General Information of Drug Combination (ID: DCPW4SU)

Drug Combination Name
Dacarbazine Sorafenib
Indication
Disease Entry Status REF
Lung adenocarcinoma Investigative [1]
Component Drugs Dacarbazine   DMNPZL4 Sorafenib   DMS8IFC
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: HOP-62
Zero Interaction Potency (ZIP) Score: 4.33
Bliss Independence Score: 8.38
Loewe Additivity Score: 4.31
LHighest Single Agent (HSA) Score: 7.53

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Dacarbazine
Disease Entry ICD 11 Status REF
Adenocarcinoma 2D40 Approved [2]
Astrocytoma 2A00.0Y Approved [2]
Brain disease 8C70-8E61 Approved [2]
Central nervous system disease 8A04-8D87 Approved [2]
Glioblastoma 2A00 Approved [2]
Gliosarcoma N.A. Approved [2]
Melanoma 2C30 Approved [3]
Classic Hodgkin lymphoma N.A. Investigative [2]
Neuroblastoma 2D11.2 Investigative [2]
Dacarbazine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Human Deoxyribonucleic acid (hDNA) TTUTN1I NOUNIPROTAC Breaker [7]
------------------------------------------------------------------------------------
Dacarbazine Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [8]
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [9]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [10]
------------------------------------------------------------------------------------
Dacarbazine Interacts with 12 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Increases Expression [11]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases Expression [6]
Interferon regulatory factor 1 (IRF1) OT43DI6J IRF1_HUMAN Increases Expression [12]
Methylated-DNA--protein-cysteine methyltransferase (MGMT) OT40A9WH MGMT_HUMAN Decreases Activity [13]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Response To Substance [14]
DNA repair nuclease/redox regulator APEX1 (APEX1) OT53OI14 APEX1_HUMAN Increases Response To Substance [15]
Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) OTA675TJ GTR1_HUMAN Decreases Response To Substance [16]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Response To Substance [17]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Response To Substance [17]
Clusterin (CLU) OTQGG0JM CLUS_HUMAN Affects Response To Substance [18]
Mitogen-activated protein kinase kinase kinase 1 (MAP3K1) OTS3FVTY M3K1_HUMAN Decreases Response To Substance [17]
Erythropoietin (EPO) OTZ90CN4 EPO_HUMAN Decreases Response To Substance [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 DOT(s)
Indication(s) of Sorafenib
Disease Entry ICD 11 Status REF
Adenocarcinoma 2D40 Approved [4]
Carcinoma 2A00-2F9Z Approved [4]
Clear cell renal carcinoma N.A. Approved [4]
Lung cancer 2C25.0 Approved [4]
Medullary thyroid gland carcinoma N.A. Approved [4]
Non-small-cell lung cancer 2C25.Y Approved [4]
Renal cell carcinoma 2C90 Approved [5]
Thyroid cancer 2D10 Approved [4]
Hepatocellular carcinoma 2C12.02 Phase 3 [5]
Myelodysplastic syndrome 2A37 Phase 2 [5]
Sorafenib Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Tyrosine-protein kinase Kit (KIT) TTX41N9 KIT_HUMAN Modulator [25]
Platelet-derived growth factor receptor beta (PDGFRB) TTI7421 PGFRB_HUMAN Modulator [25]
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [26]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Modulator [25]
------------------------------------------------------------------------------------
Sorafenib Interacts with 7 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [27]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [28]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [29]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [30]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [31]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [30]
RalBP1-associated Eps domain-containing protein 2 (RALBP1) DTYEM9B REPS2_HUMAN Substrate [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DTP(s)
Sorafenib Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [33]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [34]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [35]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [35]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [33]
