General Information of Drug Off-Target (DOT) (ID: OT3PLG38)

DOT Name Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3)
Synonyms BTB/POZ domain-containing protein 11
Gene Name ABTB3
UniProt ID
ABTB3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00023 ; PF12796 ; PF00651
Sequence
MARRGKKPVVRTLEDLTLDSGYGGAADSVRSSNLSLCCSDSHPASPYGGSCWPPLADSMH
SRHNSFDTVNTALVEDSEGLDCAGQHCSRLLPDLDEVPWTLQELEALLLRSRDPRAGPAV
PGGLPKDALAKLSTLVSRALVRIAKEAQRLSLRFAKCTKYEIQSAMEIVLSWGLAAHCTA
AALAALSLYNMSSAGGDRLGRGKSARCGLTFSVGRVYRWMVDSRVALRIHEHAAIYLTAC
MESLFRDIYSRVVASGVPRSCSGPGSGSGSGPGPSSGPGAAPAADKEREAPGGGAASGGA
CSAASSASGGSSCCAPPAAAAAAVPPAAAANHHHHHHHALHEAPKFTVETLEHTVNNDSE
IWGLLQPYQHLICGKNASGVLCLPDSLNLHRDPQRSNKPGELPMFSQSELRTIEQSLLAT
RVGSIAELSDLVSRAMHHLQPLNAKHHGNGTPLHHKQGALYWEPEALYTLCYFMHCPQME
WENPNVEPSKVNLQVERPFLVLPPLMEWIRVAVAHAGHRRSFSMDSDDVRQAARLLLPGV
DCEPRQLRADDCFCASRKLDAVAIEAKFKQDLGFRMLNCGRTDLVKQAVSLLGPDGINTM
SEQGMTPLMYACVRGDEAMVQMLLDAGADLNVEVVSTPHKYPSVHPETRHWTALTFAVLH
GHIPVVQLLLDAGAKVEGSVEHGEENYSETPLQLAAAVGNFELVSLLLERGADPLIGTMY
RNGISTTPQGDMNSFSQAAAHGHRNVFRKLLAQPEKEKSDILSLEEILAEGTDLAETAPP
PLCASRNSKAKLRALREAMYHSAEHGYVDVTIDIRSIGVPWTLHTWLESLRIAFQQHRRP
LIQCLLKEFKTIQEEEYTEELVTQGLPLMFEILKASKNEVISQQLCVIFTHCYGPYPIPK
LTEIKRKQTSRLDPHFLNNKEMSDVTFLVEGRPFYAHKVLLFTASPRFKALLSSKPTNDG
TCIEIGYVKYSIFQLVMQYLYYGGPESLLIKNNEIMELLSAAKFFQLEALQRHCEIICAK
SINTDNCVDIYNHAKFLGVTELSAYCEGYFLKNMMVLIENEAFKQLLYDKNGEGTGQDVL
QDLQRTLAIRIQSIHLSSSKGSVV

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [7]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [8]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [10]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [11]
Nicotine DMWX5CO Approved Nicotine increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ankyrin repeat and BTB/POZ domain-containing protein 3 (ABTB3). [5]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
12 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
13 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.