General Information of Drug Off-Target (DOT) (ID: OT96UIP1)

DOT Name Acetyl-CoA carboxylase 2 (ACACB)
Synonyms EC 6.4.1.2; ACC-beta
Gene Name ACACB
Related Disease
Isolated cleft palate ( )
UniProt ID
ACACB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DN8; 2HJW; 2KCC; 3FF6; 3GID; 3GLK; 3JRW; 3JRX; 3TDC; 4HQ6; 5KKN
EC Number
6.4.1.2
Pfam ID
PF08326 ; PF21385 ; PF02785 ; PF00289 ; PF00364 ; PF01039 ; PF02786
Sequence
MVLLLCLSCLIFSCLTFSWLKIWGKMTDSKPITKSKSEANLIPSQEPFPASDNSGETPQR
NGEGHTLPKTPSQAEPASHKGPKDAGRRRNSLPPSHQKPPRNPLSSSDAAPSPELQANGT
GTQGLEATDTNGLSSSARPQGQQAGSPSKEDKKQANIKRQLMTNFILGSFDDYSSDEDSV
AGSSRESTRKGSRASLGALSLEAYLTTGEAETRVPTMRPSMSGLHLVKRGREHKKLDLHR
DFTVASPAEFVTRFGGDRVIEKVLIANNGIAAVKCMRSIRRWAYEMFRNERAIRFVVMVT
PEDLKANAEYIKMADHYVPVPGGPNNNNYANVELIVDIAKRIPVQAVWAGWGHASENPKL
PELLCKNGVAFLGPPSEAMWALGDKIASTVVAQTLQVPTLPWSGSGLTVEWTEDDLQQGK
RISVPEDVYDKGCVKDVDEGLEAAERIGFPLMIKASEGGGGKGIRKAESAEDFPILFRQV
QSEIPGSPIFLMKLAQHARHLEVQILADQYGNAVSLFGRDCSIQRRHQKIVEEAPATIAP
LAIFEFMEQCAIRLAKTVGYVSAGTVEYLYSQDGSFHFLELNPRLQVEHPCTEMIADVNL
PAAQLQIAMGVPLHRLKDIRLLYGESPWGVTPISFETPSNPPLARGHVIAARITSENPDE
GFKPSSGTVQELNFRSSKNVWGYFSVAATGGLHEFADSQFGHCFSWGENREEAISNMVVA
LKELSIRGDFRTTVEYLINLLETESFQNNDIDTGWLDYLIAEKVQAEKPDIMLGVVCGAL
NVADAMFRTCMTDFLHSLERGQVLPADSLLNLVDVELIYGGVKYILKVARQSLTMFVLIM
NGCHIEIDAHRLNDGGLLLSYNGNSYTTYMKEEVDSYRITIGNKTCVFEKENDPTVLRSP
SAGKLTQYTVEDGGHVEAGSSYAEMEVMKMIMTLNVQERGRVKYIKRPGAVLEAGCVVAR
LELDDPSKVHPAEPFTGELPAQQTLPILGEKLHQVFHSVLENLTNVMSGFCLPEPVFSIK
LKEWVQKLMMTLRHPSLPLLELQEIMTSVAGRIPAPVEKSVRRVMAQYASNITSVLCQFP
SQQIATILDCHAATLQRKADREVFFINTQSIVQLVQRYRSGIRGYMKTVVLDLLRRYLRV
EHHFQQAHYDKCVINLREQFKPDMSQVLDCIFSHAQVAKKNQLVIMLIDELCGPDPSLSD
ELISILNELTQLSKSEHCKVALRARQILIASHLPSYELRHNQVESIFLSAIDMYGHQFCP
ENLKKLILSETTIFDVLPTFFYHANKVVCMASLEVYVRRGYIAYELNSLQHRQLPDGTCV
VEFQFMLPSSHPNRMTVPISITNPDLLRHSTELFMDSGFSPLCQRMGAMVAFRRFEDFTR
NFDEVISCFANVPKDTPLFSEARTSLYSEDDCKSLREEPIHILNVSIQCADHLEDEALVP
ILRTFVQSKKNILVDYGLRRITFLIAQEKEFPKFFTFRARDEFAEDRIYRHLEPALAFQL
ELNRMRNFDLTAVPCANHKMHLYLGAAKVKEGVEVTDHRFFIRAIIRHSDLITKEASFEY
LQNEGERLLLEAMDELEVAFNNTSVRTDCNHIFLNFVPTVIMDPFKIEESVRYMVMRYGS
RLWKLRVLQAEVKINIRQTTTGSAVPIRLFITNESGYYLDISLYKEVTDSRSGNIMFHSF
GNKQGPQHGMLINTPYVTKDLLQAKRFQAQTLGTTYIYDFPEMFRQALFKLWGSPDKYPK
DILTYTELVLDSQGQLVEMNRLPGGNEVGMVAFKMRFKTQEYPEGRDVIVIGNDITFRIG
SFGPGEDLLYLRASEMARAEGIPKIYVAANSGARIGMAEEIKHMFHVAWVDPEDPHKGFK
YLYLTPQDYTRISSLNSVHCKHIEEGGESRYMITDIIGKDDGLGVENLRGSGMIAGESSL
AYEEIVTISLVTCRAIGIGAYLVRLGQRVIQVENSHIILTGASALNKVLGREVYTSNNQL
GGVQIMHYNGVSHITVPDDFEGVYTILEWLSYMPKDNHSPVPIITPTDPIDREIEFLPSR
APYDPRWMLAGRPHPTLKGTWQSGFFDHGSFKEIMAPWAQTVVTGRARLGGIPVGVIAVE
TRTVEVAVPADPANLDSEAKIIQQAGQVWFPDSAYKTAQAVKDFNREKLPLMIFANWRGF
SGGMKDMYDQVLKFGAYIVDGLRQYKQPILIYIPPYAELRGGSWVVIDATINPLCIEMYA
DKESRGGVLEPEGTVEIKFRKKDLIKSMRRIDPAYKKLMEQLGEPDLSDKDRKDLEGRLK
AREDLLLPIYHQVAVQFADFHDTPGRMLEKGVISDILEWKTARTFLYWRLRRLLLEDQVK
QEILQASGELSHVHIQSMLRRWFVETEGAVKAYLWDNNQVVVQWLEQHWQAGDGPRSTIR
ENITYLKHDSVLKTIRGLVEENPEVAVDCVIYLSQHISPAERAQVVHLLSTMDSPAST
Function
Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism. Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation. Together with its cytosolic isozyme ACACA, which is involved in de novo fatty acid biosynthesis, promotes lipid storage.
Tissue Specificity
Widely expressed with highest levels in heart, skeletal muscle, liver, adipose tissue, mammary gland, adrenal gland and colon . Isoform 3 is expressed in skeletal muscle, adipose tissue and liver (at protein level) . Isoform 3 is detected at high levels in adipose tissue with lower levels in heart, liver, skeletal muscle and testis .
KEGG Pathway
Fatty acid biosynthesis (hsa00061 )
Pyruvate metabolism (hsa00620 )
Propanoate metabolism (hsa00640 )
Metabolic pathways (hsa01100 )
AMPK sig.ling pathway (hsa04152 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Alcoholic liver disease (hsa04936 )
Reactome Pathway
Biotin transport and metabolism (R-HSA-196780 )
Carnitine metabolism (R-HSA-200425 )
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
ChREBP activates metabolic gene expression (R-HSA-163765 )
BioCyc Pathway
MetaCyc:HS01211-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Isolated cleft palate DISV80CD Limited Unknown [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Sodium lauryl sulfate DMLJ634 Approved Acetyl-CoA carboxylase 2 (ACACB) affects the response to substance of Sodium lauryl sulfate. [23]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [8]
Testosterone DM7HUNW Approved Testosterone increases the expression of Acetyl-CoA carboxylase 2 (ACACB). [9]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [10]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Acetyl-CoA carboxylase 2 (ACACB). [11]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Acetyl-CoA carboxylase 2 (ACACB). [12]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [13]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of Acetyl-CoA carboxylase 2 (ACACB). [14]
Fructose DM43AN2 Approved Fructose decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [15]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [17]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Acetyl-CoA carboxylase 2 (ACACB). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Acetyl-CoA carboxylase 2 (ACACB). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Acetyl-CoA carboxylase 2 (ACACB). [7]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the phosphorylation of Acetyl-CoA carboxylase 2 (ACACB). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Acetyl-CoA carboxylase 2 (ACACB). [20]
D-glucose DMMG2TO Investigative D-glucose decreases the phosphorylation of Acetyl-CoA carboxylase 2 (ACACB). [22]
------------------------------------------------------------------------------------