UDP-glucuronosyltransferase 1A9 (UGT1A9) DE85D2P UD19_HUMAN Metabolism [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Sorafenib Interacts with 112 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [37]
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Affects Response To Substance [38]
Mast/stem cell growth factor receptor Kit (KIT) OTHUY3VZ KIT_HUMAN Decreases Phosphorylation [39]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [40]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Increases Expression [41]
DNA damage-inducible transcript 4 protein (DDIT4) OTHY8SY4 DDIT4_HUMAN Increases Expression [41]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [42]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Activity [43]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Activity [43]
Phosphatidylinositol 4-phosphate 3-kinase C2 domain-containing subunit alpha (PIK3C2A) OTFBU4GD P3C2A_HUMAN Decreases Expression [20]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Expression [20]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Expression [20]
GTPase NRas (NRAS) OTVQ1DG3 RASN_HUMAN Decreases Expression [20]
Insulin-like growth factor 1 receptor (IGF1R) OTXJIF13 IGF1R_HUMAN Decreases Expression [20]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [20]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Decreases Expression [20]
Cyclin-dependent kinase 2 (CDK2) OTB5DYYZ CDK2_HUMAN Decreases Expression [20]
Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) OTTOMI8J PK3CA_HUMAN Decreases Expression [20]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Expression [20]
Cyclin-dependent kinase 9 (CDK9) OT2B7OGB CDK9_HUMAN Decreases Expression [20]
Growth factor receptor-bound protein 2 (GRB2) OTOP7LTE GRB2_HUMAN Decreases Expression [20]
E3 ubiquitin-protein ligase Mdm2 (MDM2) OTOVXARF MDM2_HUMAN Increases Expression [20]
Interferon regulatory factor 5 (IRF5) OT8SIIAP IRF5_HUMAN Increases Expression [20]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [20]
Serine/threonine-protein kinase PLK3 (PLK3) OT19CT2Z PLK3_HUMAN Increases Expression [20]
Serine/threonine-protein kinase PLK2 (PLK2) OTKMJXJ8 PLK2_HUMAN Increases Expression [20]
Histone deacetylase 6 (HDAC6) OT9W9MXQ HDAC6_HUMAN Decreases Expression [20]
Tumor necrosis factor receptor superfamily member 10B (TNFRSF10B) OTA1CPBV TR10B_HUMAN Increases Expression [41]
CASP8 and FADD-like apoptosis regulator (CFLAR) OTX14BAS CFLAR_HUMAN Decreases Expression [44]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Decreases Expression [45]
Zinc finger protein SNAI2 (SNAI2) OT7Y8EJ2 SNAI2_HUMAN Decreases Expression [21]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Ubiquitination [46]
Growth arrest and DNA damage-inducible protein GADD45 beta (GADD45B) OTL9I7LO GA45B_HUMAN Increases Expression [47]
Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) OTYG179K PR15A_HUMAN Increases Expression [22]
Growth arrest and DNA damage-inducible protein GADD45 gamma (GADD45G) OT8V1J4M GA45G_HUMAN Increases Expression [48]
Apoptosis-inducing factor 1, mitochondrial (AIFM1) OTKPWB7Q AIFM1_HUMAN Affects Localization [45]
Tyrosine-protein kinase ABL1 (ABL1) OT09YVXH ABL1_HUMAN Decreases Activity [49]
Urokinase-type plasminogen activator (PLAU) OTX0QGKK UROK_HUMAN Decreases Expression [50]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Decreases Activity [51]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Secretion [52]
RAF proto-oncogene serine/threonine-protein kinase (RAF1) OT51LSFO RAF1_HUMAN Decreases Activity [39]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Expression [53]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Expression [47]
Tyrosine-protein kinase Lck (LCK) OT883FG9 LCK_HUMAN Decreases Phosphorylation [54]
Retinoblastoma-associated protein (RB1) OTQJUJMZ RB_HUMAN Decreases Expression [55]
