General Information of Disease (ID: DISHDKGQ)

Disease Name Prostate neoplasm
Synonyms
nodular prostate; prostate nodule; prostate gland neoplasm (disease); tumor of prostate; prostate gland tumor; neoplasm of prostate; prostate tumour; prostate gland tumour; tumor of the prostate; tumor of prostate gland; tumour of prostate gland; neoplasm of the prostate; tumour of prostate; tumour of the prostate; neoplasm of prostate gland; prostate gland neoplasm; prostate tumor
Definition A neoplasm (disease) that involves the prostate gland.
Disease Hierarchy
DISTBY9Z: Tumour
DISFVG19: Prostate disease
DISQM4KF: Reproductive system neoplasm
DISHDKGQ: Prostate neoplasm
Disease Identifiers
MONDO ID
MONDO_0021259
MESH ID
D011471
UMLS CUI
C0033578
MedGen ID
18697
HPO ID
HP:0100787
SNOMED CT ID
126906006

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 516 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCC4 TTUEAFL Limited Biomarker [1]
ADAMTS1 TTS2TEI Limited Biomarker [2]
AGR2 TT9K86S Limited Biomarker [3]
AHR TT037IE Limited Biomarker [4]
AKR1C3 TT5ZWB6 Limited Altered Expression [5]
AKT1 TTWTSCV Limited Altered Expression [6]
ALOX12B TTQ4QQH Limited Biomarker [7]
AMACR TTLN1AP Limited Altered Expression [8]
ANXA2 TT4YANI Limited Biomarker [9]
ATAD2 TT9A0HI Limited Altered Expression [10]
ATF3 TTCE793 Limited Biomarker [11]
ATM TTKBM7V Limited Biomarker [12]
ATR TT8ZYBQ Limited Biomarker [13]
AURKA TTPS3C0 Limited Biomarker [14]
AZGP1 TTUPYLV Limited Biomarker [15]
B2M TTY7FKA Limited Altered Expression [16]
BAX TTQ57WJ Limited Biomarker [17]
BAZ2A TT2MV0R Limited Biomarker [18]
BCL2 TTFOUV4 Limited Altered Expression [19]
BIRC5 TTTPU1G Limited Biomarker [20]
BRAF TT0EOB8 Limited Biomarker [12]
BRD4 TTSRAOU Limited Genetic Variation [21]
CALR TTUZ7OA Limited Altered Expression [22]
CASP9 TTB6T7O Limited Biomarker [23]
CAV1 TTXUBN2 Limited Altered Expression [24]
CD9 TTZEIBV Limited Altered Expression [25]
CDKN1B TTLGFVW Limited Biomarker [12]
CLU TTRL76H Limited Altered Expression [26]
CREBBP TTFRCTK Limited Biomarker [27]
CX3CL1 TT1OFBQ Limited Biomarker [28]
CXCL12 TT4UGTF Limited Biomarker [29]
CXCL8 TTCTE1G Limited Biomarker [30]
CYP2C19 TTZ58XG Limited Biomarker [31]
CYP2E1 TTWVHQ5 Limited Biomarker [32]
CYP3A4 TTWP7HQ Limited Biomarker [33]
DAG1 TT4X7PG Limited Altered Expression [34]
DDR1 TTI1FPZ Limited Biomarker [35]
DNMT1 TT6S2FE Limited Biomarker [36]
DNMT3B TT6VZ78 Limited Genetic Variation [37]
EGR1 TTE8LGD Limited Biomarker [38]
EIF2AK2 TTXEZJ4 Limited Altered Expression [39]
ENG TTB30LE Limited Biomarker [40]
ERBB2 TTR5TV4 Limited Altered Expression [41]
ERF TTGXULC Limited Biomarker [12]
ESR2 TTOM3J0 Limited Altered Expression [42]
EZH2 TT9MZCQ Limited Altered Expression [43]
EZR TTE47YC Limited Biomarker [35]
FASLG TTO7014 Limited Therapeutic [44]
FGF10 TTNPEFX Limited Biomarker [45]
FOLH1 TT9G4N0 Limited Biomarker [46]
GHR TTHJWYD Limited Biomarker [47]
GHRHR TTG4R8V Limited Genetic Variation [48]
GJA1 TT4F7SL Limited Biomarker [49]
GSK3A TTQWAU1 Limited Biomarker [50]
GSTA1 TT4P8DE Limited Biomarker [51]
GSTP1 TT40K12 Limited Posttranslational Modification [52]
HBEGF TT15SL0 Limited Altered Expression [53]
HIF1A TTSN6QU Limited Altered Expression [54]
HMGB2 TTA78JQ Limited Biomarker [55]
HRAS TT28ZON Limited Biomarker [12]
HSD17B1 TTIWB6L Limited Biomarker [56]
HSP90B1 TTFPKXQ Limited Biomarker [57]
HSPB3 TTLH8WG Limited Altered Expression [58]
ID1 TTBXVDE Limited Altered Expression [59]
IGF2R TTPNE41 Limited Biomarker [12]
IGFBP3 TTZHNQA Limited Therapeutic [60]
IGFBP7 TTUQ01B Limited Biomarker [61]
IL18 TTRICUF Limited Biomarker [62]
IL1RN TT6GSR3 Limited Biomarker [63]
IL2 TTF89GD Limited Biomarker [64]
IL24 TT1EPXZ Limited Biomarker [65]
IL6 TTT1V78 Limited Altered Expression [66]
INS TTZOPHG Limited Biomarker [67]
IRS1 TTAJSQ0 Limited Biomarker [68]
ITPR1 TT5HWAT Limited Biomarker [23]
JAK1 TT6DM01 Limited Biomarker [12]
JUP TTREN0G Limited Biomarker [69]
KLK4 TT4319X Limited Biomarker [70]
LPAR1 TTQ6S1K Limited Altered Expression [71]
LPL TTOF3WZ Limited Genetic Variation [72]
LRP2 TTPH1AJ Limited Biomarker [73]
MLH1 TTISG27 Limited Genetic Variation [74]
MMP13 TTHY57M Limited Biomarker [75]
MMP9 TT6X50U Limited Altered Expression [76]
MPO TTVCZPI Limited Biomarker [31]
MYC TTNQ5ZP Limited Biomarker [77]
NCOA3 TT124R0 Limited Biomarker [78]
NFE2L2 TTA6ZN2 Limited Biomarker [79]
NQO1 TT8XK6L Limited Altered Expression [80]
NR3C1 TTOZRK6 Limited Altered Expression [81]
NRP1 TTIPJCB Limited Biomarker [82]
OGG1 TTRU01G Limited Genetic Variation [83]
PARP1 TTVDSZ0 Limited Biomarker [84]
PLA2G2A TTO8QRU Limited Altered Expression [85]
PLA2R1 TTHKW7D Limited Altered Expression [86]
PML TTLH9NY Limited Biomarker [87]
PON1 TT9LX82 Limited Biomarker [31]
PPARA TTJ584C Limited Biomarker [73]
PRKCZ TTBSN0L Limited Biomarker [88]
PRKDC TTK3PY9 Limited Biomarker [89]
PRNP TTY5F9C Limited Biomarker [23]
PTGS2 TTVKILB Limited Altered Expression [90]
REG4 TTVZEHU Limited Altered Expression [91]
RNASEL TT7V0K4 Limited Biomarker [92]
RUNX1 TTWIN3H Limited Biomarker [93]
SIRT1 TTUF2HO Limited Biomarker [94]
SKP2 TT5B2EO Limited Biomarker [95]
SLC5A5 TTW7HI9 Limited Biomarker [96]
SLC7A1 TT4S150 Limited Biomarker [97]
SOX2 TTCNOT6 Limited Biomarker [98]
SRD5A2 TTT02K8 Limited Biomarker [99]
STAT3 TTHJT3X Limited Biomarker [100]
STEAP1 TT9E64S Limited Altered Expression [101]
STMN1 TT7W5OT Limited Biomarker [102]
TGFA TTTLQFR Limited Genetic Variation [103]
TLR4 TTISGCA Limited Altered Expression [104]
TLR6 TTWRI8V Limited Genetic Variation [105]
TNFRSF10A TT5WLRX Limited Genetic Variation [106]
TNFRSF25 TTDV6BQ Limited Altered Expression [107]
TOP2A TTCGY2K Limited Biomarker [108]
TPT1 TT3PTB6 Limited Altered Expression [109]
TYMS TTP1UKZ Limited Biomarker [110]
UMPS TTAFJUD Limited Biomarker [111]
VDR TTK59TV Limited Altered Expression [112]
VEGFA TT3LJ9K Limited Biomarker [113]
VIP TTGTWLF Limited Biomarker [114]
WNT5A TTKG7F8 Limited Biomarker [115]
DGAT2 TTRHEQ4 Disputed Genetic Variation [116]
SERPINE1 TTTO43N Disputed Biomarker [117]
ALOX5 TTSJ6Q4 moderate Biomarker [7]
BAP1 TT47RXJ moderate Biomarker [118]
CALCA TTVSFJW moderate Biomarker [119]
CRTC1 TT4GO0F moderate Biomarker [120]
CYP19A1 TTSZLWK moderate Altered Expression [121]
FASN TT7AOUD moderate Altered Expression [122]
FGF2 TTGKIED moderate Altered Expression [123]
ICAM1 TTA1L39 moderate Biomarker [124]
KDM4A TTZHPB8 moderate Altered Expression [125]
MIF TT6804T moderate Altered Expression [126]
MMP7 TTMTWOS moderate Altered Expression [127]
MTHFR TTQWOU1 moderate Biomarker [128]
PIM1 TTTN5QW moderate Altered Expression [129]
SLC22A3 TTG2UMS moderate Posttranslational Modification [130]
SMAD1 TT9GR53 moderate Altered Expression [131]
ST14 TTPRO7W moderate Altered Expression [132]
SUV39H1 TTUWQTK moderate Posttranslational Modification [133]
ABCG5 TTKZ7WY Strong Biomarker [73]
ACAT1 TTK3C21 Strong Altered Expression [134]
ACHE TT1RS9F Strong Biomarker [135]
ACVR2A TTX2DRI Strong Altered Expression [136]
ADAM9 TTTYQNS Strong Altered Expression [137]
ADAMTS5 TTXSU2Y Strong Biomarker [138]
ADCYAP1 TTW4LYC Strong Biomarker [139]
ADCYAP1R1 TT5OREU Strong Genetic Variation [140]
ADRB2 TTG8ZWP Strong Biomarker [141]
ALAD TTJHKYD Strong Biomarker [142]
ALCAM TT2AFT6 Strong Genetic Variation [143]
ALOX12 TT12ABZ Strong Biomarker [144]
ALOX15 TTN9T81 Strong Altered Expression [145]
ALPL TTMR5UV Strong Biomarker [146]
AMD1 TTBFROQ Strong Altered Expression [147]
ANG TTURHFP Strong Altered Expression [148]
ANTXR2 TTOD34I Strong Biomarker [149]
ANXA1 TTUCK4B Strong Altered Expression [150]
ANXA2R TTM7D9O Strong Biomarker [151]
AOX1 TT3MOS2 Strong Biomarker [152]
APEX1 TTHGL48 Strong Biomarker [20]
AQP3 TTLDNMQ Strong Genetic Variation [153]
AR TTKPW01 Strong Biomarker [154]
ARG2 TTV1AG6 Strong Biomarker [155]
ARRB2 TT8SO2I Strong Biomarker [156]
ATP7B TTOPO51 Strong Biomarker [157]
AVPR2 TTK8R02 Strong Altered Expression [158]
BCL2L1 TTRE6AX Strong Altered Expression [159]
BMP2 TTP3IGX Strong Biomarker [160]
BMP6 TT07RIB Strong Altered Expression [161]
BMP7 TTKOBRA Strong Altered Expression [162]
BMPR2 TTGKF90 Strong Altered Expression [163]
BMX TTN2I9E Strong Biomarker [164]
BRCA2 TTUARD6 Strong Biomarker [12]
BRIP1 TTZV7LJ Strong Genetic Variation [165]
BRPF1 TTT46BN Strong Biomarker [12]
BSG TT5UJWD Strong Altered Expression [166]
CACNA1H TTZPWGN Strong Genetic Variation [167]
CAD TT2YT1K Strong Biomarker [168]
CAMKK2 TTV298Y Strong Biomarker [169]
CAPN1 TT1WBIJ Strong Biomarker [170]
CARM1 TTIZQFJ Strong Biomarker [171]
CBL TT7QT13 Strong Biomarker [172]
CBR1 TTVG0SN Strong Biomarker [69]
CCND1 TTFCJ7S Strong Biomarker [173]
CCND3 TT1JXNR Strong Altered Expression [174]
CCR1 TTC24WT Strong Altered Expression [175]
CCR9 TTIPS8B Strong Altered Expression [176]
CD24 TTCTYNP Strong Altered Expression [177]
CD276 TT6CQUM Strong Biomarker [178]
CD55 TT5Z9WY Strong Biomarker [179]
CD74 TTCMYP9 Strong Altered Expression [180]
CDC25A TTLZS4Q Strong Biomarker [181]
CDC25B TTR0SWN Strong Altered Expression [182]
CDC25C TTESBNC Strong Biomarker [183]
CDC37 TT5SOEU Strong Biomarker [184]
CDH11 TTRGWZC Strong Biomarker [185]
CDH3 TTARMD9 Strong Altered Expression [186]
CDK1 TTH6V3D Strong Altered Expression [187]
CDK12 TTJ21A9 Strong Biomarker [12]
CDK2 TT7HF4W Strong Altered Expression [187]
CDK5R1 TTBYM6V Strong Biomarker [188]
CDKN1A TT9GUW0 Strong Altered Expression [189]
CEACAM1 TTA9CK4 Strong Altered Expression [190]
CFLAR TTJZQYH Strong Altered Expression [191]
CGA TTFC29G Strong Altered Expression [192]
CHEK2 TT9ABMF Strong Genetic Variation [193]
CHIT1 TTDYX6T Strong Altered Expression [194]
CHKA TT10AWB Strong Altered Expression [195]
CHUK TT1F8OQ Strong Biomarker [160]
COMT TTKWFB8 Strong Biomarker [69]
CRHR2 TTIY658 Strong Altered Expression [196]
CRTC2 TTFWETR Strong Biomarker [197]
CRYAB TT7RUHB Strong Biomarker [23]
CSK TTX6F0Q Strong Biomarker [198]
CTNNB1 TTRPKQG Strong Biomarker [115]
CTSB TTF2LRI Strong Biomarker [199]
CTSD TTPT2QI Strong Biomarker [69]
CTSK TTDZN01 Strong Biomarker [200]
CUL3 TTPCU0Q Strong Biomarker [12]
CXCR6 TT2BVUA Strong Altered Expression [201]
CYP11A1 TTSYVO6 Strong Biomarker [99]
CYP11B2 TT9MNE2 Strong Biomarker [27]
CYP1B1 TTI84H7 Strong Biomarker [202]
CYP2A6 TTAQ6ZW Strong Biomarker [31]
CYP3A5 TTHS0OK Strong Biomarker [203]
CYSLTR1 TTGKOY9 Strong Altered Expression [204]
DDC TTN451K Strong Altered Expression [205]
