General Information of Drug Off-Target (DOT) (ID: OT589JA2)

DOT Name cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A)
Synonyms Tissue-specific extinguisher 1; TSE1
Gene Name PRKAR1A
Related Disease
Acrodysostosis 1 with or without hormone resistance ( )
Carney complex, type 1 ( )
Obsolete acrodysostosis with multiple hormone resistance ( )
Pigmented nodular adrenocortical disease, primary, 1 ( )
Acrodysostosis ( )
Carney complex ( )
Familial atrial myxoma ( )
Primary pigmented nodular adrenocortical disease ( )
UniProt ID
KAP0_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5KJX; 5KJY; 5KJZ
Pfam ID
PF00027 ; PF02197
Sequence
MESGSTAASEEARSLRECELYVQKHNIQALLKDSIVQLCTARPERPMAFLREYFERLEKE
EAKQIQNLQKAGTRTDSREDEISPPPPNPVVKGRRRRGAISAEVYTEEDAASYVRKVIPK
DYKTMAALAKAIEKNVLFSHLDDNERSDIFDAMFSVSFIAGETVIQQGDEGDNFYVIDQG
ETDVYVNNEWATSVGEGGSFGELALIYGTPRAATVKAKTNVKLWGIDRDSYRRILMGSTL
RKRKMYEEFLSKVSILESLDKWERLTVADALEPVQFEDGQKIVVQGEPGDEFFIILEGSA
AVLQRRSENEEFVEVGRLGPSDYFGEIALLMNRPRAATVVARGPLKCVKLDRPRFERVLG
PCSDILKRNIQQYNSFVSLSV
Function Regulatory subunit of the cAMP-dependent protein kinases involved in cAMP signaling in cells.
Tissue Specificity Four types of regulatory chains are found: I-alpha, I-beta, II-alpha, and II-beta. Their expression varies among tissues and is in some cases constitutive and in others inducible.
KEGG Pathway
Insulin sig.ling pathway (hsa04910 )
Reactome Pathway
PKA activation in glucagon signalling (R-HSA-164378 )
DARPP-32 events (R-HSA-180024 )
Glucagon-like Peptide-1 (GLP1) regulates insulin secretion (R-HSA-381676 )
Vasopressin regulates renal water homeostasis via Aquaporins (R-HSA-432040 )
CREB1 phosphorylation through the activation of Adenylate Cyclase (R-HSA-442720 )
Hedgehog 'off' state (R-HSA-5610787 )
GPER1 signaling (R-HSA-9634597 )
ADORA2B mediated anti-inflammatory cytokines production (R-HSA-9660821 )
FCGR3A-mediated IL10 synthesis (R-HSA-9664323 )
ALK mutants bind TKIs (R-HSA-9700645 )
Signaling by ALK fusions and activated point mutants (R-HSA-9725370 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
PKA activation (R-HSA-163615 )

Molecular Interaction Atlas (MIA) of This DOT

8 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acrodysostosis 1 with or without hormone resistance DISMLLJ7 Definitive Autosomal dominant [1]
Carney complex, type 1 DISS5310 Definitive Autosomal dominant [2]
Obsolete acrodysostosis with multiple hormone resistance DIS6U70H Definitive Autosomal dominant [1]
Pigmented nodular adrenocortical disease, primary, 1 DISQQ9QA Strong Autosomal dominant [3]
Acrodysostosis DISSV94Z Supportive Autosomal dominant [1]
Carney complex DISVL3IP Supportive Autosomal dominant [4]
Familial atrial myxoma DIS7K7LR Supportive Autosomal dominant [5]
Primary pigmented nodular adrenocortical disease DISXCNDR Supportive Autosomal dominant [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [7]
Estradiol DMUNTE3 Approved Estradiol increases the phosphorylation of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [13]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [20]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [20]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [8]
Tretinoin DM49DUI Approved Tretinoin increases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [9]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [10]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [11]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [14]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [15]
Mitotane DMU1GX0 Approved Mitotane decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [16]
Rigosertib DMOSTXF Phase 3 Rigosertib increases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [22]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [23]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of cAMP-dependent protein kinase type I-alpha regulatory subunit (PRKAR1A). [18]
------------------------------------------------------------------------------------

References

1 Recurrent PRKAR1A mutation in acrodysostosis with hormone resistance. N Engl J Med. 2011 Jun 9;364(23):2218-26. doi: 10.1056/NEJMoa1012717.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Mutations of the PRKAR1A gene in Cushing's syndrome due to sporadic primary pigmented nodular adrenocortical disease. J Clin Endocrinol Metab. 2002 Sep;87(9):4324-9. doi: 10.1210/jc.2002-020592.
4 Carney Complex. 2003 Feb 5 [updated 2023 Sep 21]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
5 Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet. 2000 Sep;26(1):89-92. doi: 10.1038/79238.
6 Primary pigmented nodular adrenocortical disease: the original 4 cases revisited after 30 years for follow-up, new investigations, and molecular genetic findings. Am J Surg Pathol. 2014 Sep;38(9):1266-73. doi: 10.1097/PAS.0000000000000220.
7 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
8 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
9 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
10 Expression Profiling of Human Pluripotent Stem Cell-Derived Cardiomyocytes Exposed to Doxorubicin-Integration and Visualization of Multi-Omics Data. Toxicol Sci. 2018 May 1;163(1):182-195. doi: 10.1093/toxsci/kfy012.
11 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
12 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
13 The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures. Toxicol Sci. 2016 Jun;151(2):434-46. doi: 10.1093/toxsci/kfw057. Epub 2016 Mar 29.
14 Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012 Jun 1;261(2):204-16.
15 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
16 The effect of mitotane on viability, steroidogenesis and gene expression in NCI295R adrenocortical cells. Mol Med Rep. 2013 Mar;7(3):893-900.
17 ON 01910.Na is selectively cytotoxic for chronic lymphocytic leukemia cells through a dual mechanism of action involving PI3K/AKT inhibition and induction of oxidative stress. Clin Cancer Res. 2012 Apr 1;18(7):1979-91. doi: 10.1158/1078-0432.CCR-11-2113. Epub 2012 Feb 20.
18 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
22 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
23 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
24 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.