General Information of Drug Off-Target (DOT) (ID: OTEVMMYH)

DOT Name Tubulin beta-1 chain
Gene Name TUBB1
Related Disease
Macrothrombocytopenia, isolated, 1, autosomal dominant ( )
Autosomal dominant macrothrombocytopenia ( )
UniProt ID
TBB1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00091 ; PF03953
Sequence
MREIVHIQIGQCGNQIGAKFWEMIGEEHGIDLAGSDRGASALQLERISVYYNEAYGRKYV
PRAVLVDLEPGTMDSIRSSKLGALFQPDSFVHGNSGAGNNWAKGHYTEGAELIENVLEVV
RHESESCDCLQGFQIVHSLGGGTGSGMGTLLMNKIREEYPDRIMNSFSVMPSPKVSDTVV
EPYNAVLSIHQLIENADACFCIDNEALYDICFRTLKLTTPTYGDLNHLVSLTMSGITTSL
RFPGQLNADLRKLAVNMVPFPRLHFFMPGFAPLTAQGSQQYRALSVAELTQQMFDARNTM
AACDLRRGRYLTVACIFRGKMSTKEVDQQLLSVQTRNSSCFVEWIPNNVKVAVCDIPPRG
LSMAATFIGNNTAIQEIFNRVSEHFSAMFKRKAFVHWYTSEGMDINEFGEAENNIHDLVS
EYQQFQDAKAVLEEDEEVTEEAEMEPEDKGH
Function
Tubulin is the major constituent of microtubules, a cylinder consisting of laterally associated linear protofilaments composed of alpha- and beta-tubulin heterodimers. Microtubules grow by the addition of GTP-tubulin dimers to the microtubule end, where a stabilizing cap forms. Below the cap, tubulin dimers are in GDP-bound state, owing to GTPase activity of alpha-tubulin.
Tissue Specificity Hematopoietic cell-specific. Major isotype in leukocytes, where it represents 50% of all beta-tubulins.
KEGG Pathway
Phagosome (hsa04145 )
Gap junction (hsa04540 )
Motor proteins (hsa04814 )
Alzheimer disease (hsa05010 )
Parkinson disease (hsa05012 )
Amyotrophic lateral sclerosis (hsa05014 )
Huntington disease (hsa05016 )
Prion disease (hsa05020 )
Pathways of neurodegeneration - multiple diseases (hsa05022 )
Pathogenic Escherichia coli infection (hsa05130 )
Salmonella infection (hsa05132 )
Reactome Pathway
Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane (R-HSA-190840 )
Gap junction assembly (R-HSA-190861 )
MHC class II antigen presentation (R-HSA-2132295 )
Separation of Sister Chromatids (R-HSA-2467813 )
Resolution of Sister Chromatid Cohesion (R-HSA-2500257 )
HSP90 chaperone cycle for steroid hormone receptors (SHR) in the presence of ligand (R-HSA-3371497 )
Recruitment of NuMA to mitotic centrosomes (R-HSA-380320 )
Prefoldin mediated transfer of substrate to CCT/TriC (R-HSA-389957 )
Formation of tubulin folding intermediates by CCT/TriC (R-HSA-389960 )
Post-chaperonin tubulin folding pathway (R-HSA-389977 )
Recycling pathway of L1 (R-HSA-437239 )
Hedgehog 'off' state (R-HSA-5610787 )
Cilium Assembly (R-HSA-5617833 )
Intraflagellar transport (R-HSA-5620924 )
RHO GTPases activate IQGAPs (R-HSA-5626467 )
RHO GTPases Activate Formins (R-HSA-5663220 )
COPI-mediated anterograde transport (R-HSA-6807878 )
COPI-dependent Golgi-to-ER retrograde traffic (R-HSA-6811434 )
COPI-independent Golgi-to-ER retrograde traffic (R-HSA-6811436 )
Mitotic Prometaphase (R-HSA-68877 )
The role of GTSE1 in G2/M progression after G2 checkpoint (R-HSA-8852276 )
Carboxyterminal post-translational modifications of tubulin (R-HSA-8955332 )
HCMV Early Events (R-HSA-9609690 )
Assembly and cell surface presentation of NMDA receptors (R-HSA-9609736 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Aggrephagy (R-HSA-9646399 )
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025 )
Sealing of the nuclear envelope (NE) by ESCRT-III (R-HSA-9668328 )
Kinesins (R-HSA-983189 )
PKR-mediated signaling (R-HSA-9833482 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Macrothrombocytopenia, isolated, 1, autosomal dominant DISS1YOK Definitive Autosomal dominant [1]
Autosomal dominant macrothrombocytopenia DISUTMSW Supportive Autosomal dominant [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Tubulin beta-1 chain affects the binding of PEITC. [19]
Sulforaphane DMQY3L0 Investigative Tubulin beta-1 chain affects the binding of Sulforaphane. [19]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tubulin beta-1 chain. [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Tubulin beta-1 chain. [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Tubulin beta-1 chain. [17]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tubulin beta-1 chain. [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tubulin beta-1 chain. [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tubulin beta-1 chain. [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tubulin beta-1 chain. [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Tubulin beta-1 chain. [8]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Tubulin beta-1 chain. [9]
Folic acid DMEMBJC Approved Folic acid increases the expression of Tubulin beta-1 chain. [10]
Niclosamide DMJAGXQ Approved Niclosamide decreases the expression of Tubulin beta-1 chain. [11]
Rosiglitazone DMILWZR Approved Rosiglitazone affects the expression of Tubulin beta-1 chain. [12]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Tubulin beta-1 chain. [13]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Tubulin beta-1 chain. [8]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Tubulin beta-1 chain. [14]
OTX-015 DMI8RG1 Phase 1/2 OTX-015 decreases the expression of Tubulin beta-1 chain. [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tubulin beta-1 chain. [4]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tubulin beta-1 chain. [16]
Mivebresib DMCPF90 Phase 1 Mivebresib decreases the expression of Tubulin beta-1 chain. [15]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Tubulin beta-1 chain. [18]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE affects the expression of Tubulin beta-1 chain. [8]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Tubulin beta-1 chain. [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood. 2009 Jan 8;113(2):458-61. doi: 10.1182/blood-2008-06-162610. Epub 2008 Oct 10.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol. 2018 Jan;92(1):469-485.
10 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
11 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
12 Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring). 2010 Jan;18(1):27-34. doi: 10.1038/oby.2009.208. Epub 2009 Jun 25.
13 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One. 2022 Apr 29;17(4):e0266966. doi: 10.1371/journal.pone.0266966. eCollection 2022.
16 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
17 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
18 Ochratoxin a lowers mRNA levels of genes encoding for key proteins of liver cell metabolism. Cancer Genomics Proteomics. 2008 Nov-Dec;5(6):319-32.
19 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.