DDIT4 TTVEOY6 Strong Altered Expression [206]
DDX5 TTZKPVC Strong Altered Expression [207]
DGAT1 TT0GV3R Strong Biomarker [208]
DHCR24 TTTK0NH Strong Genetic Variation [209]
DIABLO TTN74LE Strong Therapeutic [210]
DKK3 TTY2ZV6 Strong Altered Expression [211]
DUSP3 TTIFAYS Strong Biomarker [212]
E2F1 TTASI04 Strong Biomarker [213]
E2F3 TTWIJYH Strong Biomarker [214]
EGF TTED8JB Strong Altered Expression [215]
EGFL7 TT7WD0H Strong Genetic Variation [216]
EGFR TTGKNB4 Strong Biomarker [217]
EIF4EBP1 TTKGEBL Strong Altered Expression [218]
EPCAM TTZ8WH4 Strong Biomarker [69]
EPHA7 TTAHTVG Strong Biomarker [219]
EPHB4 TTI4ZX2 Strong Biomarker [220]
ESR1 TTZAYWL Strong Biomarker [221]
ESRRA TTPNQAC Strong Altered Expression [222]
ESRRB TTKF0XS Strong Biomarker [223]
ETS1 TTTGPSD Strong Biomarker [224]
F2R TTL935N Strong Biomarker [225]
F2RL1 TTQR74A Strong Altered Expression [226]
F2RL2 TTVSEBF Strong Genetic Variation [227]
F2RL3 TTD0652 Strong Altered Expression [228]
FABP5 TTNT2S6 Strong Altered Expression [229]
FDFT1 TTFQEO5 Strong Altered Expression [230]
FER TTRA9G0 Strong Altered Expression [231]
FGF7 TTFY134 Strong Biomarker [232]
FGF8 TTIUF3J Strong Altered Expression [233]
FGFR2 TTGJVQM Strong Biomarker [234]
FGFR4 TT1KX2S Strong Genetic Variation [235]
FGG TTR31L7 Strong Altered Expression [236]
FHIT TTMS54D Strong Biomarker [237]
FKBP5 TT0J5KQ Strong Altered Expression [238]
FLT4 TTDCBX5 Strong Altered Expression [239]
FOXC1 TTNT3YA Strong Biomarker [23]
FOXO1 TTLRVIA Strong Biomarker [149]
FTH1 TT975ZT Strong Biomarker [240]
FUT4 TTNV1KZ Strong Altered Expression [241]
FYN TT2B9KF Strong Biomarker [100]
GADD45B TTMDW9L Strong Altered Expression [242]
GART TTEXB9Z Strong Genetic Variation [243]
GDF15 TT4MXVG Strong Biomarker [244]
GGT1 TTZVT7O Strong Biomarker [69]
GLIPR1 TTEQF1O Strong Altered Expression [245]
GLO1 TTV9A7R Strong Altered Expression [246]
GNRHR TT8R70G Strong Altered Expression [247]
GRHL2 TTUGH4C Strong Biomarker [248]
GRK2 TTAZ3MN Strong Biomarker [249]
GRK3 TT5A4DX Strong Biomarker [250]
GSK3B TTRSMW9 Strong Biomarker [251]
GSTO1 TTWO3SH Strong Biomarker [69]
HAO1 TTS58YO Strong Biomarker [69]
HDAC6 TT5ZKDI Strong Biomarker [35]
HNRNPA1 TTPJ9XK Strong Altered Expression [252]
HNRNPA2B1 TT8UPW6 Strong Altered Expression [253]
HOXA7 TTMRE4Q Strong Altered Expression [254]
HSP90AB1 TTH5YN2 Strong Biomarker [255]
HSPG2 TT5UM29 Strong Altered Expression [256]
HTATIP2 TTC6IX5 Strong Altered Expression [257]
ID2 TTW8A5N Strong Biomarker [258]
IDH1 TTV2A1R Strong Biomarker [12]
IFNL3 TTRF4Q2 Strong Biomarker [259]
IGF1 TTT6LOU Strong Biomarker [260]
IGFBP1 TTCJTWF Strong Biomarker [261]
IGFBP2 TTU4QSN Strong Biomarker [262]
IGFBP5 TTDWEA8 Strong Biomarker [263]
IGFBP6 TTLAYV8 Strong Therapeutic [264]
IL11RA TTZPLJS Strong Biomarker [265]
IL13RA2 TTMPZ7V Strong Biomarker [266]
IL16 TTW4R0B Strong Biomarker [267]
IL17D TTC5LTG Strong Biomarker [268]
IRAK4 TTILUKB Strong Biomarker [269]
ITGA5 TTHIZP9 Strong Biomarker [270]
ITGAM TTB69FJ Strong Biomarker [271]
ITGAV TTT1R2L Strong Biomarker [270]
ITGB1 TTBVIQC Strong Biomarker [272]
ITGB3 TTJA1ZO Strong Biomarker [160]
JAK2 TTRMX3V Strong Biomarker [23]
JUN TTS7IR5 Strong Altered Expression [273]
KAT6A TT6O1J0 Strong Biomarker [149]
KCNMA1 TTE87WJ Strong Altered Expression [274]
KDM4C TTV8CRH Strong Altered Expression [6]
KEAP1 TT3Z6Y9 Strong Biomarker [12]
KLB TTARBVH Strong Altered Expression [275]
KLK14 TTDA81R Strong Altered Expression [276]
KLK2 TTJLNAW Strong Biomarker [277]
KLK5 TTULSEW Strong Genetic Variation [278]
KMT2A TT1GNDM Strong Biomarker [12]
KPNB1 TTHOJ5F Strong Genetic Variation [279]
KRAS TTM8FR7 Strong Biomarker [12]
LAMP2 TTULDG7 Strong Biomarker [240]
LEP TTBJEZ5 Strong Biomarker [280]
LIFR TTID542 Strong Biomarker [152]
LIMK1 TTWL9TY Strong Altered Expression [281]
LNPEP TTY2KP7 Strong Genetic Variation [21]
LONP1 TTM1VPZ Strong Altered Expression [282]
LSM1 TT2KHSC Strong Altered Expression [283]
M6PR TT95ICL Strong Biomarker [23]
MAGEA1 TT63M7Q Strong Biomarker [284]
MAGEA3 TTWSKHD Strong Biomarker [284]
MAGEA4 TT9EQUY Strong Biomarker [284]
MAP2K5 TTV3O87 Strong Altered Expression [285]
MAP3K1 TTW8TJI Strong Biomarker [149]
MAP3K14 TT4LIAC Strong Genetic Variation [286]
MAP3K7 TTJQT60 Strong Biomarker [23]
MAP3K8 TTGECUM Strong Biomarker [287]
MAPK3 TT1MG9E Strong Biomarker [288]
MAPK8IP1 TTXKZ8Q Strong Altered Expression [289]
MAPKAPK2 TTMUG9D Strong Biomarker [290]
MBP TT2RY5P Strong Biomarker [291]
MBTPS1 TTNSM2I Strong Biomarker [69]
MC2R TTPWFDX Strong Biomarker [69]
MCAM TTHRE05 Strong Biomarker [292]
MCM7 TT1RM3F Strong Altered Expression [293]
MDM2 TT9TE0O Strong Altered Expression [294]
MKI67 TTB4UNG Strong Biomarker [295]
MME TT5TKPM Strong Altered Expression [296]
MMP11 TTZW4MV Strong Altered Expression [297]
MSMB TTYH1ZK Strong Altered Expression [298]
MSR1 TT2TDH9 Strong Genetic Variation [299]
MST1R TTBQ3OC Strong Biomarker [300]
MTA1 TTO4HUS Strong Altered Expression [301]
MTAP TTDBX7N Strong Biomarker [31]
MUTYH TTNB0ZK Strong Genetic Variation [302]
NAAA TTMN4HY Strong Biomarker [303]
NAGLU TTDM6HZ Strong Biomarker [69]
NCOA4 TT8OY02 Strong Biomarker [304]
NDUFA13 TTRU1NG Strong Biomarker [305]
NEDD4 TT1QU6G Strong Altered Expression [306]
NEK1 TTO5QT2 Strong Biomarker [307]
NGFR TTEDJN4 Strong Biomarker [308]
NKX3-1 TT1E0JK Strong Biomarker [309]
NPM1 TTHBS98 Strong Altered Expression [310]
NPPC TTRK0B9 Strong Biomarker [311]
NPR3 TTWVLS6 Strong Biomarker [152]
NPY TT64REZ Strong Altered Expression [312]
NPY1R TTRK9JT Strong Biomarker [313]
NR1H3 TTECBXN Strong Biomarker [314]
NRG4 TTWAGKJ Strong Altered Expression [315]
NRP2 TTRXUVC Strong Biomarker [316]
NTF3 TTZHKV9 Strong Biomarker [317]
NTF4 TTIM2WO Strong Altered Expression [318]
NTSR1 TTTUMEP Strong Biomarker [319]
ODC1 TTUMGNO Strong Altered Expression [123]
OPRD1 TT27RFC Strong Genetic Variation [320]
OR51E2 TTZRE3C Strong Biomarker [321]
OXER1 TT7WBSV Strong Biomarker [322]
P4HA1 TTNH25W Strong Biomarker [323]
PAK1 TTFN95D Strong Biomarker [324]
PAK2 TT279WO Strong Altered Expression [325]
PAWR TT3I4WV Strong Biomarker [326]
PDE4D TTSKMI8 Strong Biomarker [149]
PDGFD TTSN0GA Strong Biomarker [327]
PDGFRB TTI7421 Strong Biomarker [328]
PDX1 TT8SGZK Strong Altered Expression [329]
PDZK1 TTDTBLM Strong Biomarker [69]
PGRMC1 TTY3LAZ Strong Biomarker [23]
PHB TT6U071 Strong Biomarker [330]
PHGDH TT8DRCK Strong Biomarker [69]
PIK3CB TT9H4P3 Strong Biomarker [12]
PIK3CD TTGBPJE Strong Biomarker [331]
PIM2 TT69J2Z Strong Altered Expression [332]
PIN1 TTJNTSI Strong Altered Expression [333]
PKN1 TTSL41O Strong Altered Expression [334]
PLAU TTGY7WI Strong Biomarker [335]
PLAUR TTNOSTX Strong Biomarker [336]
PLK1 TTH4IP0 Strong Biomarker [337]
PMS1 TTX1ISF Strong Biomarker [12]
PNP TTMCF1Y Strong Biomarker [338]
PPARGC1B TTKSQ3W Strong Biomarker [339]
PPP3CA TTA4LDE Strong Biomarker [23]
PRKACA TT5U49F Strong Biomarker [340]
PRKCD TT7A1BO Strong Altered Expression [341]
PRKCE TT57MT2 Strong Altered Expression [342]
PRKD1 TTSLUMT Strong Altered Expression [301]
PRSS1 TT2WR1T Strong Altered Expression [343]
PRSS8 TTT4N0Q Strong Biomarker [344]
PSCA TT9T4AV Strong Biomarker [345]
PSMD10 TT2H4LN Strong Biomarker [346]
PTGER2 TT1ZAVI Strong Biomarker [347]
PTGER4 TT79WV3 Strong Biomarker [347]
PTK2 TTON5IT Strong Altered Expression [348]
PTK2B TTTEFBV Strong Altered Expression [349]
PTN TTA9EJK Strong Biomarker [350]
PTP4A3 TT7YM8D Strong Altered Expression [351]
PTPN1 TTELIN2 Strong Biomarker [352]
PTPRC TTUS45N Strong Biomarker [12]
RALBP1 TTVSRUA Strong Biomarker [69]
RARB TTISP28 Strong Posttranslational Modification [353]
RECK TTRZBW7 Strong Altered Expression [354]
RGS2 TTKB7T3 Strong Altered Expression [355]
RHOB TT6LPFO Strong Biomarker [356]
RNF43 TTD91BL Strong Biomarker [12]
ROBO1 TTND1YP Strong Biomarker [149]
ROCK2 TTGWKQJ Strong Biomarker [357]
RPS6KA3 TTUM2ZR Strong Altered Expression [358]
RPS6KB1 TTG0U4H Strong Biomarker [359]
RTN4 TT7GXMU Strong Biomarker [360]
RUNX2 TTD6SZ8 Strong Biomarker [361]
RXRA TT6PEUO Strong Genetic Variation [362]
RXRB TTKLV96 Strong Altered Expression [363]
SCN9A TT4G2JS Strong Altered Expression [364]
SENP1 TTW9HY5 Strong Altered Expression [365]
SERPINB5 TT1KW50 Strong Biomarker [366]
SERPINC1 TT4QPUL Strong Altered Expression [367]
SERPINF1 TTR59S1 Strong Biomarker [368]
SETD2 TTPC3H4 Strong Biomarker [12]
SF3B1 TTL2WUI Strong Biomarker [12]
SLC15A3 TTAYPWS Strong Altered Expression [242]
SLC22A1 TTM5Q4V Strong Altered Expression [369]
SLC26A4 TT7X02I Strong Biomarker [69]
SLC2A12 TTZO36H Strong Biomarker [370]
SLC36A1 TTUYIZW Strong Altered Expression [371]
SLC5A2 TTF8JAT Strong Genetic Variation [372]
SLCO1B3 TTU86P0 Strong Genetic Variation [373]
SLIT2 TTDWK85 Strong Biomarker [374]
SMARCA4 TTVQEZS Strong Altered Expression [375]
SMYD3 TTKLJYX Strong Altered Expression [376]
SOD2 TT9O4C5 Strong Biomarker [377]
SOX5 TTXHSZK Strong Altered Expression [378]
SPDEF TT2ZUPY Strong Altered Expression [379]
SPOCK1 TTF23RE Strong Altered Expression [380]
SRD5A1 TTTU72V Strong Biomarker [381]
SREBF1 TTER0UB Strong Altered Expression [382]
SREBF2 TTRQ4AP Strong Altered Expression [383]
SSTR1 TTIND6G Strong Biomarker [384]
SSTR2 TTZ6T9E Strong Altered Expression [385]
SSTR3 TTJX3UE Strong Altered Expression [386]
SSTR4 TTAE1BR Strong Altered Expression [385]
STAB2 TTM3DAY Strong Biomarker [12]
STEAP2 TTOXF5J Strong Altered Expression [387]
TAGLN TTDRZ9H Strong Biomarker [388]
TAP1 TT7JZI8 Strong Biomarker [12]
TBL1XR1 TTYXT16 Strong Biomarker [149]
TBXA2R TT2O84V Strong Altered Expression [389]
TBXAS1 TTKNWZ4 Strong Biomarker [73]
TERT TTQY2EJ Strong Genetic Variation [390]
TGFBR2 TTZE3P7 Strong Altered Expression [391]
TIAM1 TTNU6I5 Strong Altered Expression [392]
TIRAP TTKU0LS Strong Biomarker [63]
TLR1 TTW14D0 Strong Genetic Variation [105]
TLR5 TTCXP8J Strong Biomarker [63]
TLR8 TT8CWFK Strong Biomarker [393]
TMBIM6 TT7QSMG Strong Altered Expression [394]
TMPRSS6 TTL9KE7 Strong Altered Expression [348]
TMSB4X TTMVAIU Strong Biomarker [395]
TNFRSF21 TT8UA0T Strong Biomarker [396]
TNFSF10 TTA5MS9 Strong Therapeutic [397]
TNFSF11 TT9E8HR Strong Altered Expression [398]
TNK2 TTIET93 Strong Altered Expression [399]
TOP1 TTGTQHC Strong Biomarker [400]
TP53BP1 TTX4UE9 Strong Biomarker [401]
TPBG TT70MLA Strong Biomarker [69]
TPP1 TTOVYPT Strong Biomarker [69]
TRPM2 TTEBMN7 Strong Altered Expression [402]
TRPM4 TTJ2HKA Strong Biomarker [12]
