General Information of Drug (ID: DMPI6Z0)

Drug Name
Zopiclone
Synonyms
Amoban; Amovane; Imovance; Imovane; Limovan; Optidorm; Rhovane; Siaten; Sopivan; Ximovan; Zileze; Zimoclone; Zimovane; Zopicalm; Zopicalma; Zopiclodura; Zopiclona; Zopiclonum; Zopitan; Zorclone; AbZ brand of zopiclone; Aliud brand of zopiclone; Alpharma brand of zopiclone; Aventis Pharma brand of zopiclone; Aventis brand of zopiclone; Azupharma brand of zopiclone; Betapharm brand of zopiclone; Ciclum brand of zopiclone; Clonmel brand of zopiclone; Dolorgeit brand of zopiclone; Gerard brand of zopiclone; Hexal brand of zopiclone; Hormosan brand of zopiclone; Italfarmaco brand of zopiclone; Merck dura brand of zopiclone; Neuraxpharm brand of zopiclone; Norton brand of zopiclone; Opus brand of zopiclone; Pinewood brand of zopiclone; Ratiopharm brand of zopiclone; Rhodiapharm brand of zopiclone; Stadapharm brand of zopiclone; TAD brand of zopiclone; Temmler brand of zopiclone; Teva brand of zopiclone; Zopiclon AL; Zopiclon AZU; Zopiclon AbZ; Zopiclon Stada; Zopiclon TAD; Zopiclon beta; Zopiclon von ct; RP 27 267; RP 27267; Z 4900; Z4900_SIGMA; Amoban (TN); Ct-Arzneimittel brand of zopiclone; Imovane (TN); Novo-zopiclone; Nu-Pharm brand of zopiclone; Nu-Zopiclone; RP-27267; Ran-zopiclone; Ratio-Zopiclone; Rhone-Poulenc Rorer brand of zopiclone; Zimovane (TN); Zopi-Puren; Zopiclon-TEVA; Zopiclon-neuraxpharm; Zopiclon-ratiopharm; Zopiclona [INN-Spanish]; Zopiclone (TN); Zopiclonum [INN-Latin]; Zopinox (TN); Zopiclone (JAN/INN); Zopiclone [BAN:INN:JAN]; Zopiclone, Imovane, Zimovane, Lunesta; [6-(5-chloropyridin-2-yl)-5-oxo-7H-pyrrolo[3,4-b]pyrazin-7-yl] 4-methylpiperazine-1-carboxylate; 1-Piperazinecarboxylic acid, 4-methyl-, 6-(5-chloro-2-pyridinyl)-6,7-dihydro-7-oxo-5H-pyrrolo(3,4-b)pyrazin-5-yl ester; 1-Piperazinecarboxylic acid, 4-methyl-, 6-(5-chloro-2-pyridinyl)-6,7-dihydro-7-oxo-5H-pyrrolo[3,4-b]pyrazin-5-yl ester; 4-Methyl-1-piperazinecarboxylic acid 6-(5-chloro-2-pyridinyl)-6,7-dihydro-7-oxo-5H-pyrrolo[3,4-b]pyrazin-5-yl ester; 4-Methyl-1-piperazinecarboxylic acid ester with 6-(5-chloro-2-pyridyl)-6,7-dihydro-7-hydroxy-5H-pyrrolo(3,4-b)pyrazin-5-one; 6-(5-Chloro-2-pyridinyl)-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazin-5-yl 4-methyl-1-piperazinecarboxylate; 6-(5-chloro-2-pyridyl)-6,7-dihydro-7-oxo-5H-pyrrolo(3,4-b)pyrazin-5-yl 4-methyl-1-piperazinecarboxylate; 6-(5-chloropyrid-2-yl)-5-(4-methylpiperazin-1-yl)carbonyloxy-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazine; 6-(5-chloropyridin-2-yl)-7-oxo-6,7-dihydro-5H-pyrrolo[3,4-b]pyrazin-5-yl 4-methylpiperazine-1-carboxylate
Indication
Disease Entry ICD 11 Status REF
Insomnia 7A00-7A0Z Approved [1], [2]
Therapeutic Class
Hypnotics and Sedatives
Drug Type
Small molecular drug
Structure
3D MOL 2D MOL
#Ro5 Violations (Lipinski): 0 Molecular Weight (mw) 388.8
Topological Polar Surface Area (xlogp) 0.5
Rotatable Bond Count (rotbonds) 3
Hydrogen Bond Donor Count (hbonddonor) 0
Hydrogen Bond Acceptor Count (hbondacc) 7
ADMET Property
Absorption
The drug is rapidly absorbed following oral administration [3]
BDDCS Class
Biopharmaceutics Drug Disposition Classification System (BDDCS) Class 1: high solubility and high permeability [4]
Clearance
The drug present in the plasma can be removed from the body at the rate of 3.3 mL/min/kg [5]
Elimination
4.5% of drug is excreted from urine in the unchanged form [4]
Half-life
The concentration or amount of drug in body reduced by one-half in 5 hours [5]
Metabolism
The drug is metabolized via the liver [3]
MRTD
The Maximum Recommended Therapeutic Dose (MRTD) of drug that ensured maximising efficacy and moderate side effect is 0.2756 micromolar/kg/day [6]
Unbound Fraction
The unbound fraction of drug in plasma is 0.2% [5]
Vd
Fluid volume that would be required to contain the amount of drug present in the body at the same concentration as in the plasma 1.3 L/kg [5]
Water Solubility
The ability of drug to dissolve in water is measured as 0.12 mg/mL [4]
Chemical Identifiers
Formula
C17H17ClN6O3
IUPAC Name
[6-(5-chloropyridin-2-yl)-5-oxo-7H-pyrrolo[3,4-b]pyrazin-7-yl] 4-methylpiperazine-1-carboxylate
Canonical SMILES
CN1CCN(CC1)C(=O)OC2C3=NC=CN=C3C(=O)N2C4=NC=C(C=C4)Cl
InChI
InChI=1S/C17H17ClN6O3/c1-22-6-8-23(9-7-22)17(26)27-16-14-13(19-4-5-20-14)15(25)24(16)12-3-2-11(18)10-21-12/h2-5,10,16H,6-9H2,1H3
InChIKey
GBBSUAFBMRNDJC-UHFFFAOYSA-N
Cross-matching ID
PubChem CID
5735
ChEBI ID
CHEBI:32315
CAS Number
43200-80-2
DrugBank ID
DB01198
TTD ID
D0ZB7K
INTEDE ID
DR1738

