General Information of Drug Combination (ID: DC4N0ZV)

Drug Combination Name
Vismodegib Isoniazid
Indication
Disease Entry Status REF
Astrocytoma Investigative [1]
Component Drugs Vismodegib   DM5IXKQ Isoniazid   DM5JVS3
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: SNB-19
Zero Interaction Potency (ZIP) Score: 0.73
Bliss Independence Score: 3.07
Loewe Additivity Score: 1.55
LHighest Single Agent (HSA) Score: 1.5

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Vismodegib
Disease Entry ICD 11 Status REF
Basal cell carcinoma 2C32 Approved [2]
Primitive neuroectodermal tumour medulloblastoma 2A00.11 Phase 2 [3]
Vismodegib Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Smoothened homolog (SMO) TT8J1S3 SMO_HUMAN Modulator [6]
------------------------------------------------------------------------------------
Vismodegib Interacts with 2 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [7]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [7]
------------------------------------------------------------------------------------
Vismodegib Interacts with 13 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Tumor necrosis factor receptor superfamily member 10A (TNFRSF10A) OTBPCU2O TR10A_HUMAN Increases Expression [8]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [8]
Zinc finger protein GLI1 (GLI1) OT1BTAJO GLI1_HUMAN Decreases Expression [8]
Zinc finger protein GLI2 (GLI2) OTIRV97L GLI2_HUMAN Decreases Expression [8]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [8]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Expression [8]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [8]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [8]
Protein patched homolog 1 (PTCH1) OTMG07H5 PTC1_HUMAN Decreases Expression [8]
Protein smoothened (SMO) OTXXE208 SMO_HUMAN Decreases Expression [8]
Protein patched homolog 2 (PTCH2) OTOQ0K9V PTC2_HUMAN Decreases Expression [8]
Suppressor of fused homolog (SUFU) OT0IRYG1 SUFU_HUMAN Decreases Response To Substance [9]
N-myc proto-oncogene protein (MYCN) OTWD33K1 MYCN_HUMAN Decreases Response To Substance [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 DOT(s)
Indication(s) of Isoniazid
Disease Entry ICD 11 Status REF
Latent tuberculosis infection N.A. Approved [4]
Pulmonary tuberculosis 1B10.Z Approved [4]
Tuberculosis 1B10-1B1Z Approved [5]
Isoniazid Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Bacterial Fatty acid synthetase I (Bact inhA) TTVTX4N INHA_MYCTU Inhibitor [11]
------------------------------------------------------------------------------------
Isoniazid Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [12]
Catalase-peroxidase (katG) DEAGY5M KATG_SYNE7 Metabolism [13]
Arylamine N-acetyltransferase (NAT) DEXCQTM A0A3P8LE58_TSUPA Metabolism [14]
------------------------------------------------------------------------------------
Isoniazid Interacts with 59 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Expression [15]
N-alpha-acetyltransferase 20 (NAA20) OTJB0VA6 NAA20_HUMAN Increases ADR [16]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [17]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [18]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [18]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [18]
Aldo-keto reductase family 1 member B10 (AKR1B10) OTOA4HTH AK1BA_HUMAN Increases Expression [10]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Secretion [10]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Secretion [10]
C-X-C motif chemokine 10 (CXCL10) OTTLQ6S0 CXL10_HUMAN Increases Secretion [10]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Secretion [10]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [10]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Secretion [10]
Interleukin-12 subunit alpha (IL12A) OTDQT8GI IL12A_HUMAN Increases Secretion [10]
Interleukin-12 subunit beta (IL12B) OT0JF8A3 IL12B_HUMAN Increases Secretion [10]
Interleukin-17A (IL17A) OTY72FT2 IL17_HUMAN Increases Secretion [10]
Sulfiredoxin-1 (SRXN1) OTYDBO4L SRXN1_HUMAN Increases Expression [10]
Gamma-butyrobetaine dioxygenase (BBOX1) OTKEX4RK BODG_HUMAN Increases Expression [19]
Alpha-fetoprotein (AFP) OT9GG3ZI FETA_HUMAN Decreases Expression [19]
Sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) OTTO6ZP4 AT1B1_HUMAN Increases Expression [19]
Amyloid-beta precursor protein (APP) OTKFD7R4 A4_HUMAN Increases Expression [19]
Osteopontin (SPP1) OTJGC23Y OSTP_HUMAN Decreases Expression [19]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [19]
14-3-3 protein sigma (SFN) OTLJCZ1U 1433S_HUMAN Decreases Expression [19]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Decreases Expression [19]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Decreases Expression [19]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Increases Expression [19]
Large neutral amino acids transporter small subunit 1 (SLC7A5) OT2WPVXD LAT1_HUMAN Decreases Expression [19]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [19]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [20]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Affects Expression [21]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [22]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [22]
Albumin (ALB) OTVMM513 ALBU_HUMAN Affects Binding [23]
Antileukoproteinase (SLPI) OTUNFUU8 SLPI_HUMAN Increases Expression [22]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Activity [24]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [24]
Glucose-6-phosphate 1-dehydrogenase (G6PD) OT300SMK G6PD_HUMAN Decreases Activity [24]
5-aminolevulinate synthase, non-specific, mitochondrial (ALAS1) OTQY6ZSF HEM1_HUMAN Increases Expression [25]
Ferrochelatase, mitochondrial (FECH) OTDWEI6C HEMH_HUMAN Decreases Expression [25]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [15]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [15]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [22]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Decreases Expression [26]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [24]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [24]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [15]
Interleukin-24 (IL24) OT4VUWH1 IL24_HUMAN Increases Expression [22]
Nuclear respiratory factor 1 (NRF1) OTOXWNV8 NRF1_HUMAN Decreases Expression [27]
Natural cytotoxicity triggering receptor 3 ligand 1 (NCR3LG1) OT15YWU7 NR3L1_HUMAN Increases Expression [28]
PTB-containing, cubilin and LRP1-interacting protein (PID1) OT5YJ7FI PCLI1_HUMAN Increases Expression [22]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [27]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [21]
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) OTHCDQ22 PRGC1_HUMAN Decreases Expression [27]
Arylamine N-acetyltransferase 2 (NAT2) OTBPDQOY ARY2_HUMAN Decreases Acetylation [29]
Eosinophil peroxidase (EPX) OTFNDFOK PERE_HUMAN Increases Oxidation [30]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases Oxidation [31]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Response To Substance [32]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Response To Substance [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 59 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Carcinoma DC6C548 MCF7 Investigative [34]
Invasive ductal carcinoma DC9WTP9 BT-549 Investigative [34]
Invasive ductal carcinoma DC9YJEA HS 578T Investigative [34]
Adenocarcinoma DCW4C9A DU-145 Investigative [1]
Adenocarcinoma DCOAJH4 HCC-2998 Investigative [1]
Adult acute myeloid leukemia DCODV48 HL-60(TB) Investigative [1]
Clear cell renal cell carcinoma DCXAORJ 786-0 Investigative [1]
Clear cell renal cell carcinoma DCXLBQA A498 Investigative [1]
Glioblastoma DCPA77I SNB-75 Investigative [1]
Glioma DCBEABS SF-539 Investigative [1]
Glioma DCDUGKW SF-268 Investigative [1]
Melanoma DCO21YI UACC-257 Investigative [1]
Melanoma DCX0GWS SK-MEL-2 Investigative [1]
Non-small cell lung carcinoma DCWVPU4 HOP-92 Investigative [1]
Papillary renal cell carcinoma DCJZ9SC ACHN Investigative [1]
Renal cell carcinoma DCPGN9E SN12C Investigative [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 DrugCom(s)