TRPM8 TTXDKTO Strong Biomarker [345]
TRPV2 TTBECWA Strong Biomarker [403]
TRPV6 TTBK14N Strong Altered Expression [404]
TST TT51OTS Strong Biomarker [69]
UCP3 TT12RJK Strong Biomarker [73]
USP2 TTUEQ1W Strong Biomarker [405]
USP7 TTXU3EQ Strong Biomarker [12]
VCP TTHNLSB Strong Biomarker [406]
VEGFC TT0QUFV Strong Altered Expression [407]
VEGFD TTOM5H4 Strong Altered Expression [408]
VIPR1 TTCL30I Strong Biomarker [139]
VKORC1 TTEUC8H Strong Genetic Variation [409]
VSIR TT51SK8 Strong Biomarker [410]
XPO1 TTCJUR4 Strong Biomarker [12]
ZAP70 TTUMHT8 Strong Biomarker [212]
ZFAND5 TTLFY3S Strong Biomarker [23]
CYP17A1 TTRA5BZ Definitive Biomarker [411]
ERBB3 TTSINU2 Definitive Biomarker [412]
HMOX1 TTI6V2A Definitive Biomarker [251]
KDM5B TTCLI75 Definitive Biomarker [413]
MET TTNDSF4 Definitive Biomarker [12]
MMP16 TTNP4CU Definitive Biomarker [414]
NOS3 TTCM4B3 Definitive Biomarker [415]
PLA2G1B TT9V5JH Definitive Altered Expression [86]
TACSTD2 TTP2HE5 Definitive Altered Expression [416]
------------------------------------------------------------------------------------
⏷ Show the Full List of 516 DTT(s)
This Disease Is Related to 6 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC5A8 DTE3TAW Limited Genetic Variation [417]
SLC12A2 DTHKL3Q Strong Biomarker [69]
SLC30A4 DT280XI Strong Biomarker [418]
SLC31A1 DTP8L4F Strong Biomarker [157]
SLC39A1 DTLWPXS Strong Biomarker [152]
SLC4A2 DTF7GAL Strong Biomarker [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
This Disease Is Related to 32 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
ALDH1A2 DEKN1H4 Limited Biomarker [419]
CYP3A43 DEO1IE3 Limited Biomarker [420]
DCXR DE3FEV8 Limited Biomarker [69]
GSTT1 DE3PKUG Limited Biomarker [421]
HSD17B3 DEX8J7E Limited Biomarker [422]
HSD3B2 DEN0GVQ Limited Genetic Variation [423]
MT2A DEFKGT7 Limited Altered Expression [424]
NAT1 DE7OAB3 Limited Genetic Variation [425]
SULT1A1 DEYWLRK Limited Genetic Variation [426]
SULT1E1 DESTKG6 Limited Biomarker [69]
ABO DESIA7R Strong Biomarker [69]
ACP3 DEDW5H6 Strong Biomarker [345]
AKR1C1 DE7P2FB Strong Altered Expression [42]
CYP1A1 DE6OQ3W Strong Genetic Variation [427]
CYP27B1 DE3FYEM Strong Biomarker [428]
CYP2C18 DEZMWRE Strong Biomarker [31]
CYP4F3 DEFCMPI Strong Biomarker [429]
CYP7B1 DE36TMY Strong Altered Expression [430]
EPHX1 DELB4KP Strong Biomarker [35]
GSTM1 DEYZEJA Strong Biomarker [421]
HAGH DE05IKP Strong Altered Expression [246]
HPGD DEHKSC6 Strong Biomarker [69]
HSD3B1 DERDQWN Strong Genetic Variation [431]
NAT2 DER7TA0 Strong Genetic Variation [425]
PTGDS DER3H9C Strong Biomarker [432]
SMOX DEOH5V3 Strong Altered Expression [433]
SRD5A3 DEZGVDW Strong Biomarker [434]
SULT2A1 DE0P6LK Strong Biomarker [31]
SULT2B1 DEZBN53 Strong Biomarker [31]
UCK2 DETN1O0 Strong Biomarker [35]
UGT2B15 DENZ6B1 Strong Altered Expression [435]
UGT2B17 DEAZDL8 Strong Altered Expression [436]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 DME(s)
This Disease Is Related to 670 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ABR OTZQK8JF Limited Biomarker [35]
BCAR1 OTKT2C2N Limited Biomarker [77]
BHLHE40 OTITX14U Limited Biomarker [437]
BMPR1B OTGFN0OD Limited Biomarker [69]
BNIP3 OT4SO7J4 Limited Biomarker [438]
BNIP3L OTJKOMXE Limited Biomarker [439]
BRCA1 OT5BN6VH Limited Genetic Variation [440]
CCND2 OTDULQF9 Limited Altered Expression [441]
CCNH OTKDU3SR Limited Biomarker [442]
CLDN7 OTNE0XHQ Limited Biomarker [69]
CLPTM1L OTDJWQXI Limited Biomarker [443]
CREB3 OT9617UO Limited Altered Expression [444]
CREB3L4 OTSGQGT2 Limited Biomarker [445]
CTBP1 OTVYH2DH Limited Biomarker [446]
CTBP2 OTGZGT87 Limited Biomarker [267]
CTCF OT8ZB70U Limited Genetic Variation [447]
DAXX OTX6O7PL Limited Biomarker [448]
DLEC1 OTMKKBUW Limited Altered Expression [449]
DPT OTINRFC7 Limited Altered Expression [107]
EFEMP2 OT0I2B4J Limited Biomarker [450]
EIF3H OT61RBF5 Limited Biomarker [451]
ELAC2 OTY3BOF6 Limited Genetic Variation [452]
ENTPD5 OTFH05B9 Limited Biomarker [453]
ERCC2 OT1C8HQ4 Limited Genetic Variation [454]
ERGIC2 OT3MEGIU Limited Altered Expression [455]
ETV5 OTE2OBM4 Limited Biomarker [456]
FGD1 OTV3T64P Limited Altered Expression [457]
FOXO3 OTHXQG4P Limited Biomarker [260]
FOXP4 OTHCGIEZ Limited Biomarker [458]
GCNT1 OTF6OC66 Limited Biomarker [459]
GFI1 OT9HB9H8 Limited Biomarker [428]
GHRH OT94U6MO Limited Genetic Variation [48]
GNMT OT0O2OQO Limited Biomarker [460]
GPR158 OTYOC1RQ Limited Altered Expression [461]
GPX3 OT6PK94R Limited Biomarker [462]
GSTM3 OTLA2WJT Limited Biomarker [463]
HMGN5 OTUUAHVQ Limited Biomarker [464]
HNRNPH1 OTFRWOLM Limited Altered Expression [465]
HSPA1A OTKGIE76 Limited Biomarker [466]
ID3 OTUULW5Z Limited Biomarker [467]
IL17RC OTEFOBSS Limited Biomarker [468]
IL17RD OTKD9XST Limited Biomarker [469]
ITGA7 OTTBTAYW Limited Genetic Variation [470]
JAZF1 OTXTYSYD Limited Biomarker [267]
KLF6 OTQY9S7F Limited Altered Expression [471]
LAMC1 OTIG527N Limited Biomarker [23]
LDAH OTXRU9XQ Limited Biomarker [458]
LITAF OTT5JX1F Limited Biomarker [472]
LZTS1 OTXXL864 Limited Genetic Variation [473]
MACIR OTPSW8Y8 Limited Biomarker [442]
MSH3 OTD3YPVL Limited Biomarker [474]
MUC4 OTLT11V1 Limited Biomarker [69]
NBN OT73B5MD Limited Biomarker [89]
NCOA1 OTLIUJQD Limited Altered Expression [475]
NCOA2 OTMQFPBB Limited Biomarker [476]
PAK6 OTAHPZTT Limited Biomarker [477]
PALB2 OT6DNDBG Limited Biomarker [12]
PARD3 OTH5BPLO Limited Genetic Variation [227]
PCDH11Y OTI2D7DR Limited Biomarker [478]
PDHA1 OTGEU8IK Limited Altered Expression [479]
PDP1 OT82RTMT Limited Altered Expression [479]
PODXL OTPNQXF3 Limited Altered Expression [480]
POLK OTKZ38JH Limited Biomarker [481]
PPFIBP2 OTXQO55Y Limited Altered Expression [482]
PPP2R2A OT9297OG Limited Biomarker [483]
PRDX2 OTLWCY9T Limited Biomarker [255]
RB1 OT9VMY7B Limited Biomarker [12]
REPS2 OTSE3TRP Limited Altered Expression [484]
RFX6 OT8H77DL Limited Genetic Variation [485]
SELENOP OT02B8IR Limited Biomarker [486]
SERPINA3 OT9BP2S0 Limited Biomarker [487]
SPINK1 OTSUVAL2 Limited Biomarker [27]
SSBP2 OTYG1G80 Limited Biomarker [488]
SSX2 OT2Z6RLL Limited Biomarker [489]
STAT5A OTBSJGN3 Limited Altered Expression [490]
TET2 OTKKT03T Limited Altered Expression [369]
TIMP4 OT8A68SW Limited Altered Expression [66]
TMEFF2 OT1WZ2QO Limited Biomarker [491]
TMF1 OT7JY7UF Limited Biomarker [152]
TPD52 OTPKSK43 Limited Therapeutic [445]
TRAM1 OT3I0H8E Limited Altered Expression [107]
CXCL6 OTFTCQ4O Disputed Altered Expression [189]
ASAP2 OTGEXULW moderate Altered Expression [492]
CXCL5 OTZOUPCA moderate Biomarker [493]
DCX OTISR7K3 moderate Biomarker [494]
DVL2 OTMNYNCM moderate Biomarker [495]
EHF OTY6TPWD moderate Altered Expression [496]
ELF3 OTUTLEQO moderate Altered Expression [497]
JMJD6 OTILR7E4 moderate Biomarker [498]
KLF13 OTMIKHZ4 moderate Altered Expression [499]
KLK15 OT7BVG17 moderate Altered Expression [500]
NAALADL2 OT2HOGPQ moderate Altered Expression [501]
PRSS3 OTN3S5YB moderate Altered Expression [502]
RPS2 OTSMTZVB moderate Biomarker [503]
SCRIB OTW4N3FV moderate Altered Expression [504]
SPOP OTP0107S moderate Genetic Variation [505]
A2M OTFTX90K Strong Altered Expression [325]
AAAS OTJT9T23 Strong Biomarker [35]
ABCE1 OTH19LOA Strong Genetic Variation [506]
ABI1 OT5H4M62 Strong Altered Expression [100]
ACAT2 OTZ092ZJ Strong Altered Expression [134]
ACE OTDF1964 Strong Biomarker [507]
ACOX3 OTZEPVGF Strong Altered Expression [508]
ACRBP OT0MK3L1 Strong Biomarker [69]
ACSL3 OT3MWER1 Strong Altered Expression [509]
ACSL4 OTI71MUJ Strong Biomarker [69]
ACSM3 OT0AE1IV Strong Biomarker [152]
ADAM15 OTZ7VLTP Strong Biomarker [510]
ADAM28 OT3GBVHL Strong Biomarker [149]
ADAMTS15 OTYB6JS3 Strong Biomarker [138]
ADAMTS8 OT2KFY1S Strong Biomarker [12]
ADAMTS9 OTV3Q0DS Strong Biomarker [138]
ADI1 OT8IOD03 Strong Altered Expression [511]
ADIPOR2 OT2HDTL8 Strong Biomarker [512]
AGAP2 OTEYO9TM Strong Altered Expression [513]
AHCYL2 OTGG9KYG Strong Biomarker [35]
AIFM1 OTKPWB7Q Strong Biomarker [514]
AIRE OTA7G1Y1 Strong Altered Expression [515]
AKAP13 OTOZAR14 Strong Biomarker [516]
AKIP1 OT7XPG27 Strong Altered Expression [517]
ALDH1L1 OT15HOJX Strong Genetic Variation [518]
ALKBH3 OTS1CD9Z Strong Genetic Variation [519]
ALOX15B OTWQQ08W Strong Biomarker [520]
ALOXE3 OT76J52A Strong Biomarker [73]
AMBP OTLU8GU8 Strong Altered Expression [521]
ANKRD30A OTJXYAE5 Strong Altered Expression [522]
ANXA3 OTDD8OI7 Strong Biomarker [69]
ANXA4 OTUCRYXL Strong Biomarker [69]
ANXA7 OTLMD0TK Strong Biomarker [523]
APC OTKV0TIK Strong Biomarker [12]
APOD OTT77XW8 Strong Altered Expression [524]
APPBP2 OTLNFV4J Strong Altered Expression [371]
APPL2 OT9S4C4K Strong Biomarker [69]
ARHGEF5 OTUVGFT9 Strong Biomarker [69]
ARID1A OTRWDV3P Strong Biomarker [149]
ARID2 OTIRJXWM Strong Biomarker [12]
ARID4A OT1XKBZ0 Strong Biomarker [12]
ARL6IP1 OT536XAV Strong Biomarker [23]
ARNT OTMSIEZY Strong Biomarker [525]
ARSG OTT7TDW7 Strong Biomarker [526]
ASAH1 OT1DNGXL Strong Biomarker [527]
ASAP1 OT4DLRYY Strong Biomarker [528]
ASCL1 OTI4X44G Strong Altered Expression [529]
ASH1L OTUT5NLJ Strong Biomarker [149]
ASZ1 OTLM93UO Strong Biomarker [69]
ATAD3A OTWF6HBP Strong Biomarker [530]
ATN1 OTNZFLKY Strong Genetic Variation [124]
AZIN1 OTX5W77I Strong Biomarker [531]
AZIN2 OT8OB7CG Strong Biomarker [532]
B3GAT1 OTXFP98E Strong Biomarker [533]
B4GALT4 OTI5SX62 Strong Biomarker [69]
BAG1 OTRQNIA4 Strong Genetic Variation [534]
BAZ1B OTD5KR2J Strong Biomarker [535]
BCAS1 OTQKJR81 Strong Biomarker [536]
BGLAP OTK1YLWQ Strong Altered Expression [537]
BIN1 OTK8O0X8 Strong Biomarker [538]
BTRC OT2EZDGR Strong Altered Expression [539]
CADM4 OT0TFMFE Strong Altered Expression [540]
CAP1 OTYM8A2N Strong Genetic Variation [21]
CAPNS1 OT95EBBD Strong Biomarker [69]
CAPZB OTF1A4N0 Strong Genetic Variation [541]
CASZ1 OTWJ2OR8 Strong Biomarker [149]
CAV2 OT1FGRQX Strong Biomarker [536]
CBX1 OT2L4XZX Strong Biomarker [23]
CCDC115 OT04AZNZ Strong Altered Expression [542]
CCHCR1 OT22C116 Strong Biomarker [45]
CCL16 OTOOQI1F Strong Biomarker [543]
CCNA1 OTX4HD45 Strong Altered Expression [544]
CD164 OTZ7FIU8 Strong Biomarker [545]
CD177 OTS79FNF Strong Altered Expression [546]
CDC27 OTDT45XJ Strong Biomarker [12]
CDC6 OTX93FE7 Strong Altered Expression [547]
CDCP1 OTD7RRWK Strong Biomarker [548]
CDH12 OTF2HCGA Strong Biomarker [149]
CDH13 OTD2CYM5 Strong Biomarker [267]
CDK16 OTUBXIIT Strong Altered Expression [549]
CDK2AP2 OTR99SJ8 Strong Biomarker [69]