Eukaryotic translation initiation factor 4E (EIF4E) OTDAWNLA IF4E_HUMAN Decreases Phosphorylation [45]
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Activity [56]
High mobility group protein B1 (HMGB1) OT4B7CPF HMGB1_HUMAN Increases Expression [52]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [57]
Breakpoint cluster region protein (BCR) OTCN76C1 BCR_HUMAN Decreases Activity [49]
Cytochrome P450 2C9 (CYP2C9) OTGLBN29 CP2C9_HUMAN Decreases Activity [37]
Cyclin-dependent kinase 4 (CDK4) OT7EP05T CDK4_HUMAN Decreases Expression [58]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Increases Expression [21]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Decreases Activity [59]
Serine/threonine-protein kinase B-raf (BRAF) OT7S81XQ BRAF_HUMAN Decreases Activity [60]
Platelet-derived growth factor receptor alpha (PDGFRA) OTDJXUCN PGFRA_HUMAN Decreases Phosphorylation [61]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [41]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [62]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [63]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Decreases Expression [64]
G1/S-specific cyclin-D2 (CCND2) OTDULQF9 CCND2_HUMAN Decreases Expression [64]
G1/S-specific cyclin-D3 (CCND3) OTNKPQ22 CCND3_HUMAN Decreases Expression [58]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [65]
Vascular endothelial growth factor receptor 2 (KDR) OT15797V VGFR2_HUMAN Decreases Phosphorylation [39]
Dual specificity mitogen-activated protein kinase kinase 2 (MAP2K2) OTUE7Z91 MP2K2_HUMAN Decreases Phosphorylation [60]
Signal transducer and activator of transcription 3 (STAT3) OTAAGKYZ STAT3_HUMAN Decreases Phosphorylation [66]
Signal transducer and activator of transcription 5A (STAT5A) OTBSJGN3 STA5A_HUMAN Decreases Activity [67]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [68]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Decreases Phosphorylation [50]
Mitogen-activated protein kinase 9 (MAPK9) OTCEVJ9E MK09_HUMAN Decreases Phosphorylation [50]
Dual specificity mitogen-activated protein kinase kinase 4 (MAP2K4) OTZPZX11 MP2K4_HUMAN Decreases Phosphorylation [50]
Crk-like protein (CRKL) OTOYSD1R CRKL_HUMAN Decreases Phosphorylation [49]
Cyclin-dependent kinase inhibitor 1B (CDKN1B) OTNY5LLZ CDN1B_HUMAN Increases Expression [69]
CCAAT/enhancer-binding protein delta (CEBPD) OTNBIPMY CEBPD_HUMAN Increases Expression [48]
Glycogen synthase kinase-3 beta (GSK3B) OTL3L14B GSK3B_HUMAN Increases Phosphorylation [68]
Tumor necrosis factor ligand superfamily member 10 (TNFSF10) OT4PXBTA TNF10_HUMAN Increases Response To Substance [70]
Stanniocalcin-1 (STC1) OTGVVXYF STC1_HUMAN Decreases Expression [71]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [72]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [54]
Gasdermin-D (GSDMD) OTH39BKI GSDMD_HUMAN Increases Expression [52]
Sestrin-2 (SESN2) OT889IXY SESN2_HUMAN Increases Expression [73]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [74]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Affects Localization [75]
Cyclin-dependent kinase 6 (CDK6) OTR95N0X CDK6_HUMAN Decreases Expression [58]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Phosphorylation [60]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Cleavage [45]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [45]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [76]
Baculoviral IAP repeat-containing protein 3 (BIRC3) OT3E95KB BIRC3_HUMAN Decreases Expression [77]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [62]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [78]
Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) OTXEE550 APR_HUMAN Decreases Expression [79]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Cleavage [23]
Mitogen-activated protein kinase 14 (MAPK14) OT5TCO3O MK14_HUMAN Decreases Expression [80]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Decreases Expression [45]
Cytochrome P450 1B1 (CYP1B1) OTYXFLSD CP1B1_HUMAN Decreases Activity [81]
Bcl2-associated agonist of cell death (BAD) OT63ERYM BAD_HUMAN Increases Expression [23]
