General Information of Drug Off-Target (DOT) (ID: OT0KS4J7)

DOT Name E3 ubiquitin-protein ligase TRIM33 (TRIM33)
Synonyms
EC 2.3.2.27; Ectodermin homolog; RET-fused gene 7 protein; Protein Rfg7; RING-type E3 ubiquitin transferase TRIM33; Transcription intermediary factor 1-gamma; TIF1-gamma; Tripartite motif-containing protein 33
Gene Name TRIM33
Related Disease
Hepatocellular carcinoma ( )
Autoimmune disease ( )
Chagas disease ( )
Childhood myelodysplastic syndrome ( )
Classic Hodgkin lymphoma ( )
Clear cell renal carcinoma ( )
Head-neck squamous cell carcinoma ( )
Myelodysplastic syndrome ( )
Myositis disease ( )
Non-small-cell lung cancer ( )
Pancreatic tumour ( )
Polymyositis ( )
Prostate carcinoma ( )
Renal cell carcinoma ( )
Small lymphocytic lymphoma ( )
Thrombocytopenia ( )
Thyroid gland papillary carcinoma ( )
Autism ( )
Bacterial infection ( )
Acute lymphocytic leukaemia ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic myelomonocytic leukaemia ( )
Chronic myelomonocytic leukemia ( )
Idiopathic inflammatory myopathy ( )
Lymphoid leukemia ( )
Myeloproliferative neoplasm ( )
Myotonic dystrophy type 1 ( )
Type-1/2 diabetes ( )
UniProt ID
TRI33_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3U5M; 3U5N; 3U5O; 3U5P; 5MR8; 7ZDD; 8BD8; 8BD9; 8BDY
EC Number
2.3.2.27
Pfam ID
PF00439 ; PF00628 ; PF00643
Sequence
MAENKGGGEAESGGGGSGSAPVTAGAAGPAAQEAEPPLTAVLVEEEEEEGGRAGAEGGAA
GPDDGGVAAASSGSAQAASSPAASVGTGVAGGAVSTPAPAPASAPAPGPSAGPPPGPPAS
LLDTCAVCQQSLQSRREAEPKLLPCLHSFCLRCLPEPERQLSVPIPGGSNGDIQQVGVIR
CPVCRQECRQIDLVDNYFVKDTSEAPSSSDEKSEQVCTSCEDNASAVGFCVECGEWLCKT
CIEAHQRVKFTKDHLIRKKEDVSESVGASGQRPVFCPVHKQEQLKLFCETCDRLTCRDCQ
LLEHKEHRYQFLEEAFQNQKGAIENLLAKLLEKKNYVHFAATQVQNRIKEVNETNKRVEQ
EIKVAIFTLINEINKKGKSLLQQLENVTKERQMKLLQQQNDITGLSRQVKHVMNFTNWAI
ASGSSTALLYSKRLITFQLRHILKARCDPVPAANGAIRFHCDPTFWAKNVVNLGNLVIES
KPAPGYTPNVVVGQVPPGTNHISKTPGQINLAQLRLQHMQQQVYAQKHQQLQQMRMQQPP
APVPTTTTTTQQHPRQAAPQMLQQQPPRLISVQTMQRGNMNCGAFQAHQMRLAQNAARIP
GIPRHSGPQYSMMQPHLQRQHSNPGHAGPFPVVSVHNTTINPTSPTTATMANANRGPTSP
SVTAIELIPSVTNPENLPSLPDIPPIQLEDAGSSSLDNLLSRYISGSHLPPQPTSTMNPS
PGPSALSPGSSGLSNSHTPVRPPSTSSTGSRGSCGSSGRTAEKTSLSFKSDQVKVKQEPG
TEDEICSFSGGVKQEKTEDGRRSACMLSSPESSLTPPLSTNLHLESELDALASLENHVKI
EPADMNESCKQSGLSSLVNGKSPIRSLMHRSARIGGDGNNKDDDPNEDWCAVCQNGGDLL
CCEKCPKVFHLTCHVPTLLSFPSGDWICTFCRDIGKPEVEYDCDNLQHSKKGKTAQGLSP
VDQRKCERLLLYLYCHELSIEFQEPVPASIPNYYKIIKKPMDLSTVKKKLQKKHSQHYQI
PDDFVADVRLIFKNCERFNEMMKVVQVYADTQEINLKADSEVAQAGKAVALYFEDKLTEI
YSDRTFAPLPEFEQEEDDGEVTEDSDEDFIQPRRKRLKSDERPVHIK
Function
Acts as an E3 ubiquitin-protein ligase. Promotes SMAD4 ubiquitination, nuclear exclusion and degradation via the ubiquitin proteasome pathway. According to PubMed:16751102, does not promote a decrease in the level of endogenous SMAD4. May act as a transcriptional repressor. Inhibits the transcriptional response to TGF-beta/BMP signaling cascade. Plays a role in the control of cell proliferation. Its association with SMAD2 and SMAD3 stimulates erythroid differentiation of hematopoietic stem/progenitor. Monoubiquitinates SMAD4 and acts as an inhibitor of SMAD4-dependent TGF-beta/BMP signaling cascade (Monoubiquitination of SMAD4 hampers its ability to form a stable complex with activated SMAD2/3 resulting in inhibition of TGF-beta/BMP signaling cascade).