CEBPD OTNBIPMY Strong Biomarker [550]
CELF2 OTLJJ4VT Strong Biomarker [516]
CHAF1A OTXSSY4H Strong Altered Expression [551]
CHD1 OT9R9G0H Strong Biomarker [12]
CHD3 OTDBU4F3 Strong Biomarker [12]
CHD6 OTEHW1U2 Strong Biomarker [12]
CHD7 OTHNIZWZ Strong Biomarker [12]
CHGA OTXYX5JH Strong Biomarker [552]
CHST14 OT3FLH7U Strong Biomarker [445]
CIB1 OT4BVCRU Strong Altered Expression [553]
CIZ1 OT3UKHPI Strong Biomarker [35]
CKS1B OTNUPLUJ Strong Altered Expression [554]
CKS2 OTPTMHIV Strong Altered Expression [554]
CLDN3 OT71MN9S Strong Biomarker [69]
CLDN9 OTCKI2IZ Strong Biomarker [69]
CLIC4 OT6KTPKD Strong Biomarker [23]
CLPTM1 OT14QP7N Strong Genetic Variation [555]
CNN3 OTJTAXAP Strong Biomarker [69]
CNOT3 OT4D5Z9L Strong Biomarker [149]
COL15A1 OTTFKK18 Strong Biomarker [12]
COL5A1 OT24078H Strong Biomarker [12]
COL5A3 OTCGC4DM Strong Biomarker [12]
COPE OTBKHBT7 Strong Altered Expression [556]
CPNE3 OTCR3WG2 Strong Biomarker [267]
CREB5 OTJDUJPI Strong Altered Expression [371]
CREG1 OTRHJ8HK Strong Biomarker [69]
CREM OTJIJ5AL Strong Altered Expression [557]
CRISP3 OTBSWMPL Strong Altered Expression [150]
CRYL1 OT0SJSJM Strong Biomarker [69]
CSMD1 OTIVDSC4 Strong Altered Expression [558]
CSRP1 OTUS7RM2 Strong Biomarker [23]
CST1 OTE4I83Q Strong Biomarker [152]
CST6 OTZVHJTF Strong Altered Expression [199]
CTAG1B OTIQGW6U Strong Biomarker [284]
CTNND1 OTUMPSHR Strong Biomarker [559]
CTNND2 OTYKE30Y Strong Genetic Variation [560]
CTRL OTB6NA5O Strong Altered Expression [561]
CXCL14 OTM189TA Strong Biomarker [562]
CXCL16 OTD49T9R Strong Biomarker [563]
DAB2 OTRMQTMZ Strong Biomarker [564]
DAB2IP OTF456VC Strong Genetic Variation [565]
DACT2 OTNLCC0K Strong Biomarker [566]
DCAF6 OT3EYK1J Strong Biomarker [35]
DCD OTV5PBGJ Strong Biomarker [567]
DCDC2 OTSUFH1H Strong Altered Expression [568]
DEFB1 OT5SV0E4 Strong Biomarker [69]
DEFB104A OTLQZR6K Strong Genetic Variation [569]
DEGS1 OT4WXPKW Strong Biomarker [69]
DGCR8 OT62LXE4 Strong Altered Expression [570]
DHDH OTKA2AL6 Strong Biomarker [31]
DHX30 OT7W9CEZ Strong Biomarker [12]
DIAPH3 OTPOT23F Strong Genetic Variation [571]
DLC1 OTP8LMCR Strong Altered Expression [572]
DLX1 OT7BH057 Strong Genetic Variation [573]
DLX4 OTLWVCN4 Strong Altered Expression [574]
DMTN OTDTKPBW Strong Genetic Variation [575]
DNAJC10 OTD2EG0R Strong Biomarker [69]
DNAJC3 OT7ROIJF Strong Biomarker [69]
DNASE1L2 OT56VFRL Strong Biomarker [69]
DPM3 OTSB4XO0 Strong Biomarker [576]
DRG1 OTIFYMI3 Strong Biomarker [577]
DSPP OT1TYNDN Strong Biomarker [578]
DVL1 OTD67RF1 Strong Altered Expression [579]
DYNLL1 OTR69LHT Strong Altered Expression [572]
EBAG9 OTTQLQCP Strong Altered Expression [580]
ECM1 OT1K65VW Strong Altered Expression [211]
EEF1A1 OT00THXS Strong Biomarker [581]
EGR3 OTGPJIRA Strong Altered Expression [582]
EHBP1 OTMNUJ15 Strong Biomarker [583]
EHHADH OTBAAHL5 Strong Biomarker [12]
EI24 OTD4NOYS Strong Biomarker [69]
EIF3A OTFABY9G Strong Biomarker [69]
ELK1 OTH9MXD6 Strong Altered Expression [584]
ELK4 OTVSSEOE Strong Altered Expression [585]
ELL OTCBN5LF Strong Biomarker [586]
ELL2 OTZJRTFM Strong Biomarker [586]
ELOC OT0XHHWP Strong Biomarker [587]
EMB OT67E3Q1 Strong Biomarker [588]
EMP1 OTSZHUHQ Strong Biomarker [23]
EMP3 OTODMJ1D Strong Biomarker [536]
ENO1 OTB1KWJS Strong Altered Expression [589]
ENPP5 OTY807N5 Strong Biomarker [69]
EPB41L3 OTS6CHG2 Strong Biomarker [590]
EPHX3 OTU7LW2F Strong Posttranslational Modification [591]
EPS8L3 OT7XYA2T Strong Biomarker [592]
ERCC5 OTQAKFJM Strong Biomarker [593]
ERP29 OTNKANMH Strong Biomarker [69]
ERP44 OT7ZI7AG Strong Biomarker [69]
ESPL1 OTMGEVOK Strong Altered Expression [594]
ETV1 OT6PMJIK Strong Altered Expression [595]
ETV2 OTP5URZ8 Strong Altered Expression [125]
ETV3 OTEN03BM Strong Biomarker [12]
ETV4 OT8C98UZ Strong Biomarker [456]
EWSR1 OT7SRHV3 Strong Biomarker [456]
FAF2 OTE8CE2E Strong Biomarker [23]
FAM3B OTC2S91N Strong Altered Expression [19]
FBLN1 OT5MHHOP Strong Biomarker [450]
FBLN5 OTLVNZ8U Strong Biomarker [450]
FBXO44 OTEUEUTZ Strong Biomarker [23]
FGF13 OTHNNVSG Strong Altered Expression [123]
FHL2 OT0OAYWT Strong Biomarker [596]
FOXA1 OTEBY0TD Strong Altered Expression [597]
FOXA2 OTJOCVOY Strong Altered Expression [598]
FOXA3 OTRGT2OT Strong Biomarker [73]
FUT5 OTOPGL9M Strong Altered Expression [241]
FXYD3 OT9PPRHE Strong Altered Expression [599]
GADD45A OTDRV63V Strong Biomarker [600]
GADD45G OT8V1J4M Strong Biomarker [601]
GADD45GIP1 OT4IZ4TP Strong Biomarker [602]
GADL1 OTJM4A0R Strong Biomarker [532]
GALNT3 OT7M67WT Strong Biomarker [69]
GDE1 OTU6FSBF Strong Biomarker [603]
GLYATL1 OTS8JSRY Strong Altered Expression [604]
GNA12 OT3IRZH3 Strong Biomarker [605]
GNA13 OTVDL515 Strong Biomarker [605]
GNG5 OT5LR7MB Strong Biomarker [69]
GNRH2 OTORRM53 Strong Altered Expression [606]
GOLGA4 OTCMEHNJ Strong Biomarker [69]
GOLM1 OTOZSV6O Strong Altered Expression [607]
GPD2 OTV232Y7 Strong Altered Expression [608]
GPR75 OT8SPUGC Strong Biomarker [609]
GPSM1 OTA0SJBG Strong Biomarker [610]
GRB7 OTF8Y9XY Strong Biomarker [69]
GREB1 OTU6ZA26 Strong Biomarker [611]
GRHPR OTLV63QV Strong Biomarker [69]
GRP OT8JDFNI Strong Biomarker [612]
GSTCD OTIIINMT Strong Biomarker [31]
GSTK1 OTDNGWAF Strong Biomarker [69]
GUCD1 OTGUB3CM Strong Biomarker [35]
H3-4 OTY6ITYF Strong Altered Expression [613]
HACD1 OTEC7EP7 Strong Genetic Variation [21]
HBA1 OTW2BQF4 Strong Biomarker [280]
HBG1 OTVL4NSU Strong Biomarker [152]
HBG2 OT4J48JJ Strong Biomarker [152]
HBP1 OTDPGGDV Strong Altered Expression [126]
HERPUD1 OT9EROL6 Strong Biomarker [69]
HINFP OTLNEEPK Strong Altered Expression [614]
HIP1 OT7AKCFQ Strong Biomarker [615]
HIPK3 OT4WYQM2 Strong Altered Expression [616]
HIVEP1 OT7CAG4A Strong Biomarker [291]
HMMR OT4M0JTZ Strong Altered Expression [617]
HNF1B OTSYIC3T Strong Biomarker [267]
HNRNPK OTNPRM8U Strong Altered Expression [618]
HNRNPL OT0DJX74 Strong Altered Expression [619]
HOXA10 OTB6GQ09 Strong Altered Expression [620]
HOXB9 OTMVHQOU Strong Biomarker [621]
HOXC6 OTBCRAZV Strong Genetic Variation [573]
HOXC8 OTJUYU8J Strong Biomarker [622]
HOXD10 OT0NOWU2 Strong Biomarker [623]
HOXD3 OTBUZ35T Strong Biomarker [624]
HPSE2 OTGEPP8V Strong Altered Expression [625]
HRK OTR4GWJ0 Strong Posttranslational Modification [626]
HSPB2 OTS01646 Strong Altered Expression [58]
HYAL1 OT2SJN0X Strong Biomarker [627]
IBSP OT29944Y Strong Altered Expression [628]
IFI16 OT4SPU0U Strong Altered Expression [629]
IGFBP4 OT2HZRBD Strong Biomarker [40]
IGSF5 OTLIYA15 Strong Biomarker [69]
IGSF8 OTU22IKI Strong Biomarker [630]
IL27 OTIS3OF8 Strong Biomarker [268]
IL6ST OT1N9C70 Strong Biomarker [149]
ING4 OT0VVG4V Strong Biomarker [631]
INPP4B OTLROA7G Strong Biomarker [632]
INTS3 OT7NX4CD Strong Biomarker [535]
INTS4 OT5JQ913 Strong Biomarker [35]
IRX5 OT05J514 Strong Biomarker [633]
ITGB4 OT28UK84 Strong Altered Expression [634]
ITGBL1 OTJDHE17 Strong Altered Expression [254]
ITM2B OTMXEPXB Strong Biomarker [635]
ITSN1 OT8YF3S5 Strong Biomarker [12]
ITSN2 OT8S0OO8 Strong Biomarker [12]
IVNS1ABP OTYHL4I7 Strong Biomarker [152]
JADE2 OTVG2MYF Strong Biomarker [12]
JTB OT314JB6 Strong Altered Expression [636]
KAT5 OTL7257A Strong Altered Expression [637]
KCNRG OTXHYFOD Strong Biomarker [638]
KDELR1 OT8YBS5G Strong Biomarker [69]
KDM4D OTN6KAE6 Strong Altered Expression [125]
KDM5D OTEKG0KD Strong Altered Expression [639]
KDM6A OTZM3MJJ Strong Biomarker [12]
KIF22 OTY6X6BL Strong Genetic Variation [640]
KIF7 OT1J6NAW Strong Biomarker [641]
KLF15 OTGMQMVR Strong Biomarker [69]
KLF5 OT1ABI9N Strong Genetic Variation [642]
KLK10 OTD573EL Strong Altered Expression [643]
KLK11 OT5PKX7Y Strong Genetic Variation [278]
KMT2C OTC59BCO Strong Biomarker [12]
KMT2D OTTVHCLY Strong Biomarker [12]
KRT13 OTTYSKGX Strong Biomarker [644]
KRT14 OTUVZ1DW Strong Altered Expression [645]
LAMA5 OTIIXE4M Strong Altered Expression [646]
LAMB1 OT6J9LJR Strong Altered Expression [646]
LAMB2 OT71OI2Y Strong Biomarker [69]
LATS1 OTOOCG4R Strong Biomarker [227]
LCE2B OTA53PGQ Strong Biomarker [149]
LDHB OT9B1CT3 Strong Biomarker [255]
LHB OT5GBOVJ Strong Genetic Variation [647]
LMLN OTQF0JPY Strong Posttranslational Modification [648]
LMTK2 OT93MVIC Strong Biomarker [649]
LPXN OTUNV3CK Strong Biomarker [198]
LRP1B OT4YZG2N Strong Biomarker [149]
LZTS2 OTQFSQEE Strong Altered Expression [650]
MAGEA11 OTLT6Q3G Strong Altered Expression [651]
MAGI2 OTXDDKZS Strong Biomarker [652]
MAK OTEU2G41 Strong Biomarker [653]
MAL OTBM30SW Strong Biomarker [654]
MAP6 OTPUI00F Strong Biomarker [655]
MATN4 OT0CD0VH Strong Biomarker [12]
MBD1 OTD19VO6 Strong Biomarker [12]
MBD2 OTUQPP0R Strong Biomarker [69]
MED15 OT0D0JVD Strong Posttranslational Modification [656]
MED25 OTDBY87B Strong Altered Expression [657]
MEIS1 OTH9DKAD Strong Altered Expression [658]
MEIS2 OTG4ADLM Strong Altered Expression [658]
MGA OTTLB216 Strong Biomarker [12]
MGAT5 OTU4DD4G Strong Biomarker [659]
MICAL2 OT04OQQJ Strong Biomarker [660]
MMP26 OT9O89KU Strong Altered Expression [661]
MORN4 OTHBAGUE Strong Altered Expression [662]
MRE11 OTGU8TZM Strong Biomarker [12]
MRPS18B OT1K9PFX Strong Altered Expression [663]
MT3 OTVCZ7HI Strong Altered Expression [664]
MUC6 OTPVL723 Strong Biomarker [665]
MXI1 OTUQ9E0D Strong Biomarker [666]
MYBBP1A OTIVEMIU Strong Biomarker [12]
MYCL OT1MFQ5U Strong Biomarker [667]
MYH11 OTVNVWY3 Strong Genetic Variation [668]
MYH14 OT1TZEJK Strong Biomarker [69]
MYO6 OTJQYRC7 Strong Altered Expression [669]
MYOM2 OTD2UOXW Strong Genetic Variation [670]
MYSM1 OTO73N00 Strong Altered Expression [671]
MZF1 OTMVZCPW Strong Biomarker [672]
NAB2 OTG4BDF3 Strong Biomarker [673]
NAGK OTR4H8SJ Strong Biomarker [69]
NANOG OTUEY1FM Strong Altered Expression [674]
NCAPD3 OTOZY2UL Strong Biomarker [675]
NCOA7 OT2CNBOG Strong Biomarker [149]
NCOR1 OT04XNOU Strong Biomarker [12]
NCOR2 OTY917X0 Strong Altered Expression [676]
NDRG1 OTVO66BO Strong Altered Expression [677]
NDST2 OT21PY3J Strong Biomarker [12]
NDST4 OTEKG7JJ Strong Biomarker [149]
NECTIN2 OTIE0W6O Strong Biomarker [178]
NELFB OTCFH88S Strong Biomarker [678]
NFATC3 OTYOORME Strong Altered Expression [371]
NFIC OTLMCUIB Strong Biomarker [23]
NIPA2 OT4NEBNO Strong Altered Expression [551]
NIPAL3 OTI858LL Strong Biomarker [15]
NOG OTGRHHPG Strong Altered Expression [161]
NOL8 OT6RZLH3 Strong Biomarker [679]
NOX1 OTZPJQCC Strong Biomarker [680]
NOX3 OT0FFJH8 Strong Biomarker [12]
NPBWR1 OTN8NRXK Strong Posttranslational Modification [591]