Docking protein 1 (DOK1) OTGVRLW6 DOK1_HUMAN Decreases Phosphorylation [49]
Serine/threonine-protein kinase PINK1, mitochondrial (PINK1) OT50NR57 PINK1_HUMAN Increases Expression [46]
Eukaryotic translation initiation factor 2A (EIF2A) OTWXELQP EIF2A_HUMAN Increases Phosphorylation [22]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [82]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [83]
Ubiquitin carboxyl-terminal hydrolase CYLD (CYLD) OT37FKH0 CYLD_HUMAN Increases Expression [40]
Diablo IAP-binding mitochondrial protein (DIABLO) OTHJ9MCZ DBLOH_HUMAN Affects Localization [79]
Eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) OT0DZGY4 E2AK3_HUMAN Increases Phosphorylation [22]
E3 ubiquitin-protein ligase TRIM62 (TRIM62) OT15YO6N TRI62_HUMAN Affects Response To Substance [84]
Induced myeloid leukemia cell differentiation protein Mcl-1 (MCL1) OT2YYI1A MCL1_HUMAN Decreases Response To Substance [45]
ATP-binding cassette sub-family C member 3 (ABCC3) OTC3IJV4 MRP3_HUMAN Affects Response To Substance [38]
Hepatocyte growth factor (HGF) OTGHUA23 HGF_HUMAN Decreases Response To Substance [85]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Affects Response To Substance [38]
Receptor-type tyrosine-protein kinase FLT3 (FLT3) OTMSRYMK FLT3_HUMAN Increases Response To Substance [74]
Na(+)/citrate cotransporter (SLC13A5) OTPH1TA7 S13A5_HUMAN Decreases Response To Substance [86]
------------------------------------------------------------------------------------
⏷ Show the Full List of 112 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Adenocarcinoma DC121B9 HT29 Investigative [1]
Anaplastic large cell lymphoma DC7KPL1 SR Investigative [1]
Cutaneous melanoma DCSFNPL SK-MEL-5 Investigative [1]
Glioma DC9K1DG SF-295 Investigative [1]
High grade ovarian serous adenocarcinoma DC43SEZ OVCAR-8 Investigative [1]
------------------------------------------------------------------------------------

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Dacarbazine FDA Label
3 FDA Approved Drug Products from FDA Official Website. 2009. Application Number: (ANDA) 075259.
4 Sorafenib FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5711).
6 Dacarbazine causes transcriptional up-regulation of interleukin 8 and vascular endothelial growth factor in melanoma cells: a possible escape mechanism from chemotherapy. Mol Cancer Ther. 2003 Aug;2(8):753-63.
7 Predicting the myelotoxicity of chemotherapy: the use of pretreatment O6-methylguanine-DNA methyltransferase determination in peripheral blood mono... Melanoma Res. 2011 Dec;21(6):502-8.
8 Study on mesenchymal stem cells mediated enzyme-prodrug gene CYP1A2 targeting anti-tumor effect. Zhonghua Xue Ye Xue Za Zhi. 2009 Oct;30(10):667-71.
9 Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2, and CYP2E1. Clin Cancer Res. 1999 Aug;5(8):2192-7.
10 Role of cytochrome P450 isoenzymes in metabolism of O(6)-benzylguanine: implications for dacarbazine activation. Clin Cancer Res. 2001 Dec;7(12):4239-44.
11 Serum bcl-2 and survivin levels in melanoma. Melanoma Res. 2004 Dec;14(6):543-6. doi: 10.1097/00008390-200412000-00017.
12 CD69 on CD56+ NK cells and response to chemoimmunotherapy in metastatic melanoma. Eur J Clin Invest. 2007 Nov;37(11):887-96. doi: 10.1111/j.1365-2362.2007.01873.x.
13 Pharmacokinetic, biochemical and clinical effects of dimethyltriazenoimidazole-4-carboxamide-bischloroethylnitrosourea combination therapy in patients with advanced breast cancer. Int J Cancer. 2003 Feb 20;103(5):686-92. doi: 10.1002/ijc.10849.
14 Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol. 2003 Jun;120(6):1081-6. doi: 10.1046/j.1523-1747.2003.12252.x.
15 Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res. 2009 Jun;7(6):897-906. doi: 10.1158/1541-7786.MCR-08-0519. Epub 2009 May 26.
16 Glut-1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through COMPARE analysis and metabolomic studies. Cancer Chemother Pharmacol. 2008 Mar;61(3):377-93. doi: 10.1007/s00280-007-0480-1. Epub 2007 May 23.
