General Information of Drug Combination (ID: DCB42SD)

Drug Combination Name
Erlotinib Buparlisib
Indication
Disease Entry Status REF
Diffuse intrinsic pontine glioma Investigative [1]
Component Drugs Erlotinib   DMCMBHA Buparlisib   DM1WEHC
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: DIPG25
Zero Interaction Potency (ZIP) Score: 1.147
Bliss Independence Score: 5.345
Loewe Additivity Score: 2.425
LHighest Single Agent (HSA) Score: 5.017

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Erlotinib
Disease Entry ICD 11 Status REF
Adrenal gland neoplasm N.A. Approved [2]
Adult hepatocellular carcinoma N.A. Approved [2]
Brain cancer 2A00 Approved [2]
Esophageal disorder N.A. Approved [2]
Lung cancer 2C25.0 Approved [2]
Non-small-cell lung cancer 2C25.Y Approved [3]
Pancreatic adenocarcinoma N.A. Approved [2]
Psoriasis EA90 Approved [2]
Salivary gland squamous cell carcinoma N.A. Approved [2]
Pancreatic cancer 2C10 Phase 3 [3]
Colon cancer 2B90.Z Phase 2 [3]
Ependymoma 2A00.0Y Investigative [2]
Neoplastic meningitis N.A. Investigative [2]
Neuroblastoma 2D11.2 Investigative [2]
Erlotinib Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
Erlotinib Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [6]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [7]
------------------------------------------------------------------------------------
Erlotinib Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [8]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [9]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [9]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [9]
------------------------------------------------------------------------------------
Erlotinib Interacts with 1 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Increases Response [10]
------------------------------------------------------------------------------------
Indication(s) of Buparlisib
Disease Entry ICD 11 Status REF
Breast cancer 2C60-2C65 Phase 3 [4]
Buparlisib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
PI3-kinase beta (PIK3CB) TTTHBCA PK3CB_HUMAN Inhibitor [12]
PI3-kinase delta (PIK3CD) TTGBPJE PK3CD_HUMAN Inhibitor [12]
PI3-kinase alpha (PIK3CA) TTEUNMR PK3CA_HUMAN Inhibitor [12]
PI3-kinase gamma (PIK3CG) TTHBTOP PK3CG_HUMAN Inhibitor [12]
------------------------------------------------------------------------------------
Buparlisib Interacts with 18 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Telomerase reverse transcriptase (TERT) OT085VVA TERT_HUMAN Decreases Expression [11]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [13]
Forkhead box protein O3 (FOXO3) OTHXQG4P FOXO3_HUMAN Increases Expression [13]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [14]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [11]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Increases Phosphorylation [14]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [14]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [14]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Increases Phosphorylation [14]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [11]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Increases Phosphorylation [14]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [15]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Expression [11]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [11]
Baculoviral IAP repeat-containing protein 2 (BIRC2) OTFXFREP BIRC2_HUMAN Decreases Expression [11]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [11]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [11]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Response To Substance [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Erlotinib FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 4920).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7878).
5 Quantitative prediction of fold resistance for inhibitors of EGFR. Biochemistry. 2009 Sep 8;48(35):8435-48.
6 Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther. 2008 Aug;7(8):2280-7.
7 Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy. Adv Drug Deliv Rev. 2009 Jan 31;61(1):26-33.
8 In vitro assessment of time-dependent inhibitory effects on CYP2C8 and CYP3A activity by fourteen protein kinase inhibitors. Drug Metab Dispos. 2014 Jul;42(7):1202-9.
9 Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009 Dec;35(8):692-706.
10 Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004 May 20;350(21):2129-39. doi: 10.1056/NEJMoa040938. Epub 2004 Apr 29.
11 Inhibition of PI3K signaling pathway enhances the chemosensitivity of APL cells to ATO: Proposing novel therapeutic potential for BKM120. Eur J Pharmacol. 2018 Dec 15;841:10-18. doi: 10.1016/j.ejphar.2018.10.007. Epub 2018 Oct 11.
12 Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44.
13 Inhibition of PI3K pathway using BKM120 intensified the chemo-sensitivity of breast cancer cells to arsenic trioxide (ATO). Int J Biochem Cell Biol. 2019 Nov;116:105615. doi: 10.1016/j.biocel.2019.105615. Epub 2019 Sep 17.
14 Combination PI3K/MEK inhibition promotes tumor apoptosis and regression in PIK3CA wild-type, KRAS mutant colorectal cancer. Cancer Lett. 2014 Jun 1;347(2):204-11. doi: 10.1016/j.canlet.2014.02.018. Epub 2014 Feb 24.
15 The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer. 2013 Jun 1;132(11):2682-93. doi: 10.1002/ijc.27935. Epub 2012 Dec 4.
16 Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther. 2012 Aug;11(8):1747-57. doi: 10.1158/1535-7163.MCT-11-1021. Epub 2012 May 31.