NPPA OTMQNTNX Strong Therapeutic [681]
NR2C1 OTJEL7WT Strong Biomarker [682]
NTS OTPGDNQS Strong Biomarker [319]
NUCB2 OTHO6JWN Strong Biomarker [69]
NUDC OT073JKX Strong Altered Expression [683]
NUDT1 OTZSES3W Strong Altered Expression [684]
NUPR1 OT4FU8C0 Strong Altered Expression [685]
OBP2A OTBIJ5TI Strong Genetic Variation [640]
OLFM1 OTOYPEWW Strong Biomarker [152]
OR51E1 OTB7Q65H Strong Biomarker [686]
OSR1 OTB19LEQ Strong Altered Expression [687]
P4HB OTTYNYPF Strong Biomarker [69]
PA2G4 OT7IG7HT Strong Biomarker [412]
PAICS OTMZN747 Strong Genetic Variation [243]
PAM16 OTCMU9NL Strong Altered Expression [688]
PAQR4 OTNO659U Strong Biomarker [445]
PAX6 OTOC9876 Strong Biomarker [12]
PBX1 OTORABGO Strong Biomarker [622]
PCBP1 OTHN0TD7 Strong Biomarker [689]
PCBP2 OTXCN9CG Strong Altered Expression [690]
PCDH8 OTDDOQM2 Strong Biomarker [152]
PCK2 OTJ8LX4N Strong Biomarker [691]
PDIA3 OTHPQ0Q3 Strong Biomarker [255]
PDS5A OT34P56Z Strong Biomarker [12]
PDZD2 OTPPVRGY Strong Altered Expression [692]
PDZK1IP1 OTWA6M5K Strong Biomarker [69]
PEG3 OTHQW98S Strong Altered Expression [693]
PELP1 OTVXQNOT Strong Biomarker [596]
PENK OT8P3HMP Strong Biomarker [23]
PGAM2 OT9BE03I Strong Biomarker [69]
PHLPP1 OTIFXW8D Strong Biomarker [694]
PI16 OTJY2N6U Strong Biomarker [695]
PIGP OTGYAH4X Strong Biomarker [35]
PIK3R1 OT5BZ1J9 Strong Biomarker [149]
PIK3R2 OTZSUQK5 Strong Biomarker [12]
PIPOX OTWTCOTN Strong Biomarker [460]
PITX1 OTA0UN4C Strong Biomarker [696]
PITX3 OTE2KT8P Strong Biomarker [445]
PKP3 OTPL1HRB Strong Biomarker [69]
PLA2G10 OTRZ2L5A Strong Altered Expression [697]
PLEK2 OTUBWUUK Strong Biomarker [69]
PLXNA1 OTN0BING Strong Altered Expression [698]
PMEPA1 OTY8Z9UF Strong Genetic Variation [699]
PMS2 OTNLWTMI Strong Biomarker [700]
POU2F1 OTK7ELJ0 Strong Altered Expression [369]
POU3F2 OT30NFOC Strong Biomarker [529]
POU4F1 OTMHYGWQ Strong Altered Expression [701]
PPFIA2 OT34BLXJ Strong Altered Expression [702]
PPL OTTM4WDO Strong Biomarker [12]
PPP2CB OT24GMCM Strong Biomarker [703]
PPP2R2C OTXK0SDM Strong Altered Expression [704]
PPP3CC OT0AQD93 Strong Biomarker [703]
PPT2 OTD5VJ9A Strong Biomarker [705]
PRG2 OT0BCPQG Strong Biomarker [291]
PRKACB OT6RMDCE Strong Biomarker [706]
PROK1 OT8S7RUG Strong Altered Expression [334]
PRPF8 OTU39JZI Strong Altered Expression [707]
PRRX1 OTTZK5G8 Strong Biomarker [152]
PRSS2 OTOMVUWL Strong Altered Expression [343]
PRSS55 OTXXWI5Y Strong Altered Expression [2]
PSAP OTUOEKY7 Strong Altered Expression [708]
PSMA7 OTPHI6ST Strong Biomarker [240]
PSMC3IP OT9UB5UO Strong Biomarker [69]
PTHLH OTI1JF13 Strong Altered Expression [709]
PTMA OT2W4T1M Strong Altered Expression [710]
PTOV1 OT94WT5X Strong Altered Expression [711]
PTPN12 OT5WA666 Strong Biomarker [198]
PTPRK OTAP5AT3 Strong Biomarker [69]
PTRH2 OTBU39Q1 Strong Biomarker [23]
PURA OT975ELW Strong Altered Expression [712]
PVR OT3N91T7 Strong Biomarker [178]
PXN OTVMMUOF Strong Altered Expression [348]
PYHIN1 OT30GD05 Strong Biomarker [12]
RAB4B OTTT4DY3 Strong Biomarker [69]
RAD23B OT0PGOG3 Strong Biomarker [152]
RAD9A OTJ3AJQU Strong Altered Expression [713]
RAG1 OTV131E4 Strong Biomarker [12]
RAP2A OT0JB5S4 Strong Altered Expression [714]
RASD1 OT2BAJHK Strong Biomarker [69]
RASGRP3 OTEMEV3P Strong Altered Expression [715]
RASL11A OTDO6CMY Strong Biomarker [716]
RASSF1 OTEZIPB7 Strong Posttranslational Modification [717]
RASSF2 OT2JHDO4 Strong Altered Expression [718]
RBBP8 OTRHJ3GI Strong Altered Expression [685]
RBL1 OTDEBFYC Strong Biomarker [719]
RBL2 OTBQSOE6 Strong Genetic Variation [720]
RCBTB2 OTECBF4R Strong Altered Expression [721]
RCHY1 OTAE7504 Strong Biomarker [722]
REC8 OT6JAVXE Strong Biomarker [69]
RELB OTU3QYEF Strong Biomarker [723]
RFK OT77IYIS Strong Biomarker [724]
RGMB OT2DROYU Strong Biomarker [149]
RGS17 OT5RVUDS Strong Altered Expression [725]
RHEB OTFLTSEC Strong Altered Expression [726]
RHOC OTOLE1FT Strong Altered Expression [349]
RING1 OTCWTAX0 Strong Biomarker [727]
RIOX1 OTN41QXP Strong Altered Expression [728]
RLIM OTEBRNHJ Strong Biomarker [152]
RLN1 OTL6QNHG Strong Biomarker [729]
RLN2 OTY3OG71 Strong Altered Expression [730]
RNASE4 OTA5SZLC Strong Biomarker [69]
RND3 OTXMXPIH Strong Altered Expression [731]
RNF130 OT7DWTFH Strong Biomarker [69]
RNF14 OTWX0D0H Strong Altered Expression [732]
RNF31 OT4BZONL Strong Biomarker [12]
ROBO2 OTFJ9FQW Strong Biomarker [149]
RPL10 OTBHOZGC Strong Biomarker [69]
RPL11 OT3VZ6OE Strong Biomarker [149]
RPL12 OTIUAQDN Strong Biomarker [69]
RPL19 OT33LM66 Strong Altered Expression [733]
RPN2 OTJ1SKOA Strong Biomarker [69]
RPRD2 OTPPH601 Strong Biomarker [12]
RPS19 OTBKGP48 Strong Biomarker [23]
RPS27A OTIIGGZ2 Strong Altered Expression [734]
RPS6 OTT4D1LN Strong Biomarker [240]
RPS7 OTIK25WI Strong Altered Expression [735]
RRAS OTBBF28C Strong Biomarker [69]
RUVBL1 OTWV19L7 Strong Altered Expression [736]
RUVBL2 OTGWJ4T4 Strong Biomarker [535]
S100P OTJCXNJG Strong Altered Expression [737]
SAMD9 OTDG48P0 Strong Biomarker [12]
SARDH OTQ49Q27 Strong Biomarker [460]
SCARA3 OT46I38Y Strong Altered Expression [738]
SDF2L1 OTE7JIO2 Strong Biomarker [69]
SEC62 OTCWEL5F Strong Altered Expression [739]
SELENOS OTUEWIU9 Strong Biomarker [69]
SENP6 OT05LLF4 Strong Biomarker [149]
SENP7 OTQJ05ZS Strong Altered Expression [740]
SERINC3 OTQ1LAJ1 Strong Biomarker [69]
SERPINB1 OT5RDUFO Strong Biomarker [741]
SERPINB10 OT5ZM0X6 Strong Biomarker [742]
SERPINB6 OT7G55IK Strong Genetic Variation [21]
SERPINE2 OTYF5340 Strong Biomarker [743]
SESN3 OTJRY1Y5 Strong Biomarker [35]
SET OTGYYQJO Strong Biomarker [744]
SETDB1 OTWVUA1B Strong Biomarker [12]
SFN OTLJCZ1U Strong Altered Expression [745]
SGTA OTKOJ3JB Strong Biomarker [746]
SH2B1 OTJZO2CI Strong Biomarker [747]
SH3GLB1 OTAZ5OP8 Strong Altered Expression [748]
SH3GLB2 OTF7BB9S Strong Biomarker [749]
SHC1 OT1J5IRN Strong Biomarker [750]
SHQ1 OTFBXX2H Strong Altered Expression [751]
SIAH2 OTKED2XN Strong Altered Expression [5]
SIGLEC1 OTNWSQA9 Strong Altered Expression [752]
SIL1 OTDI85I5 Strong Biomarker [69]
SIM2 OT0QWHK4 Strong Biomarker [753]
SMARCA1 OT0Y6PTU Strong Biomarker [12]
SMARCA2 OTSGJ8SV Strong Altered Expression [754]
SMARCAD1 OT90AZTX Strong Biomarker [12]
SMARCC1 OTUOMBE7 Strong Altered Expression [755]
SMC1A OT9ZMRK9 Strong Altered Expression [756]
SMR3B OTL5HNM8 Strong Altered Expression [351]
SNAI2 OT7Y8EJ2 Strong Biomarker [757]
SOCS2 OTBPNKJQ Strong Altered Expression [758]
SORBS1 OTWH8762 Strong Genetic Variation [21]
SOX7 OTOZOFAG Strong Altered Expression [759]
SP5 OT4HUP9B Strong Biomarker [69]
SPATA18 OTOEHTHU Strong Biomarker [12]
SPATA19 OT47CHQR Strong Biomarker [749]
SPEN OT37A2MD Strong Biomarker [12]
SPINK5 OT61IIAO Strong Biomarker [69]
SPINT1 OT1CLR5L Strong Biomarker [760]
SPON2 OTE7JLNM Strong Biomarker [152]
SPRY2 OTH0CRCZ Strong Posttranslational Modification [761]
SPRY4 OT2VK9N0 Strong Altered Expression [762]
SRCAP OT82P6CN Strong Genetic Variation [763]
SRF OTW18FQN Strong Biomarker [764]
SRRM4 OTALUISN Strong Altered Expression [552]
SSR2 OTQJSL7M Strong Biomarker [69]
STARD10 OTWVNFV4 Strong Biomarker [69]
STARD3 OTSTC5B5 Strong Biomarker [69]
STAT5B OTZVPEBT Strong Altered Expression [490]
STEAP4 OTFTLAEZ Strong Biomarker [765]
STK26 OTW4QE0D Strong Altered Expression [766]
STRN4 OTHK2ZN6 Strong Altered Expression [767]
STX4 OTQ7YUX1 Strong Biomarker [69]
SUMO1 OTJFD4P5 Strong Altered Expression [768]
SUPT20H OTTMC0LH Strong Altered Expression [769]
SURF4 OTCSXJ9C Strong Biomarker [69]
SYNJ2 OTLRHXP1 Strong Genetic Variation [555]
TAF1L OT9Z7EVA Strong Biomarker [12]
TBC1D2 OTSGHPD0 Strong Biomarker [12]
TBC1D3 OT1GW0K2 Strong Genetic Variation [770]
TBC1D3B OTIXDB15 Strong Altered Expression [771]
TBPL1 OT4I143E Strong Biomarker [772]
TBX3 OTM64N7K Strong Biomarker [149]
TCEAL7 OTNPDZCN Strong Biomarker [152]
TCN2 OT41D0L3 Strong Biomarker [69]
TCP1 OT1MGUX9 Strong Biomarker [255]
TDRD1 OT0CBCI3 Strong Altered Expression [773]
TEAD1 OTK6971C Strong Biomarker [172]
TES OTL8PP6V Strong Altered Expression [774]
TGFB1I1 OTIK337D Strong Altered Expression [775]
TGFBR3 OTQOOUC4 Strong Altered Expression [776]
TGIF2LX OTLBWKZA Strong Genetic Variation [777]
TGM4 OTORRCG6 Strong Altered Expression [254]
THYN1 OTMRKMPD Strong Biomarker [23]
TJP3 OTC1K8HC Strong Biomarker [69]
TLE3 OTR9PH95 Strong Biomarker [778]
TLR10 OTQ1KVJO Strong Genetic Variation [105]
TMEM245 OTR7KEXW Strong Altered Expression [293]
TMEM64 OTO9IDFD Strong Biomarker [779]
TMOD1 OTTRYF9Y Strong Biomarker [23]
TMPRSS13 OTMAOAP3 Strong Posttranslational Modification [648]
TMSB15A OTSBWCES Strong Altered Expression [780]
TNFAIP6 OT1SLUZH Strong Biomarker [781]
TNFAIP8 OT1G9297 Strong Posttranslational Modification [782]
TNFRSF10C OTVHOL9B Strong Genetic Variation [783]
TNFRSF10D OTOSRDJT Strong Biomarker [703]
TOM1L1 OT37NXR0 Strong Biomarker [69]
TOPORS OT1ERFFQ Strong Altered Expression [784]
TP63 OT0WOOKQ Strong Biomarker [36]
TPD52L1 OTSA6U0I Strong Biomarker [69]
TRAF1 OTTLM5RU Strong Biomarker [69]
TRDMT1 OTAYQ8ZF Strong Altered Expression [785]
TREX2 OT5QAGJ4 Strong Genetic Variation [786]
TRIB1 OTPEO17G Strong Altered Expression [787]
TRIB2 OTHSX3MX Strong Altered Expression [788]
TRIM16 OTLRXYOZ Strong Biomarker [789]
TRIM29 OT2DNESG Strong Altered Expression [790]
TRIM36 OT37JQ8Y Strong Altered Expression [791]
TRIM68 OTHMDMOG Strong Altered Expression [792]
TRPS1 OT7XPPEL Strong Biomarker [793]
TSGA10 OTIF1O1T Strong Altered Expression [794]
TSPAN13 OTCS9BZY Strong Altered Expression [795]
TSPY1 OTPY57X4 Strong Genetic Variation [796]
TSPY3 OTQK3AKI Strong Genetic Variation [796]
TSPYL5 OT7QEI2X Strong Altered Expression [797]
TTC9C OTMOWK6Z Strong Biomarker [69]
TTF1 OT4K90WD Strong Altered Expression [529]
BAD OT63ERYM Definitive Biomarker [798]
CENPF OT7AG0SW Definitive Biomarker [799]
EAF2 OTSOET5L Definitive Biomarker [800]
GLCE OTPRSHX5 Definitive Altered Expression [801]
HEY1 OTJQL0I3 Definitive Altered Expression [802]
MAVS OTTQ0J64 Definitive Biomarker [803]
ONECUT2 OTHUE5YY Definitive Biomarker [799]
PKP1 OT9HSQ8F Definitive Biomarker [380]
SHBG OTPWU5IW Definitive Biomarker [804]
------------------------------------------------------------------------------------
⏷ Show the Full List of 670 DOT(s)

References

1 Androgen regulation of multidrug resistance-associated protein 4 (MRP4/ABCC4) in prostate cancer.Prostate. 2008 Sep 15;68(13):1421-9. doi: 10.1002/pros.20809.