17 Exposure of melanoma cells to dacarbazine results in enhanced tumor growth and metastasis in vivo. J Clin Oncol. 2004 Jun 1;22(11):2092-100. doi: 10.1200/JCO.2004.11.070. Epub 2004 May 3.
18 Clusterin regulates drug-resistance in melanoma cells. J Invest Dermatol. 2005 Jun;124(6):1300-7. doi: 10.1111/j.0022-202X.2005.23720.x.
19 Functional erythropoietin autocrine loop in melanoma. Am J Pathol. 2005 Mar;166(3):823-30. doi: 10.1016/S0002-9440(10)62303-6.
20 Novel carbocyclic curcumin analog CUR3d modulates genes involved in multiple apoptosis pathways in human hepatocellular carcinoma cells. Chem Biol Interact. 2015 Dec 5;242:107-22.
21 Destruxin B inhibits hepatocellular carcinoma cell growth through modulation of the Wnt/-catenin signaling pathway and epithelial-mesenchymal transition. Toxicol In Vitro. 2014 Jun;28(4):552-61. doi: 10.1016/j.tiv.2014.01.002. Epub 2014 Jan 13.
22 The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol. 2007 Aug;27(15):5499-513. doi: 10.1128/MCB.01080-06. Epub 2007 Jun 4.
23 Sorafenib induces apoptosis of AML cells via Bim-mediated activation of the intrinsic apoptotic pathway. Leukemia. 2008 Apr;22(4):808-18. doi: 10.1038/sj.leu.2405098. Epub 2008 Jan 17.
24 Ovatodiolide suppresses yes-associated protein 1-modulated cancer stem cell phenotypes in highly malignant hepatocellular carcinoma and sensitizes cancer cells to chemotherapy in vitro. Toxicol In Vitro. 2018 Sep;51:74-82. doi: 10.1016/j.tiv.2018.04.010. Epub 2018 Apr 24.
25 Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling.Mol Cancer Ther.2008 Oct;7(10):3129-40.
26 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
27 Multidrug resistance protein 2 implicates anticancer drug-resistance to sorafenib. Biol Pharm Bull. 2011;34(3):433-5.
28 Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010 Feb;9(2):319-26.
29 Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol Pharm. 2011 Apr 4;8(2):571-82.
30 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
31 Upregulation of histone acetylation reverses organic anion transporter 2 repression and enhances 5-fluorouracil sensitivity in hepatocellular carcinoma
32 Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010 Mar 15;126(6):1327-38.
33 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
34 Ontogeny and sorafenib metabolism. Clin Cancer Res. 2012 Oct 15;18(20):5788-95.
35 Drug Interactions Flockhart Table
36 Pharmacokinetic interaction involving sorafenib and the calcium-channel blocker felodipine in a patient with hepatocellular carcinoma. Invest New Drugs. 2011 Dec;29(6):1511-4.
37 Differential inhibition of human CYP2C8 and molecular docking interactions elicited by sorafenib and its major N-oxide metabolite. Chem Biol Interact. 2021 Apr 1;338:109401. doi: 10.1016/j.cbi.2021.109401. Epub 2021 Feb 5.
38 The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance. PLoS One. 2013 Nov 11;8(11):e78675. doi: 10.1371/journal.pone.0078675. eCollection 2013.
39 Sorafenib induces growth suppression in mouse models of gastrointestinal stromal tumor. Mol Cancer Ther. 2009 Jan;8(1):152-9. doi: 10.1158/1535-7163.MCT-08-0553.
40 Down-regulation of CYLD as a trigger for NF-B activation and a mechanism of apoptotic resistance in hepatocellular carcinoma cells. Int J Oncol. 2011 Jan;38(1):121-31.
41 Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol. 2011 Aug 1;82(3):216-26. doi: 10.1016/j.bcp.2011.04.011. Epub 2011 May 13.
42 Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development. Toxicol Sci. 2010 Dec; 118(2):485-500.
43 Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines. BMC Cancer. 2012 Sep 10;12:402.
44 The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res. 2007 Oct 1;67(19):9490-500. doi: 10.1158/0008-5472.CAN-07-0598.