Molecular Interaction Atlas of This Drug


Drug Therapeutic Target (DTT)
DTT Name DTT ID UniProt ID MOA REF
Glutamate receptor AMPA (GRIA) TTAN6JD NOUNIPROTAC Binder [7], [8], [9]

Drug-Metabolizing Enzyme (DME)
DME Name DME ID UniProt ID MOA REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Substrate [10]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Substrate [10]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Substrate [11]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Substrate [11]
Prostaglandin G/H synthase 1 (COX-1) DE073H6 PGH1_HUMAN Substrate [12]
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This Drug

Molecular Expression Atlas of This Drug

The Studied Disease Insomnia
ICD Disease Classification 7A00-7A0Z
Molecule Name Molecule Type Gene Name p-value Fold-Change Z-score
Glutamate receptor AMPA (GRIA) DTT NO-GeName 1.79E-04 -0.69 -0.58
Cytochrome P450 2E1 (CYP2E1) DME CYP2E1 1.87E-04 -1.20E-01 -3.22E-01
Cytochrome P450 2C8 (CYP2C8) DME CYP2C8 1.82E-04 -1.35E-01 -5.84E-01
Cytochrome P450 2C9 (CYP2C9) DME CYP2C9 1.90E-01 -9.81E-03 -5.96E-02
Cytochrome P450 3A4 (CYP3A4) DME CYP3A4 1.04E-02 6.29E-02 3.54E-01
Prostaglandin G/H synthase 1 (COX-1) DME PTGS1 3.97E-03 1.56E-01 4.33E-01
Molecular Expression Atlas (MEA) Jump to Detail Molecular Expression Atlas of This Drug

