;15(6):2368-74. doi: 10.1016/j.bmc.2007.01.026. Epub 2007 Jan 19.
22 Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016 Jul 1;302:1-9. doi: 10.1016/j.taap.2016.04.007. Epub 2016 Apr 16.
23 Old drug, new target: ellipticines selectively inhibit RNA polymerase I transcription. J Biol Chem. 2013 Feb 15;288(7):4567-82. doi: 10.1074/jbc.M112.411611. Epub 2013 Jan 4.
24 Increased hepatic Fatty Acid uptake and esterification contribute to tetracycline-induced steatosis in mice. Toxicol Sci. 2015 Jun;145(2):273-82. doi: 10.1093/toxsci/kfv049. Epub 2015 Mar 4.
25 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
26 Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res. 2007 Dec;24(12):2281-96.