General Information of Drug Off-Target (DOT) (ID: OTF6OC66)

DOT Name Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1)
Synonyms
EC 2.4.1.102; Core 2 beta-1,6-N-acetylglucosaminyltransferase; C2GlcNAcT; Core 2-branching enzyme; Core2-GlcNAc-transferase; C2GNT; Core 2 GNT; Leukocyte type core 2 beta-1,6-N-acetylglucosaminyltransferase; C2GnT-L
Gene Name GCNT1
Related Disease
Prostate carcinoma ( )
Advanced cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Pancreatic cancer ( )
Testicular germ cell tumor ( )
Carcinoma ( )
Adenocarcinoma ( )
Colorectal carcinoma ( )
Diphtheria ( )
Neuroblastoma ( )
Prostate cancer ( )
Prostate neoplasm ( )
UniProt ID
GCNT1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.4.1.102
Pfam ID
PF02485
Sequence
MLRTLLRRRLFSYPTKYYFMVLVLSLITFSVLRIHQKPEFVSVRHLELAGENPSSDINCT
KVLQGDVNEIQKVKLEILTVKFKKRPRWTPDDYINMTSDCSSFIKRRKYIVEPLSKEEAE
FPIAYSIVVHHKIEMLDRLLRAIYMPQNFYCIHVDTKSEDSYLAAVMGIASCFSNVFVAS
RLESVVYASWSRVQADLNCMKDLYAMSANWKYLINLCGMDFPIKTNLEIVRKLKLLMGEN
NLETERMPSHKEERWKKRYEVVNGKLTNTGTVKMLPPLETPLFSGSAYFVVSREYVGYVL
QNEKIQKLMEWAQDTYSPDEYLWATIQRIPEVPGSLPASHKYDLSDMQAVARFVKWQYFE
GDVSKGAPYPPCDGVHVRSVCIFGAGDLNWMLRKHHLFANKFDVDVDLFAIQCLDEHLRH
KALETLKH
Function
Glycosyltransferase that catalyzes the transfer of an N-acetylglucosamine (GlcNAc) moiety in beta1-6 linkage from UDP-GlcNAc onto mucin-type core 1 O-glycan to form the branched mucin-type core 2 O-glycan. The catalysis is metal ion-independent and occurs with inversion of the anomeric configuration of sugar donor. Selectively involved in synthesis of mucin-type core 2 O-glycans that serve as scaffolds for the display of selectin ligand sialyl Lewis X epitope by myeloid cells, with an impact on homeostasis and recruitment to inflammatory sites. Can also act on glycolipid substrates. Transfers GlcNAc moiety to GalGb4Cer globosides in a reaction step to the synthesis of stage-specific embryonic antigen 1 (SSEA-1) determinant. Can use Galbeta1-3GalNAcalpha1- and Galbeta1-3GalNAcbeta1- oligosaccharide derivatives as acceptor substrates.
Tissue Specificity Highly expressed in activated T-lymphocytes and myeloid cells.
KEGG Pathway
Mucin type O-glycan biosynthesis (hsa00512 )
Metabolic pathways (hsa01100 )
Reactome Pathway
O-linked glycosylation of mucins (R-HSA-913709 )
BioCyc Pathway
MetaCyc:HS05939-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

13 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Prostate carcinoma DISMJPLE Definitive Altered Expression [1]
Advanced cancer DISAT1Z9 Strong Altered Expression [2]
Lung cancer DISCM4YA Strong Altered Expression [3]
Lung carcinoma DISTR26C Strong Altered Expression [3]
Pancreatic cancer DISJC981 Strong Biomarker [4]
Testicular germ cell tumor DIS5RN24 Strong Biomarker [5]
Carcinoma DISH9F1N moderate Altered Expression [6]
Adenocarcinoma DIS3IHTY Disputed Altered Expression [7]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [8]
Diphtheria DISZWM55 Limited Altered Expression [9]
Neuroblastoma DISVZBI4 Limited Altered Expression [10]
Prostate cancer DISF190Y Limited Altered Expression [1]
Prostate neoplasm DISHDKGQ Limited Biomarker [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [12]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [13]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [15]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [16]
Triclosan DMZUR4N Approved Triclosan increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [17]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [18]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [19]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [20]
Progesterone DMUY35B Approved Progesterone increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [21]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [22]
Melphalan DMOLNHF Approved Melphalan decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [23]
Sulindac DM2QHZU Approved Sulindac increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [24]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [25]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [26]
Seocalcitol DMKL9QO Phase 3 Seocalcitol decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [27]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [28]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase (GCNT1). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Increased expression of GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate cancers.Prostate. 2014 Jul;74(10):1059-67. doi: 10.1002/pros.22826. Epub 2014 May 22.
2 Molecular Pathways: Mucins and Drug Delivery in Cancer.Clin Cancer Res. 2017 Mar 15;23(6):1373-1378. doi: 10.1158/1078-0432.CCR-16-0862. Epub 2016 Dec 30.
3 Clinicopathological significance of core 2 beta1,6-N-acetylglucosaminyltransferase messenger RNA expressed in the pulmonary adenocarcinoma determined by in situ hybridization.Cancer Res. 2001 Mar 1;61(5):2226-31.
4 Pancreas carcinoma antigen fused to invariant chain elicits T-cell response and tumor growth inhibition.Pancreas. 2008 Oct;37(3):321-7. doi: 10.1097/MPA.0b013e318166722e7.
5 Core 2 N-acetylglucosaminyltransferase-1 expression induces aggressive potential of testicular germ cell tumor.Int J Cancer. 2010 Sep 1;127(5):1052-9. doi: 10.1002/ijc.25117.
6 C2-O-sLeX glycoproteins are E-selectin ligands that regulate invasion of human colon and hepatic carcinoma cells.PLoS One. 2011 Jan 19;6(1):e16281. doi: 10.1371/journal.pone.0016281.
7 The high affinity selectin glycan ligand C2-O-sLex and mRNA transcripts of the core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT1) gene are highly expressed in human colorectal adenocarcinomas.BMC Cancer. 2009 Mar 6;9:79. doi: 10.1186/1471-2407-9-79.
8 Carcinoma-associated expression of core 2 beta-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression.Cancer Res. 1997 Dec 1;57(23):5201-6.
9 Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury.Transgenic Res. 2012 Feb;21(1):51-62. doi: 10.1007/s11248-011-9504-z. Epub 2011 Mar 24.
10 Aberrant O-glycosylation modulates aggressiveness in neuroblastoma.Oncotarget. 2018 Sep 25;9(75):34176-34188. doi: 10.18632/oncotarget.26169. eCollection 2018 Sep 25.
11 An A/G polymorphism of core 2 branching enzyme gene is associated with prostate cancer.Biochem Biophys Res Commun. 2005 Jun 17;331(4):958-63. doi: 10.1016/j.bbrc.2005.04.022.
12 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
13 Analysis of the in vitro synergistic effect of 5-fluorouracil and cisplatin on cervical carcinoma cells. Int J Gynecol Cancer. 2006 May-Jun;16(3):1321-9.
14 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
15 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
18 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
19 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
20 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
21 Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol Reprod. 2011 Apr;84(4):801-15.
22 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
23 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
24 Growth-suppressive effect of non-steroidal anti-inflammatory drugs on 11 colon-cancer cell lines and fluorescence differential display of genes whose expression is influenced by sulindac. Int J Cancer. 2000 Dec 15;88(6):873-80. doi: 10.1002/1097-0215(20001215)88:6<873::aid-ijc6>3.0.co;2-b.
25 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
26 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
27 Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol. 2002 Jun;16(6):1243-56.
28 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
29 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.