2 ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNCaP-19 prostate tumors.BMC Cancer. 2010 Jun 14;10:288. doi: 10.1186/1471-2407-10-288.
3 Splice variant transcripts of the anterior gradient 2 gene as a marker of prostate cancer.Oncotarget. 2014 Sep 30;5(18):8681-9. doi: 10.18632/oncotarget.2365.
4 Aryl hydrocarbon receptor signaling involved in the invasiveness of LNCaP cells.Hum Cell. 2017 Apr;30(2):133-139. doi: 10.1007/s13577-016-0158-2. Epub 2017 Jan 16.
5 The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells.J Biol Chem. 2015 Aug 21;290(34):20865-20879. doi: 10.1074/jbc.M115.662155. Epub 2015 Jul 9.
6 Histone Demethylase KDM4C Stimulates the Proliferation of Prostate Cancer Cells via Activation of AKT and c-Myc.Cancers (Basel). 2019 Nov 13;11(11):1785. doi: 10.3390/cancers11111785.
7 Mitochondrial uncoupling reveals a novel therapeutic opportunity for p53-defective cancers. Nat Commun. 2018 Sep 26;9(1):3931.
8 Cell type specific gene expression analysis of prostate needle biopsies resolves tumor tissue heterogeneity.Oncotarget. 2015 Jan 20;6(2):1302-14. doi: 10.18632/oncotarget.2744.
9 Annexin A2 positively contributes to the malignant phenotype and secretion of IL-6 in DU145 prostate cancer cells.Int J Cancer. 2009 Jan 1;124(1):68-74. doi: 10.1002/ijc.23928.
10 Developmental and androgenic regulation of chromatin regulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex.Prostate. 2013 Apr;73(5):455-66. doi: 10.1002/pros.22587. Epub 2012 Oct 4.
11 KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3.J Biol Chem. 2008 Oct 31;283(44):29795-801. doi: 10.1074/jbc.M802515200. Epub 2008 Aug 28.
12 The long tail of oncogenic drivers in prostate cancer.Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
13 ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.J Clin Invest. 2018 Jul 2;128(7):2979-2995. doi: 10.1172/JCI96769. Epub 2018 Jun 4.
14 Functional analysis of the Aurora Kinase A Ile31 allelic variant in human prostate.Neoplasia. 2007 Sep;9(9):707-15. doi: 10.1593/neo.07322.
15 Integrative molecular concept modeling of prostate cancer progression.Nat Genet. 2007 Jan;39(1):41-51. doi: 10.1038/ng1935. Epub 2006 Dec 17.
16 Beta2-microglobulin signaling blockade inhibited androgen receptor axis and caused apoptosis in human prostate cancer cells.Clin Cancer Res. 2008 Sep 1;14(17):5341-7. doi: 10.1158/1078-0432.CCR-08-0793.
17 Bad expression influences time to androgen escape in prostate cancer.BJU Int. 2007 Sep;100(3):691-6. doi: 10.1111/j.1464-410X.2007.07001.x. Epub 2007 Jun 2.
18 BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence.Nat Genet. 2015 Jan;47(1):22-30. doi: 10.1038/ng.3165. Epub 2014 Dec 8.
19 FAM3B/PANDER inhibits cell death and increases prostate tumor growth by modulating the expression of Bcl-2 and Bcl-X(L) cell survival genes.BMC Cancer. 2018 Jan 22;18(1):90. doi: 10.1186/s12885-017-3950-9.
20 APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget. 2017 Dec 13;9(13):10962-10977. doi: 10.18632/oncotarget.23493. eCollection 2018 Feb 16.
21 Comparative RNA-seq analysis reveals dys-regulation of major canonical pathways in ERG-inducible LNCaP cell progression model of prostate cancer.Oncotarget. 2019 Jul 2;10(42):4290-4306. doi: 10.18632/oncotarget.27019. eCollection 2019 Jul 2.
22 Suppressive roles of calreticulin in prostate cancer growth and metastasis.Am J Pathol. 2009 Aug;175(2):882-90. doi: 10.2353/ajpath.2009.080417. Epub 2009 Jul 16.
23 Global analysis of differentially expressed genes in androgen-independent prostate cancer.Prostate Cancer Prostatic Dis. 2007;10(2):167-74. doi: 10.1038/sj.pcan.4500933. Epub 2007 Jan 2.
24 Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1.J Clin Med. 2019 Mar 12;8(3):348. doi: 10.3390/jcm8030348.
25 Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications.Clin Cancer Res. 2007 Apr 15;13(8):2354-61. doi: 10.1158/1078-0432.CCR-06-1692. Epub 2007 Apr 3.
26 The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer.Cancers (Basel). 2019 Aug 16;11(8):1194. doi: 10.3390/cancers11081194.
27 Integrative molecular profiling of routine clinical prostate cancer specimens.Ann Oncol. 2015 Jun;26(6):1110-1118. doi: 10.1093/annonc/mdv134. Epub 2015 Mar 3.
28 Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: a role for activated fibroblasts and CX3CL1-CX3CR1 axis.Cancer Res. 2009 Feb 1;69(3):785-93. doi: 10.1158/0008-5472.CAN-08-1946. Epub 2009 Jan 20.
29 The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor.Mol Cell Endocrinol. 2012 Apr 4;351(2):249-63. doi: 10.1016/j.mce.2011.12.015. Epub 2012 Jan 8.
30 Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells.Oncotarget. 2014 Jul 15;5(13):4895-908. doi: 10.18632/oncotarget.2052.
31 Xenobiotic-metabolizing gene variants, pesticide use, and the risk of prostate cancer.Pharmacogenet Genomics. 2011 Oct;21(10):615-23. doi: 10.1097/FPC.0b013e3283493a57.
32 Association between CYP2E1 polymorphisms and susceptibility to prostate cancer.Eur J Cancer Prev. 2003 Jun;12(3):205-11. doi: 10.1097/00008469-200306000-00007.
33 CYP3A4 polymorphisms--potential risk factors for breast and prostate cancer: a HuGE review.Am J Epidemiol. 2004 Nov 1;160(9):825-41. doi: 10.1093/aje/kwh294.
34 Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells.J Cell Physiol. 2007 Nov;213(2):528-39. doi: 10.1002/jcp.21130.
35 The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response.Cell Death Dis. 2014 Apr 24;5(4):e1195. doi: 10.1038/cddis.2014.157.
36 Dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced prostate carcinogenesis in CYP1A-humanized mice.Cancer Prev Res (Phila). 2012 Jul;5(7):963-72. doi: 10.1158/1940-6207.CAPR-12-0023. Epub 2012 May 11.
37 Polymorphisms in the DNA methyltransferase 3b gene and prostate cancer risk.Oncol Rep. 2005 Aug;14(2):569-73.
38 Increased expression of p21Waf1/Cip1 and JNK with costimulation of prostate cancer cell activation by an siRNA Egr-1 inhibitor.Oncol Rep. 2013 Aug;30(2):911-6. doi: 10.3892/or.2013.2503. Epub 2013 May 28.
39 PSMA-homing dsRNA chimeric protein vector kills prostate cancer cells and activates anti-tumor bystander responses.Oncotarget. 2017 Apr 11;8(15):24046-24062. doi: 10.18632/oncotarget.15733.
40 Endoglin regulates cancer-stromal cell interactions in prostate tumors.Cancer Res. 2011 May 15;71(10):3482-93. doi: 10.1158/0008-5472.CAN-10-2665. Epub 2011 Mar 28.
41 HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone.Cancer Res. 2017 Jan 1;77(1):74-85. doi: 10.1158/0008-5472.CAN-16-1656. Epub 2016 Oct 28.
42 Activation of AKR1C1/ER induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity.Oncotarget. 2015 May 10;6(13):11600-13. doi: 10.18632/oncotarget.3417.
43 SKP2 loss destabilizes EZH2 by promoting TRAF6-mediated ubiquitination to suppress prostate cancer.Oncogene. 2017 Mar;36(10):1364-1373. doi: 10.1038/onc.2016.300. Epub 2016 Nov 21.
44 Fas ligand delivery by a prostate-restricted replicative adenovirus enhances safety and antitumor efficacy.Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5463-73. doi: 10.1158/1078-0432.CCR-07-0342.
45 Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study.Nat Genet. 2011 Jul 10;43(8):785-91. doi: 10.1038/ng.882.
46 Development of Novel PSMA Ligands for Imaging and Therapy with Copper Isotopes.J Nucl Med. 2020 Jan;61(1):70-79. doi: 10.2967/jnumed.119.229054. Epub 2019 Sep 20.
47 Haplotype-based analysis of common variation in the growth hormone receptor gene and prostate cancer risk.Cancer Epidemiol Biomarkers Prev. 2007 Jan;16(1):169-73. doi: 10.1158/1055-9965.EPI-06-0320.
48 Expression of growth hormone-releasing hormone and its receptor splice variants in human prostate cancer.J Clin Endocrinol Metab. 2002 Oct;87(10):4707-14. doi: 10.1210/jc.2002-020347.
49 Combination of non-viral connexin 43 gene therapy and docetaxel inhibits the growth of human prostate cancer in mice.Int J Oncol. 2007 Jan;30(1):225-31.
50 Distinct expression and activity of GSK-3 and GSK-3 in prostate cancer.Int J Cancer. 2012 Sep 15;131(6):E872-83. doi: 10.1002/ijc.27620. Epub 2012 May 22.
51 Human glutathione S-transferase A1, T1, M1, and P1 polymorphisms and susceptibility to prostate cancer in the Japanese population.J Cancer Res Clin Oncol. 2005 Apr;131(4):238-42. doi: 10.1007/s00432-004-0634-z. Epub 2004 Dec 23.
52 Impairment of IGF2 gene expression in prostate cancer is triggered by epigenetic dysregulation of IGF2-DMR0 and its interaction with KLF4.Cell Commun Signal. 2017 Oct 10;15(1):40. doi: 10.1186/s12964-017-0197-7.
53 Identification of heparin-binding EGF-like growth factor (HB-EGF) as a biomarker for lysophosphatidic acid receptor type 1 (LPA1) activation in human breast and prostate cancers.PLoS One. 2014 May 14;9(5):e97771. doi: 10.1371/journal.pone.0097771. eCollection 2014.
54 Aurora B Kinase Promotes CHIP-Dependent Degradation of HIF1 in Prostate Cancer Cells.Mol Cancer Ther. 2020 Apr;19(4):1008-1017. doi: 10.1158/1535-7163.MCT-19-0777. Epub 2019 Dec 17.
55 Early detection of prostate carcinogens by immunohistochemistry of HMGB2.J Toxicol Sci. 2018;43(6):359-367. doi: 10.2131/jts.43.359.
56 Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer.Cancer Epidemiol Biomarkers Prev. 2007 May;16(5):969-78. doi: 10.1158/1055-9965.EPI-06-0767.
57 Decreased adhesiveness, resistance to anoikis and suppression of GRP94 are integral to the survival of circulating tumor cells in prostate cancer.Clin Exp Metastasis. 2008;25(5):497-508. doi: 10.1007/s10585-008-9157-3. Epub 2008 Mar 14.
58 Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer.Sci Rep. 2016 Aug 24;6:31842. doi: 10.1038/srep31842.
59 BMP-6 over-expression in prostate cancer is associated with increased Id-1 protein and a more invasive phenotype.J Pathol. 2008 Feb;214(3):394-404. doi: 10.1002/path.2292.
60 Genetic polymorphisms in IGF-I and IGFBP-3 are associated with prostate cancer in the Chinese population.PLoS One. 2014 Feb 21;9(2):e85609. doi: 10.1371/journal.pone.0085609. eCollection 2014.
61 Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1.Oncogene. 2003 Feb 20;22(7):1024-34. doi: 10.1038/sj.onc.1206210.
62 Genetic polymorphisms of the interleukin-18 gene and risk of prostate cancer.DNA Cell Biol. 2007 Aug;26(8):613-8. doi: 10.1089/dna.2007.0600.
63 The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk.Cancer Epidemiol Biomarkers Prev. 2005 Nov;14(11 Pt 1):2563-8. doi: 10.1158/1055-9965.EPI-05-0356.
64 Making an avipoxvirus encoding a tumor-associated antigen and a costimulatory molecule.Methods Mol Biol. 2014;1139:407-27. doi: 10.1007/978-1-4939-0345-0_32.
65 Pigment epithelial-derived factor and melanoma differentiation associated gene-7 cytokine gene therapies delivered by adipose-derived stromal/mesenchymal stem cells are effective in reducing prostate cancer cell growth.Stem Cells Dev. 2012 May 1;21(7):1112-23. doi: 10.1089/scd.2011.0247. Epub 2011 Jul 26.
66 Monoclonal Antibody against CXCL1 (HL2401) as a Novel Agent in Suppressing IL6 Expression and Tumoral Growth.Theranostics. 2019 Jan 25;9(3):853-867. doi: 10.7150/thno.29553. eCollection 2019.
67 Polymorphism of the insulin gene is associated with increased prostate cancer risk.Br J Cancer. 2003 Jan 27;88(2):263-9. doi: 10.1038/sj.bjc.6600747.