References

1 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7430).
2 FDA Approved Drug Products from FDA Official Website. 2009. Application Number: (NDA) 021476.
3 FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014 Sep 1;20(17):4436-41.
4 BDDCS applied to over 900 drugs
5 Trend Analysis of a Database of Intravenous Pharmacokinetic Parameters in Humans for 1352 Drug Compounds
6 Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose
7 Eszopiclone: its use in the treatment of insomnia. Neuropsychiatr Dis Treat. 2007 Aug;3(4):441-453.
8 The pharmacology and mechanisms of action of new generation, non-benzodiazepine hypnotic agents. CNS Drugs. 2004;18 Suppl 1:9-15; discussion 41, 43-5.
9 Knockouts model the 100 best-selling drugs--will they model the next 100 Nat Rev Drug Discov. 2003 Jan;2(1):38-51.
10 Eszopiclone, a nonbenzodiazepine sedative-hypnotic agent for the treatment of transient and chronic insomnia. Clin Ther. 2006 Apr;28(4):491-516.
11 Cytochrome P-450 3A4 and 2C8 are involved in zopiclone metabolism. Drug Metab Dispos. 1999 Sep;27(9):1068-73.
12 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
13 Expression levels and activation of a PXR variant are directly related to drug resistance in osteosarcoma cell lines. Cancer. 2007 Mar 1;109(5):957-65.
14 Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica. 1998 Jun;28(6):539-47.
15 Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004 Sep;310(3):1062-75.
16 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
17 Metabolic interactions between acetaminophen (paracetamol) and two flavonoids, luteolin and quercetin, through in-vitro inhibition studies. J Pharm Pharmacol. 2017 Dec;69(12):1762-1772.
18 Potent mechanism-based inhibition of CYP3A4 by imatinib explains its liability to interact with CYP3A4 substrates. Br J Pharmacol. 2012 Apr;165(8):2787-98.
19 Effects of morin on the pharmacokinetics of etoposide in rats. Biopharm Drug Dispos. 2007 Apr;28(3):151-6.
20 The metabolism of zidovudine by human liver microsomes in vitro: formation of 3'-amino-3'-deoxythymidine. Biochem Pharmacol. 1994 Jul 19;48(2):267-76.
21 Chronic ethanol feeding and folate deficiency activate hepatic endoplasmic reticulum stress pathway in micropigs. Am J Physiol Gastrointest Liver Physiol. 2005 Jul;289(1):G54-63.
22 Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003 May;63(5):1687-96.
23 Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s. Carcinogenesis. 1994 Jan;15(1):5-9.
24 Acetaminophen induced acute liver failure via oxidative stress and JNK activation: protective role of taurine by the suppression of cytochrome P450 2E1. Free Radic Res. 2010 Mar;44(3):340-55.
25 A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. J Pharmacol Exp Ther. 1998 Sep;286(3):1294-300.
26 The influence of metabolic gene polymorphisms on urinary 1-hydroxypyrene concentrations in Chinese coke oven workers. Sci Total Environ. 2007 Aug 1;381(1-3):38-46.
27 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
28 Novel metabolic pathway of estrone and 17beta-estradiol catalyzed by cytochrome P-450. Drug Metab Dispos. 2000 Feb;28(2):110-2.
29 Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Biochem Pharmacol. 2002 Oct 1;64(7):1151-6.
30 CYP2E1 and clinical features in alcoholics. Neuropsychobiology. 2003;47(2):86-9.
31 Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab Dispos. 2000 Dec;28(12):1457-63.
32 Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol Rev. 2016 Jan;68(1):168-241.
33 Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics. 2003 Sep;13(9):565-75.
34 Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants. Biochemistry. 2004 Dec 14;43(49):15379-92.
35 Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011 Nov;68(5):1111-8.
36 PharmGKB summary: mycophenolic acid pathway. Pharmacogenet Genomics. 2014 Jan;24(1):73-9.
37 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
38 Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997 Oct 1;346(1):161-9.
39 Tamoxifen inhibits cytochrome P450 2C9 activity in breast cancer patients. J Chemother. 2006 Aug;18(4):421-4.
40 Characterization of the oxidative metabolites of 17beta-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology. 2003 Aug;144(8):3382-98.
41 Drug-drug interactions with imatinib: an observational study. Medicine (Baltimore). 2016 Oct;95(40):e5076.
42 Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. 2000 Feb;28(2):125-30.
43 New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part I. Curr Drug Metab. 2009 Dec;10(10):1075-126.
44 A potential role for the estrogen-metabolizing cytochrome P450 enzymes in human breast carcinogenesis. Breast Cancer Res Treat. 2003 Dec;82(3):191-7.
45 A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998 May;32(5):554-63.
46 Peroxidative free radical formation and O-demethylation of etoposide(VP-16) and teniposide(VM-26). Biochem Biophys Res Commun. 1986 Feb 26;135(1):215-20.
47 Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K+ channel, TREK-1. Br J Pharmacol. 2007 Nov;152(6):939-45.
48 Nat Rev Drug Discov. 2013 Feb;12(2):87-90.
49 Effects of sevoflurane on carrageenan- and fentanyl-induced pain hypersensitivity in Sprague-Dawley rats. Can J Anaesth. 2009 Feb;56(2):126-35.
50 Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors. Anesthesiology. 2000 Oct;93(4):1075-84.
51 Transmembrane residues define the action of isoflurane at the GABAA receptor alpha-3 subunit. Brain Res. 2005 Jan 25;1032(1-2):30-5.
52 Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups. Psychopharmacology (Berl). 2009 May;204(1):61-71.
53 GABA(A) receptor ligands and their therapeutic potentials. Curr Top Med Chem. 2002 Aug;2(8):817-32.
54 Pharmacologic management of Alzheimer disease, Part II: Antioxidants, antihypertensives, and ergoloid derivatives. Ann Pharmacother. 1999 Feb;33(2):188-97.
55 Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des. 2006;12(28):3665-79.
56 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015