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6975).
3 A phase II, multicenter, open-label, 3-cohort trial evaluating the efficacy and safety of vismodegib in operable basal cell carcinoma. J Am Acad Dermatol. 2015 Jul;73(1):99-105.e1.
4 Isoniazid FDA Label
5 Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007;14(18):2000-8.
6 Nat Rev Drug Discov. 2013 Feb;12(2):87-90.
7 The dawn of hedgehog inhibitors: Vismodegib. J Pharmacol Pharmacother. 2013 Jan;4(1):4-7.
8 Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: molecular mechanisms. PLoS One. 2011;6(11):e27306. doi: 10.1371/journal.pone.0027306. Epub 2011 Nov 8.
9 Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 2014 Jul;20(7):732-40. doi: 10.1038/nm.3613. Epub 2014 Jun 29.
10 Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017 Jul 1;158(1):76-89.
11 Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci. 2009 May;66(9):1507-17.
12 Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol. 2005 Apr 1;69(7):1081-93.
13 Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 in complex with the antitubercular pro-drug isoniazid. FEBS Lett. 2015 Jan 2;589(1):131-7.
14 The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol. 2019 Oct 31;35(11):174.
15 Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway. J Biochem Mol Toxicol. 2019 Sep;33(9):e22369. doi: 10.1002/jbt.22369. Epub 2019 Jul 23.
16 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
17 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
18 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
19 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
20 Identification of differentially expressed genes in hepatic HepG2 cells treated with acetaminophen using suppression subtractive hybridization. Biol Pharm Bull. 2005 Jul;28(7):1148-53. doi: 10.1248/bpb.28.1148.
21 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
22 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
23 Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chem Res Toxicol. 2015 Jan 20;28(1):51-8. doi: 10.1021/tx500285k. Epub 2014 Dec 9.
24 Isoniazid-induced apoptosis in HepG2 cells: generation of oxidative stress and Bcl-2 down-regulation. Toxicol Mech Methods. 2010 Jun;20(5):242-51. doi: 10.3109/15376511003793325.
25 The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci. 2019 Mar 1;168(1):209-224. doi: 10.1093/toxsci/kfy294.
26 Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol. 2013 Dec 15;273(3):435-41. doi: 10.1016/j.taap.2013.10.005. Epub 2013 Oct 12.
27 AMPK activator acadesine fails to alleviate isoniazid-caused mitochondrial instability in HepG2 cells. J Appl Toxicol. 2017 Oct;37(10):1219-1224. doi: 10.1002/jat.3483. Epub 2017 May 29.
28 Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol. 2020 Feb;94(2):439-448. doi: 10.1007/s00204-020-02668-8. Epub 2020 Feb 14.
29 Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci. 2008 May;33(2):187-95. doi: 10.2131/jts.33.187.
30 Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD(). Chem Biol Interact. 2019 May 25;305:48-53. doi: 10.1016/j.cbi.2019.03.019. Epub 2019 Mar 25.
31 Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol. 2016 Apr 15;106:46-55. doi: 10.1016/j.bcp.2016.02.003. Epub 2016 Feb 9.
32 Development of a highly sensitive cytotoxicity assay system for CYP3A4-mediated metabolic activation. Drug Metab Dispos. 2011 Aug;39(8):1388-95. doi: 10.1124/dmd.110.037077. Epub 2011 May 3.
33 Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018 Jan;92(1):383-399. doi: 10.1007/s00204-017-2036-4. Epub 2017 Jul 31.
34 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.