Tissue Specificity
Expressed in stem cells at the bottom of the crypts of the colon (at protein level). Expressed in colon adenomas and adenocarcinomas (at protein level). Expressed in brain, lung, liver, spleen, thymus, prostate, kidney, testis, heart, placenta, pancreas, small intestine, ovary, colon, skeletal muscle and hematopoietic progenitors.
Reactome Pathway
Germ layer formation at gastrulation (R-HSA-9754189 )
Downregulation of SMAD2/3 (R-HSA-2173795 )

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Definitive Altered Expression [1]
Autoimmune disease DISORMTM Strong Biomarker [2]
Chagas disease DIS8KNVF Strong Biomarker [3]
Childhood myelodysplastic syndrome DISMN80I Strong Biomarker [4]
Classic Hodgkin lymphoma DISV1LU6 Strong Biomarker [5]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [6]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [7]
Myelodysplastic syndrome DISYHNUI Strong Biomarker [4]
Myositis disease DISCIXF0 Strong Biomarker [8]
Non-small-cell lung cancer DIS5Y6R9 Strong Biomarker [9]
Pancreatic tumour DIS3U0LK Strong Biomarker [10]
Polymyositis DIS5DHFP Strong Altered Expression [8]
Prostate carcinoma DISMJPLE Strong Altered Expression [11]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [6]
Small lymphocytic lymphoma DIS30POX Strong Altered Expression [12]
Thrombocytopenia DISU61YW Strong Biomarker [3]
Thyroid gland papillary carcinoma DIS48YMM Strong Altered Expression [13]
Autism DISV4V1Z moderate Biomarker [14]
Bacterial infection DIS5QJ9S moderate Biomarker [15]
Acute lymphocytic leukaemia DISPX75S Limited Biomarker [16]
Breast cancer DIS7DPX1 Limited Altered Expression [17]
Breast carcinoma DIS2UE88 Limited Altered Expression [17]
Chronic myelomonocytic leukaemia DISDN5P7 Limited Biomarker [18]
Chronic myelomonocytic leukemia DISIL8UR Limited Biomarker [18]
Idiopathic inflammatory myopathy DISGB1BZ Limited Altered Expression [19]
Lymphoid leukemia DIS65TYQ Limited Biomarker [16]
Myeloproliferative neoplasm DIS5KAPA Limited Genetic Variation [18]
Myotonic dystrophy type 1 DISJC0OX Limited Altered Expression [19]
Type-1/2 diabetes DISIUHAP Limited Altered Expression [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
(+)-JQ1 DM1CZSJ Phase 1 E3 ubiquitin-protein ligase TRIM33 (TRIM33) decreases the response to substance of (+)-JQ1. [33]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [20]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [26]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [29]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [30]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [21]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [22]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [23]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [24]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [25]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [22]
Fenretinide DMRD5SP Phase 3 Fenretinide increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [27]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [28]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of E3 ubiquitin-protein ligase TRIM33 (TRIM33). [32]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression.Mol Cancer. 2019 Jun 1;18(1):105. doi: 10.1186/s12943-019-1031-1.
2 Trim33 mediates the proinflammatory function of Th17 cells.J Exp Med. 2018 Jul 2;215(7):1853-1868. doi: 10.1084/jem.20170779. Epub 2018 Jun 21.