45 Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem. 2005 Oct 21;280(42):35217-27. doi: 10.1074/jbc.M506551200. Epub 2005 Aug 18.
46 Sorafenib targets the mitochondrial electron transport chain complexes and ATP synthase to activate the PINK1-Parkin pathway and modulate cellular drug response. J Biol Chem. 2017 Sep 8;292(36):15105-15120. doi: 10.1074/jbc.M117.783175. Epub 2017 Jul 3.
47 Induction of DNA damage-inducible gene GADD45beta contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res. 2010 Nov 15;70(22):9309-18. doi: 10.1158/0008-5472.CAN-10-1033. Epub 2010 Nov 9.
48 Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. Oncotarget. 2015 Sep 29;6(29):27953-65. doi: 10.18632/oncotarget.4446.
49 Sorafenib induces apoptosis specifically in cells expressing BCR/ABL by inhibiting its kinase activity to activate the intrinsic mitochondrial pathway. Cancer Res. 2009 May 1;69(9):3927-36. doi: 10.1158/0008-5472.CAN-08-2978. Epub 2009 Apr 14.
50 Synergistic antimetastatic effect of cotreatment with licochalcone A and sorafenib on human hepatocellular carcinoma cells through the inactivation of MKK4/JNK and uPA expression. Environ Toxicol. 2018 Dec;33(12):1237-1244. doi: 10.1002/tox.22630. Epub 2018 Sep 6.
51 Sorafenib inhibits transforming growth factor 1-mediated epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology. 2011 May;53(5):1708-18. doi: 10.1002/hep.24254.
52 Activation of inflammasomes by tyrosine kinase inhibitors of vascular endothelial growth factor receptor: Implications for VEGFR TKIs-induced immune related adverse events. Toxicol In Vitro. 2021 Mar;71:105063. doi: 10.1016/j.tiv.2020.105063. Epub 2020 Dec 1.
53 Sorafenib is an antagonist of the aryl hydrocarbon receptor. Toxicology. 2022 Mar 30;470:153118. doi: 10.1016/j.tox.2022.153118. Epub 2022 Feb 3.
54 Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia. 2011 May;25(5):838-47. doi: 10.1038/leu.2011.2. Epub 2011 Feb 4.
55 Cell cycle dependent and schedule-dependent antitumor effects of sorafenib combined with radiation. Cancer Res. 2007 Oct 1;67(19):9443-54. doi: 10.1158/0008-5472.CAN-07-1473.
56 Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J Biol Chem. 2007 Oct 5;282(40):29230-40. doi: 10.1074/jbc.M703461200. Epub 2007 Jul 30.
57 Synergistic activity of letrozole and sorafenib on breast cancer cells. Breast Cancer Res Treat. 2010 Nov;124(1):79-88. doi: 10.1007/s10549-009-0714-5. Epub 2010 Jan 7.
58 Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther. 2006 Dec;319(3):1070-80. doi: 10.1124/jpet.106.108621. Epub 2006 Sep 7.
59 Sorafenib induces apoptosis in HL60 cells by inhibiting Src kinase-mediated STAT3 phosphorylation. Anticancer Drugs. 2011 Jan;22(1):79-88. doi: 10.1097/CAD.0b013e32833f44fd.
60 Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology. 2007;85(1):45-53. doi: 10.1159/000100508. Epub 2007 Mar 5.
61 Potent activity of ponatinib (AP24534) in models of FLT3-driven acute myeloid leukemia and other hematologic malignancies. Mol Cancer Ther. 2011 Jun;10(6):1028-35. doi: 10.1158/1535-7163.MCT-10-1044. Epub 2011 Apr 11.
62 Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer. 2012 Aug 1;131(3):548-57. doi: 10.1002/ijc.26374. Epub 2011 Sep 12.
63 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
64 Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther. 2008 Nov;7(11):3519-26. doi: 10.1158/1535-7163.MCT-08-0138.