References

1 Candidate Genes for Nonsyndromic Cleft Palate Detected by Exome Sequencing. J Dent Res. 2017 Oct;96(11):1314-1321. doi: 10.1177/0022034517722761. Epub 2017 Aug 2.
2 Integrated 'omics analysis reveals new drug-induced mitochondrial perturbations in human hepatocytes. Toxicol Lett. 2018 Jun 1;289:1-13.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
11 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
12 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
13 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
14 Adipocyte differentiation, mitochondrial gene expression and fat distribution: differences between zidovudine and tenofovir after 6 months. Antivir Ther. 2009;14(8):1089-100. doi: 10.3851/IMP1457.
15 Effects of four-week high-fructose diet on gene expression in skeletal muscle of healthy men. Diabetes Metab. 2008 Feb;34(1):82-5. doi: 10.1016/j.diabet.2007.08.004. Epub 2007 Dec 11.
16 Acute exposure to resveratrol inhibits AMPK activity in human skeletal muscle cells. Diabetologia. 2012 Nov;55(11):3051-60. doi: 10.1007/s00125-012-2691-1. Epub 2012 Aug 17.
17 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
18 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
22 Faster lipid -oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1 in human podocytes. J Biochem Mol Toxicol. 2021 Jul;35(7):e22797. doi: 10.1002/jbt.22797. Epub 2021 May 6.
23 Genetic Basis of Irritant Susceptibility in Health Care Workers. J Occup Environ Med. 2016 Aug;58(8):753-9. doi: 10.1097/JOM.0000000000000784.