3 Purinergic ecto-enzymes participate in the thromboregulation in acute in mice infection by Trypanosoma cruzi.Mol Cell Biochem. 2017 Aug;432(1-2):1-6. doi: 10.1007/s11010-017-2992-2. Epub 2017 Mar 11.
4 Anti-TIF1gamma Antibody-Positive Dermatomyositis Associated with Myelodysplastic Syndrome: Response to Treatment.Cureus. 2019 Sep 26;11(9):e5775. doi: 10.7759/cureus.5775.
5 Myositis-specific autoantibodies and their association with malignancy in Italian patients with polymyositis and dermatomyositis.Clin Rheumatol. 2017 Feb;36(2):469-475. doi: 10.1007/s10067-016-3453-0. Epub 2016 Oct 20.
6 Valproic acid inhibits epithelialmesenchymal transition in renal cell carcinoma by decreasing SMAD4 expression.Mol Med Rep. 2017 Nov;16(5):6190-6199. doi: 10.3892/mmr.2017.7394. Epub 2017 Aug 29.
7 Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: a rational approach to preclinical model selection.Mol Cancer Res. 2014 Apr;12(4):571-82. doi: 10.1158/1541-7786.MCR-13-0396. Epub 2014 Jan 14.
8 Anti-transcriptional intermediary factor 1 gamma antibodies in cancer-associated myositis: a longitudinal study.Clin Exp Rheumatol. 2020 Jan-Feb;38(1):67-73. Epub 2019 Jul 30.
9 Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF--induced epithelial-mesenchymal transition and metastasis by controlling TIF1 in non-small cell lung cancer.Mol Cancer. 2018 Sep 27;17(1):140. doi: 10.1186/s12943-018-0889-7.
10 Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas.PLoS Genet. 2009 Jul;5(7):e1000575. doi: 10.1371/journal.pgen.1000575. Epub 2009 Jul 24.
11 Up-regulation of TIF1 by valproic acid inhibits the epithelial mesenchymal transition in prostate carcinoma through TGF-/Smad signaling pathway.Eur J Pharmacol. 2019 Oct 5;860:172551. doi: 10.1016/j.ejphar.2019.172551. Epub 2019 Jul 16.
12 Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia.Crit Rev Oncol Hematol. 2018 Jun;126:24-31. doi: 10.1016/j.critrevonc.2018.03.022. Epub 2018 Mar 29.
13 Novel TG-FGFR1 and TRIM33-NTRK1 transcript fusions in papillary thyroid carcinoma.Genes Chromosomes Cancer. 2019 Aug;58(8):558-566. doi: 10.1002/gcc.22737. Epub 2019 Feb 18.
14 Common genetic variants on 1p13.2 associate with risk of autism.Mol Psychiatry. 2014 Nov;19(11):1212-9. doi: 10.1038/mp.2013.146. Epub 2013 Nov 5.
15 Trim33 is essential for macrophage and neutrophil mobilization to developmental or inflammatory cues.J Cell Sci. 2017 Sep 1;130(17):2797-2807. doi: 10.1242/jcs.203471. Epub 2017 Jul 19.
16 The transcriptional cofactor TRIM33 prevents apoptosis in B lymphoblastic leukemia by deactivating a single enhancer.Elife. 2015 Apr 28;4:e06377. doi: 10.7554/eLife.06377.
17 Prognostic role of Tif1 expression and circulating tumor cells in patients with breast cancer.Mol Med Rep. 2019 May;19(5):3685-3695. doi: 10.3892/mmr.2019.10033. Epub 2019 Mar 14.
18 Transcription intermediary factor 1 is a tumor suppressor in mouse and human chronic myelomonocytic leukemia.J Clin Invest. 2011 Jun;121(6):2361-70. doi: 10.1172/JCI45213. Epub 2011 May 2.
19 Anti-TIF1 antibody and the expression of TIF1 in idiopathic inflammatory myopathies.Int J Rheum Dis. 2019 Feb;22(2):314-320. doi: 10.1111/1756-185X.13424. Epub 2018 Nov 5.
20 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
21 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
22 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
23 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
24 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
25 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
26 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
27 The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res. 2005 Jun 15;11(12):4610-9.
28 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
29 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
30 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
31 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
32 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
33 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.