65 Therapeutic targeting of hepatocellular carcinoma cells with antrocinol, a novel, dual-specificity, small-molecule inhibitor of the KRAS and ERK oncogenic signaling pathways. Chem Biol Interact. 2023 Jan 25;370:110329. doi: 10.1016/j.cbi.2022.110329. Epub 2022 Dec 22.
66 Sorafenib derivatives induce apoptosis through inhibition of STAT3 independent of Raf. Eur J Med Chem. 2011 Jul;46(7):2845-51. doi: 10.1016/j.ejmech.2011.04.007. Epub 2011 Apr 14.
67 The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation. Mol Pharmacol. 2007 Sep;72(3):788-95. doi: 10.1124/mol.106.033308. Epub 2007 Jun 26.
68 Arsenic trioxide potentiates the anti-cancer activities of sorafenib against hepatocellular carcinoma by inhibiting Akt activation. Tumour Biol. 2015 Apr;36(4):2323-34. doi: 10.1007/s13277-014-2839-3. Epub 2014 Nov 22.
69 Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer. 2009 Oct 31;9:387. doi: 10.1186/1471-2407-9-387.
70 The multikinase inhibitor Sorafenib induces apoptosis and sensitises endometrial cancer cells to TRAIL by different mechanisms. Eur J Cancer. 2010 Mar;46(4):836-50. doi: 10.1016/j.ejca.2009.12.025. Epub 2010 Jan 12.
71 Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015 Feb;143(2):374-84. doi: 10.1093/toxsci/kfu235. Epub 2014 Nov 3.
72 Sorafenib induces preferential apoptotic killing of a drug- and radio-resistant Hep G2 cells through a mitochondria-dependent oxidative stress mechanism. Cancer Biol Ther. 2009 Oct;8(20):1904-13. doi: 10.4161/cbt.8.20.9436. Epub 2009 Oct 6.
73 Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 2019 Sep 15;379:114665. doi: 10.1016/j.taap.2019.114665. Epub 2019 Jul 16.
74 Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Cancer Lett. 2013 Feb 1;329(1):45-58. doi: 10.1016/j.canlet.2012.09.020. Epub 2012 Oct 2.
75 The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene. 2005 Oct 20;24(46):6861-9. doi: 10.1038/sj.onc.1208841.
76 Why are most phospholipidosis inducers also hERG blockers?. Arch Toxicol. 2017 Dec;91(12):3885-3895. doi: 10.1007/s00204-017-1995-9. Epub 2017 May 27.
77 The multikinase inhibitor sorafenib induces caspase-dependent apoptosis in PC-3 prostate cancer cells. Asian J Androl. 2010 Jul;12(4):527-34. doi: 10.1038/aja.2010.21. Epub 2010 May 17.
78 Synergistic inhibition of human melanoma proliferation by combination treatment with B-Raf inhibitor BAY43-9006 and mTOR inhibitor Rapamycin. J Transl Med. 2005 Oct 28;3:39. doi: 10.1186/1479-5876-3-39.
79 GSK-3beta inhibition enhances sorafenib-induced apoptosis in melanoma cell lines. J Biol Chem. 2008 Jan 11;283(2):726-32. doi: 10.1074/jbc.M705343200. Epub 2007 Nov 8.
80 Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther. 2006 Sep;5(9):2378-87. doi: 10.1158/1535-7163.MCT-06-0235.
81 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
82 Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther. 2008 Oct;7(10):1648-62. doi: 10.4161/cbt.7.10.6623. Epub 2008 Oct 12.
83 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
84 TRIM62 silencing represses the proliferation and invasion and increases the chemosensitivity of hepatocellular carcinoma cells by affecting the NF-B pathway. Toxicol Appl Pharmacol. 2022 Jun 15;445:116035. doi: 10.1016/j.taap.2022.116035. Epub 2022 Apr 23.
85 Diospyros kaki leaves inhibit HGF/Met signaling-mediated EMT and stemness features in hepatocellular carcinoma. Food Chem Toxicol. 2020 Aug;142:111475. doi: 10.1016/j.fct.2020.111475. Epub 2020 Jun 6.
86 Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol. 2020 Sep 1;402:115117. doi: 10.1016/j.taap.2020.115117. Epub 2020 Jul 4.