68 Antineoplastic effect of rapamycin is potentiated by inhibition of IRS-1 signaling in prostate cancer cells xenografts.J Cancer Res Clin Oncol. 2008 Aug;134(8):833-9. doi: 10.1007/s00432-008-0359-5. Epub 2008 Feb 9.
69 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
70 Kallikrein-related peptidase 4 gene (KLK4) in prostate tumors: quantitative expression analysis and evaluation of its clinical significance.Prostate. 2011 Dec;71(16):1780-9. doi: 10.1002/pros.21395. Epub 2011 Apr 25.
71 Gene expression profiles of lysophosphatidic acid-related molecules in the prostate: relevance to prostate cancer and benign hyperplasia.Prostate. 2009 Feb 15;69(3):283-92. doi: 10.1002/pros.20879.
72 Genetic and epigenetic inactivation of LPL gene in human prostate cancer.Int J Cancer. 2009 Feb 1;124(3):734-8. doi: 10.1002/ijc.23972.
73 The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk.J Cancer Epidemiol. 2012;2012:358076. doi: 10.1155/2012/358076. Epub 2012 Aug 2.
74 Mutant L Homologue 1 (MLH1): a possible new immunohistochemical marker for prostatic cancer.Histopathology. 2008 Jan;52(2):247-50. doi: 10.1111/j.1365-2559.2007.02879.x. Epub 2007 Nov 13.
75 Regulation of matrix metalloproteinase 13 expression by androgen in prostate cancer.Oncol Rep. 2004 Jun;11(6):1187-92.
76 Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer.Cancer Sci. 2017 Apr;108(4):744-752. doi: 10.1111/cas.13187. Epub 2017 Apr 12.
77 Cribriform and intraductal prostate cancer are associated with increased genomic instability and distinct genomic alterations.BMC Cancer. 2018 Jan 2;18(1):8. doi: 10.1186/s12885-017-3976-z.
78 Steroid receptor coactivator-3/AIB1 promotes cell migration and invasiveness through focal adhesion turnover and matrix metalloproteinase expression.Cancer Res. 2008 Jul 1;68(13):5460-8. doi: 10.1158/0008-5472.CAN-08-0955.
79 Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation.Chem Res Toxicol. 2013 Mar 18;26(3):477-85. doi: 10.1021/tx300524p. Epub 2013 Mar 8.
80 Prostate cancer radiosensitization through poly(ADP-Ribose) polymerase-1 hyperactivation.Cancer Res. 2010 Oct 15;70(20):8088-96. doi: 10.1158/0008-5472.CAN-10-1418. Epub 2010 Oct 12.
81 The expression of glucocorticoid receptor is negatively regulated by active androgen receptor signaling in prostate tumors.Int J Cancer. 2015 Feb 15;136(4):E27-38. doi: 10.1002/ijc.29147. Epub 2014 Aug 27.
82 Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality.Oncogene. 2017 Jun 15;36(24):3417-3427. doi: 10.1038/onc.2016.482. Epub 2017 Jan 16.
83 Association between polymorphism of human oxoguanine glycosylase 1 and risk of prostate cancer.J Urol. 2003 Dec;170(6 Pt 1):2471-4. doi: 10.1097/01.ju.0000087498.23008.bb.
84 Discovery of Stereospecific PARP-1 Inhibitor Isoindolinone NMS-P515.ACS Med Chem Lett. 2019 Mar 13;10(4):534-538. doi: 10.1021/acsmedchemlett.8b00569. eCollection 2019 Apr 11.
85 Group IIA phospholipase A as a prognostic marker in prostate cancer: relevance to clinicopathological variables and disease-specific mortality.APMIS. 2009 Mar;117(3):151-61. doi: 10.1111/j.1600-0463.2008.00002.x.
86 Role of the phospholipase A2 receptor in liposome drug delivery in prostate cancer cells.Mol Pharm. 2014 Oct 6;11(10):3443-51. doi: 10.1021/mp500174p. Epub 2014 Sep 22.
87 An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer.Nat Genet. 2018 Feb;50(2):206-218. doi: 10.1038/s41588-017-0027-2. Epub 2018 Jan 15.
88 Requirement of androgen-dependent activation of protein kinase Czeta for androgen-dependent cell proliferation in LNCaP Cells and its roles in transition to androgen-independent cells.Mol Endocrinol. 2006 Dec;20(12):3053-69. doi: 10.1210/me.2006-0033. Epub 2006 Aug 24.
89 NBN gain is predictive for adverse outcome following image-guided radiotherapy for localized prostate cancer.Oncotarget. 2014 Nov 30;5(22):11081-90. doi: 10.18632/oncotarget.2404.
90 COX-2 mediates pro-tumorigenic effects of PKC in prostate cancer.Oncogene. 2018 Aug;37(34):4735-4749. doi: 10.1038/s41388-018-0318-9. Epub 2018 May 16.
91 Immunohistochemical analysis of Reg IV in urogenital organs: Frequent expression of Reg IV in prostate cancer and potential utility as serum tumor marker.Oncol Rep. 2009 Jan;21(1):95-100.
92 Association between RNASEL, MSR1, and ELAC2 single nucleotide polymorphisms and gene expression in prostate cancer risk.Urol Oncol. 2016 Oct;34(10):431.e1-8. doi: 10.1016/j.urolonc.2016.05.018. Epub 2016 Jun 16.
93 Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice.Cancer Res. 2007 Oct 1;67(19):9089-96. doi: 10.1158/0008-5472.CAN-07-2887.
94 Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res. 2011 Mar;50(2):140-9. doi: 10.1111/j.1600-079X.2010.00823.x. Epub 2010 Nov 9.
95 Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist.Oncogene. 2017 Jul 27;36(30):4299-4310. doi: 10.1038/onc.2017.64. Epub 2017 Mar 27.
96 A steep radioiodine dose response scalable to humans in sodium-iodide symporter (NIS)-mediated radiovirotherapy for prostate cancer.Cancer Gene Ther. 2012 Dec;19(12):839-44. doi: 10.1038/cgt.2012.68. Epub 2012 Oct 5.
97 CaT1 expression correlates with tumor grade in prostate cancer. Biochem Biophys Res Commun. 2001 Apr 6;282(3):729-34.
98 Loss of the tumor suppressor, Tp53, enhances the androgen receptor-mediated oncogenic transformation and tumor development in the mouse prostate.Oncogene. 2019 Sep;38(38):6507-6520. doi: 10.1038/s41388-019-0901-8. Epub 2019 Jul 29.
99 DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.Prostate. 2015 Nov;75(15):1790-801. doi: 10.1002/pros.23052. Epub 2015 Sep 1.
100 Abi1 loss drives prostate tumorigenesis through activation of EMT and non-canonical WNT signaling.Cell Commun Signal. 2019 Sep 18;17(1):120. doi: 10.1186/s12964-019-0410-y.
101 Six-Transmembrane Epithelial Antigen of the Prostate-1 (STEAP-1)-Targeted Ultrasound Imaging Microbubble Improves Detection of Prostate Cancer In Vivo.J Ultrasound Med. 2019 Feb;38(2):299-305. doi: 10.1002/jum.14689. Epub 2018 Jul 19.
102 Molecular characterization of the Ggamma-globin-Tag transgenic mouse model of hormone refractory prostate cancer: comparison to human prostate cancer.Prostate. 2010 May 1;70(6):630-45. doi: 10.1002/pros.21097.
103 Molecular oncogenesis of prostate adenocarcinoma: role of the human epidermal growth factor receptor 2 (HER-2/neu).Tumori. 2010 Sep-Oct;96(5):645-9. doi: 10.1177/030089161009600501.
104 TLR4 signaling promotes the expression of VEGF and TGFbeta1 in human prostate epithelial PC3 cells induced by lipopolysaccharide.Cell Immunol. 2008;254(1):20-7. doi: 10.1016/j.cellimm.2008.06.007. Epub 2008 Jul 22.
105 Genetic variation in the toll-like receptor gene cluster (TLR10-TLR1-TLR6) and prostate cancer risk.Int J Cancer. 2008 Dec 1;123(11):2644-50. doi: 10.1002/ijc.23826.
106 The Glu228Ala polymorphism in the ligand binding domain of death receptor 4 is associated with increased risk for prostate cancer metastases.Prostate. 2008 Feb 15;68(3):264-8. doi: 10.1002/pros.20682.
107 The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK 1/2 regulation.Carcinogenesis. 2019 Jul 20;40(7):828-839. doi: 10.1093/carcin/bgz105.
108 Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival.Cancer Res. 2007 Mar 15;67(6):2893-8. doi: 10.1158/0008-5472.CAN-06-2962.
109 PAI-1 induces cell detachment, downregulates nucleophosmin (B23) and fortilin (TCTP) in LnCAP prostate cancer cells.Int J Mol Med. 2007 Jul;20(1):11-20.
110 Expression of thymidylate synthase, dihydropyrimidine dehydrogenase, thymidine phosphorylase, and orotate phosphoribosyl transferase in prostate cancer.Prostate Cancer Prostatic Dis. 2005;8(3):260-5. doi: 10.1038/sj.pcan.4500817.
111 Overexpression of orotate phosphoribosyl transferase in hormone-refractory prostate cancer.Oncol Rep. 2009 Jan;21(1):33-7.
112 Reduced vitamin D receptor (VDR) expression and plasma vitamin D levels are associated with aging-related prostate lesions.Prostate. 2018 May;78(7):532-546. doi: 10.1002/pros.23498. Epub 2018 Mar 5.
113 Linking microsomal prostaglandin E Synthase-1/PGE-2 pathway with miR-15a and -186 expression: Novel mechanism of VEGF modulation in prostate cancer.Oncotarget. 2016 Jul 12;7(28):44350-44364. doi: 10.18632/oncotarget.10051.
114 Vasoactive intestinal peptide behaves as a pro-metastatic factor in human prostate cancer cells.Prostate. 2009 May 15;69(7):774-86. doi: 10.1002/pros.20930.
115 Activation of -Catenin Cooperates with Loss of Pten to Drive AR-Independent Castration-Resistant Prostate Cancer.Cancer Res. 2020 Feb 1;80(3):576-590. doi: 10.1158/0008-5472.CAN-19-1684. Epub 2019 Nov 12.
116 Expressional profiling of prostate cancer risk SNPs at 11q13.5 identifies DGAT2 as a new target gene.Genes Chromosomes Cancer. 2016 Aug;55(8):661-73. doi: 10.1002/gcc.22368. Epub 2016 May 24.
117 Plasminogen activator inhibitor-1 inhibits prostate tumor growth through endothelial apoptosis.Mol Cancer Ther. 2008 May;7(5):1227-36. doi: 10.1158/1535-7163.MCT-08-0051.
118 Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area.Genes Chromosomes Cancer. 2015 Jan;54(1):51-62. doi: 10.1002/gcc.22218. Epub 2014 Sep 18.
119 Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways.Endocr Relat Cancer. 2008 Dec;15(4):953-64. doi: 10.1677/ERC-08-0136. Epub 2008 Sep 10.
120 Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival. Oncogene. 2008 Nov 27;27(56):7106-17. doi: 10.1038/onc.2008.318. Epub 2008 Sep 8.
121 Expression of androgen and estrogen related proteins in normal weight and obese prostate cancer patients.Prostate. 2009 Apr 1;69(5):520-7. doi: 10.1002/pros.20901.
122 Interaction between von Hippel-Lindau Protein and Fatty Acid Synthase Modulates Hypoxia Target Gene Expression.Sci Rep. 2017 Aug 3;7(1):7190. doi: 10.1038/s41598-017-05685-3.
123 Fibroblast growth factor and ornithine decarboxylase 5'UTRs enable preferential expression in human prostate cancer cells and in prostate tumors of PTEN(-/-) transgenic mice.Cancer Gene Ther. 2012 Jan;19(1):19-29. doi: 10.1038/cgt.2011.62. Epub 2011 Sep 16.
124 CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer.Theranostics. 2017 Jan 1;7(1):67-80. doi: 10.7150/thno.16752. eCollection 2017.
125 Cooperation between ETS variant 2 and Jumonji domaincontaining 2 histone demethylases.Mol Med Rep. 2018 Apr;17(4):5518-5527. doi: 10.3892/mmr.2018.8507. Epub 2018 Jan 26.
126 Macrophage migration inhibitory factor is a direct target of HBP1-mediated transcriptional repression that is overexpressed in prostate cancer.Oncogene. 2010 May 27;29(21):3067-78. doi: 10.1038/onc.2010.97. Epub 2010 Apr 12.
127 Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition.Oncogene. 2017 Feb 2;36(5):687-699. doi: 10.1038/onc.2016.240. Epub 2016 Jul 4.
128 Association between polymorphisms of folate-metabolizing enzymes and risk of prostate cancer.Eur J Surg Oncol. 2008 Jul;34(7):805-10. doi: 10.1016/j.ejso.2007.09.008. Epub 2007 Oct 29.
129 The role of PIM1/PIM2 kinases in tumors of the male reproductive system.Sci Rep. 2016 Nov 30;6:38079. doi: 10.1038/srep38079.
130 Genetic and epigenetic regulation of the organic cation transporter 3, SLC22A3. Pharmacogenomics J. 2013 Apr;13(2):110-20.
131 Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin.Mol Cancer Res. 2012 Jun;10(6):821-33. doi: 10.1158/1541-7786.MCR-11-0615. Epub 2012 Mar 27.
132 Protein expression of matriptase and its cognate inhibitor HAI-1 in human prostate cancer: a tissue microarray and automated quantitative analysis.Appl Immunohistochem Mol Morphol. 2009 Jan;17(1):23-30. doi: 10.1097/PAI.0b013e31817c3334.
133 The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression.Oncogene. 2012 Nov 15;31(46):4878-87. doi: 10.1038/onc.2011.641. Epub 2012 Feb 13.
134 Androgen-mediated cholesterol metabolism in LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-coenzyme A:Cholesterol Acyltransferase (ACAT).Prostate. 2008 Jan 1;68(1):20-33. doi: 10.1002/pros.20674.
135 Analysis of cholinesterases in human prostate and sperm: implications in cancer and fertility.Chem Biol Interact. 2010 Sep 6;187(1-3):432-5. doi: 10.1016/j.cbi.2010.03.038. Epub 2010 Mar 29.
136 Truncating mutations in the ACVR2 gene attenuates activin signaling in prostate cancer cells.Cancer Genet Cytogenet. 2005 Dec;163(2):123-9. doi: 10.1016/j.cancergencyto.2005.05.007.
137 ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer.Eur Urol. 2008 Nov;54(5):1097-106. doi: 10.1016/j.eururo.2007.11.034. Epub 2007 Nov 26.
138 The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFbeta1 in prostate cells: relevance to the accumulation of versican.Prostate. 2005 May 15;63(3):269-75. doi: 10.1002/pros.20182.
139 PACAP and type I PACAP receptors in human prostate cancer tissue.Ann N Y Acad Sci. 2006 Jul;1070:440-9. doi: 10.1196/annals.1317.059.
140 PAC1-R null isoform expression in human prostate cancer tissue.Prostate. 2006 Apr 1;66(5):514-21. doi: 10.1002/pros.20356.
141 Hormonal regulation of beta2-adrenergic receptor level in prostate cancer. Prostate. 2008 Jul 1;68(10):1133-42. doi: 10.1002/pros.20778.
142 Case-only gene-environment interaction between ALAD tagSNPs and occupational lead exposure in prostate cancer.Prostate. 2014 May;74(6):637-46. doi: 10.1002/pros.22781. Epub 2014 Feb 5.
143 Activated leukocyte cell adhesion molecule: a new paradox in cancer.Transl Res. 2008 Mar;151(3):122-8. doi: 10.1016/j.trsl.2007.09.006. Epub 2007 Oct 23.
144 Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem. 2006 Jul 7;281(27):18601-9. doi: 10.1074/jbc.M601887200. Epub 2006 Apr 25.
145 Downregulation of vascular endothelial growth factor and induction of tumor dormancy by 15-lipoxygenase-2 in prostate cancer.Int J Cancer. 2009 Apr 1;124(7):1545-51. doi: 10.1002/ijc.24118.
146 Analysis of bone alkaline phosphatase as a marker for the diagnosis of osteoporosis in men under androgen ablation.Int J Biol Markers. 2003 Oct-Dec;18(4):290-4. doi: 10.1177/172460080301800407.
147 Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus.Prostate. 2008 Sep 1;68(12):1354-61. doi: 10.1002/pros.20800.
148 Elevated expression of angiogenin in prostate cancer and its precursors.Clin Cancer Res. 2005 Dec 1;11(23):8358-63. doi: 10.1158/1078-0432.CCR-05-0962.
149 Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets.Nat Genet. 2018 May;50(5):682-692. doi: 10.1038/s41588-018-0086-z. Epub 2018 Apr 16.
150 Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1.Mol Cell Biochem. 2016 Jan;411(1-2):11-21. doi: 10.1007/s11010-015-2564-2. Epub 2015 Sep 14.
151 Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer.J Cell Biochem. 2008 Oct 1;105(2):370-80. doi: 10.1002/jcb.21835.
152 Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study.Infect Agent Cancer. 2009 Feb 10;4 Suppl 1(Suppl 1):S3. doi: 10.1186/1750-9378-4-S1-S3.
153 Expression of aquaporin 3 in the human prostate.Int J Urol. 2007 Dec;14(12):1088-92; discussion 1092. doi: 10.1111/j.1442-2042.2007.01901.x.
154 Rapid Development of Spinal Epidural Lipomatosis after Treatment of Metastatic Castration-Resistant Prostate Cancer with Second-Generation Androgen Receptor Antagonists.World Neurosurg. 2019 May;125:222-227. doi: 10.1016/j.wneu.2019.01.222. Epub 2019 Feb 11.
155 Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS One. 2013;8(2):e55146.
156 Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter.Prostate. 2004 Jun 1;59(4):370-82. doi: 10.1002/pros.20010.
157 Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 2014 Oct 15;74(20):5819-31. doi: 10.1158/0008-5472.CAN-13-3527.
158 Peptide Agonists of Vasopressin V2 Receptor Reduce Expression of Neuroendocrine Markers and Tumor Growth in Human Lung and Prostate Tumor Cells.Front Oncol. 2017 Jan 30;7:11. doi: 10.3389/fonc.2017.00011. eCollection 2017.
159 Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression.Prostate. 2008 Mar 1;68(4):453-61. doi: 10.1002/pros.20723.
160 Osteoblasts-derived BMP-2 enhances the motility of prostate cancer cells via activation of integrins.Prostate. 2008 Sep 1;68(12):1341-53. doi: 10.1002/pros.20799.
161 The prognostic significance of BMP-6 signaling in prostate cancer.Mod Pathol. 2008 Dec;21(12):1436-43. doi: 10.1038/modpathol.2008.94. Epub 2008 Oct 17.
162 Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment.Neoplasia. 2010 Feb;12(2):192-205. doi: 10.1593/neo.91836.
163 Hepatocyte growth factor up-regulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate cancer cells.Int J Oncol. 2007 Feb;30(2):521-9.
164 The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs.Oncogene. 2006 Jan 5;25(1):70-8. doi: 10.1038/sj.onc.1209058.
165 A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer.Br J Cancer. 2009 Jan 27;100(2):426-30. doi: 10.1038/sj.bjc.6604847. Epub 2009 Jan 6.
166 CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features.BMC Cancer. 2015 Jul 25;15:549. doi: 10.1186/s12885-015-1559-4.
167 CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells.J Biol Chem. 2008 Apr 11;283(15):10162-73. doi: 10.1074/jbc.M707159200. Epub 2008 Jan 29.
168 Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study.Eur Radiol. 2017 Oct;27(10):4200-4208. doi: 10.1007/s00330-017-4805-0. Epub 2017 Apr 6.
169 Akt activation by Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 2017 Aug 25;292(34):14188-14204. doi: 10.1074/jbc.M117.778464. Epub 2017 Jun 20.
170 Calpain-mediated androgen receptor breakdown in apoptotic prostate cancer cells. J Cell Physiol. 2008 Dec;217(3):569-76. doi: 10.1002/jcp.21565.
171 Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability.Prostate. 2006 Sep 1;66(12):1292-301. doi: 10.1002/pros.20438.
172 TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer.Br J Cancer. 2008 Dec 2;99(11):1849-58. doi: 10.1038/sj.bjc.6604774. Epub 2008 Nov 11.
173 Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas.Clin Cancer Res. 2015 Dec 15;21(24):5619-29. doi: 10.1158/1078-0432.CCR-15-0744. Epub 2015 Aug 5.
174 Cyclin D3 action in androgen receptor regulation and prostate cancer.Oncogene. 2008 May 15;27(22):3111-21. doi: 10.1038/sj.onc.1210981. Epub 2007 Dec 17.
175 Androgen receptor negatively influences the expression of chemokine receptors (CXCR4, CCR1) and ligand-mediated migration in prostate cancer DU-145.Oncol Rep. 2006 Oct;16(4):831-6.
176 Expression and functional role of CCR9 in prostate cancer cell migration and invasion.Clin Cancer Res. 2004 Dec 15;10(24):8743-50. doi: 10.1158/1078-0432.CCR-04-0266.
177 Silencing of CD24 Enhances the PRIMA-1-Induced Restoration of Mutant p53 in Prostate Cancer Cells.Clin Cancer Res. 2016 May 15;22(10):2545-54. doi: 10.1158/1078-0432.CCR-15-1927. Epub 2015 Dec 28.
178 Identification of targets for prostate cancer immunotherapy.Prostate. 2019 Apr;79(5):498-505. doi: 10.1002/pros.23756. Epub 2019 Jan 6.
179 Inhibition of decay-accelerating factor (CD55) attenuates prostate cancer growth and survival in vivo.Neoplasia. 2006 Jan;8(1):69-78. doi: 10.1593/neo.05679.
180 Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells.J Immunol. 2006 Dec 15;177(12):8730-9. doi: 10.4049/jimmunol.177.12.8730.
181 Activation of the Raf-1/MEK/Erk kinase pathway by a novel Cdc25 inhibitor in human prostate cancer cells.Prostate. 2004 Jan 1;58(1):95-102. doi: 10.1002/pros.10292.
182 Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer.Oncogene. 2003 Feb 6;22(5):734-9. doi: 10.1038/sj.onc.1206121.
183 Increased expression and activity of CDC25C phosphatase and an alternatively spliced variant in prostate cancer.Clin Cancer Res. 2005 Jul 1;11(13):4701-6. doi: 10.1158/1078-0432.CCR-04-2551.
184 Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells.Cancer Res. 2007 Dec 15;67(24):11942-50. doi: 10.1158/0008-5472.CAN-07-3162.
185 Cadherin-11 promotes the metastasis of prostate cancer cells to bone.Mol Cancer Res. 2008 Aug;6(8):1259-67. doi: 10.1158/1541-7786.MCR-08-0077.
186 Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer.Oncotarget. 2016 Feb 9;7(6):6835-46. doi: 10.18632/oncotarget.6899.
187 Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes.Mol Ther. 2010 Jan;18(1):181-7. doi: 10.1038/mt.2009.207. Epub 2009 Sep 8.
188 Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis.J Biol Chem. 2004 Jul 9;279(28):29302-7. doi: 10.1074/jbc.M403664200. Epub 2004 Apr 30.
189 Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.Oncotarget. 2016 Jul 26;7(30):48011-48026. doi: 10.18632/oncotarget.10333.
190 CEA-related cell adhesion molecule-1 is involved in angiogenic switch in prostate cancer.Oncogene. 2006 Aug 17;25(36):4965-74. doi: 10.1038/sj.onc.1209514. Epub 2006 Mar 27.
191 Receptor tyrosine kinase recepteur d'origine nantais as predictive marker for aggressive prostate cancer in African Americans.Mol Carcinog. 2019 Jun;58(6):854-861. doi: 10.1002/mc.23002. Epub 2019 Mar 11.
192 CGA gene (coding for the alpha subunit of glycoprotein hormones) overexpression in ER alpha-positive prostate tumors.Eur Urol. 2002 Mar;41(3):335-41. doi: 10.1016/s0302-2838(02)00020-9.
193 Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer.Cancer Lett. 2008 Oct 18;270(1):173-80. doi: 10.1016/j.canlet.2008.05.006. Epub 2008 Jun 20.
194 Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia.Urol Oncol. 2008 Jan-Feb;26(1):47-52. doi: 10.1016/j.urolonc.2007.07.020.
195 Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis.Cancer Res. 2005 Jul 1;65(13):5647-53. doi: 10.1158/0008-5472.CAN-04-4416.
196 The involvement of altered corticotropin releasing factor receptor 2 expression in prostate cancer due to alteration of anti-angiogenic signaling pathways.Prostate. 2009 Mar 1;69(4):443-8. doi: 10.1002/pros.20892.
197 TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells.BMC Cancer. 2008 Oct 3;8:282. doi: 10.1186/1471-2407-8-282.
198 Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells.Am J Physiol Cell Physiol. 2007 Jun;292(6):C2288-96. doi: 10.1152/ajpcell.00503.2006. Epub 2007 Feb 28.
199 Frequent loss of cystatin E/M expression implicated in the progression of prostate cancer. Oncogene. 2009 Aug 6;28(31):2829-38. doi: 10.1038/onc.2009.134. Epub 2009 Jun 8.
200 Macrophage cathepsin K promotes prostate tumor progression in bone.Oncogene. 2013 Mar 21;32(12):1580-93. doi: 10.1038/onc.2012.166. Epub 2012 May 21.
201 CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells.Cancer Sci. 2008 Jul;99(7):1362-9. doi: 10.1111/j.1349-7006.2008.00833.x. Epub 2008 Apr 29.
202 Cytochrome P450 1B1 inhibition suppresses tumorigenicity of prostate cancer via caspase-1 activation.Oncotarget. 2017 Jun 13;8(24):39087-39100. doi: 10.18632/oncotarget.16598.
203 The interaction of CYP3A5 polymorphisms along the androgen metabolism pathway in prostate cancer.Int J Cancer. 2008 Jun 1;122(11):2511-6. doi: 10.1002/ijc.23425.
204 Overexpression of cysteinyl LT1 receptor in prostate cancer and CysLT1R antagonist inhibits prostate cancer cell growth through apoptosis.Oncol Rep. 2007 Jul;18(1):99-104.
205 Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.Clin Biochem. 2008 Oct;41(14-15):1140-9. doi: 10.1016/j.clinbiochem.2008.04.026. Epub 2008 Jun 10.
206 REDD1 integrates hypoxia-mediated survival signaling downstream of phosphatidylinositol 3-kinase.Oncogene. 2005 Feb 10;24(7):1138-49. doi: 10.1038/sj.onc.1208236.
207 A fluorescence in situ hybridization screen for E26 transformation-specific aberrations: identification of DDX5-ETV4 fusion protein in prostate cancer.Cancer Res. 2008 Sep 15;68(18):7629-37. doi: 10.1158/0008-5472.CAN-08-2014.
208 DGAT1 Inhibitor Suppresses Prostate Tumor Growth and Migration by Regulating Intracellular Lipids and Non-Centrosomal MTOC Protein GM130.Sci Rep. 2019 Feb 28;9(1):3035. doi: 10.1038/s41598-019-39537-z.
209 Assessment of the need for DCE MRI in the detection of dominant lesions in the whole gland: Correlation between histology and MRI of prostate cancer.NMR Biomed. 2018 Mar;31(3). doi: 10.1002/nbm.3882. Epub 2017 Dec 20.
210 Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 4', 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential.J Mol Signal. 2007 Aug 24;2:7. doi: 10.1186/1750-2187-2-7.
211 Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1.Oncogene. 2018 Sep;37(39):5305-5324. doi: 10.1038/s41388-018-0294-0. Epub 2018 Jun 1.
212 High intracellular Zn2+ ions modulate the VHR, ZAP-70 and ERK activities of LNCaP prostate cancer cells.Cell Mol Biol Lett. 2008;13(3):375-90. doi: 10.2478/s11658-008-0009-6. Epub 2008 Feb 29.
213 E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-B modulation.Mol Cancer. 2014 Apr 17;13:84. doi: 10.1186/1476-4598-13-84.
214 The interleukin 6 receptor is a direct transcriptional target of E2F3 in prostate tumor derived cells.Prostate. 2012 May 1;72(6):649-60. doi: 10.1002/pros.21468. Epub 2011 Aug 11.
215 Nevirapine restores androgen signaling in hormone-refractory human prostate carcinoma cells both in vitro and in vivo. Prostate. 2009 May 15;69(7):744-54. doi: 10.1002/pros.20923.
216 Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. 2009 Feb 13;379(3):726-31. doi: 10.1016/j.bbrc.2008.12.098. Epub 2008 Dec 29.
217 Synthesis and pharmacological evaluation of novel epidermal growth factor receptor inhibitors against prostate tumor cells.Oncol Lett. 2018 Nov;16(5):6522-6530. doi: 10.3892/ol.2018.9438. Epub 2018 Sep 14.
218 PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability.Oncotarget. 2015 Aug 21;6(24):20356-69. doi: 10.18632/oncotarget.3931.
219 Ligand-dependent EphA7 signaling inhibits prostate tumor growth and progression.Cell Death Dis. 2017 Oct 12;8(10):e3122. doi: 10.1038/cddis.2017.507.
220 EPHB4 inhibition activates ER stress to promote immunogenic cell death of prostate cancer cells.Cell Death Dis. 2019 Oct 22;10(11):801. doi: 10.1038/s41419-019-2042-y.
221 Association between estrogen and androgen receptor genes and prostate cancer risk.Eur J Endocrinol. 2009 Jan;160(1):101-6. doi: 10.1530/EJE-08-0321. Epub 2008 Oct 24.
222 The orphan receptor ERRalpha interferes with steroid signaling.Nucleic Acids Res. 2008 Sep;36(16):5350-61. doi: 10.1093/nar/gkn520. Epub 2008 Aug 12.
223 Orphan nuclear receptor estrogen-related receptor-beta suppresses in vitro and in vivo growth of prostate cancer cells via p21(WAF1/CIP1) induction and as a potential therapeutic target in prostate cancer.Oncogene. 2008 May 22;27(23):3313-28. doi: 10.1038/sj.onc.1210986. Epub 2007 Dec 10.
224 ETS1 induces transforming growth factor signaling and promotes epithelial-to-mesenchymal transition in prostate cancer cells.J Cell Biochem. 2019 Jan;120(1):848-860. doi: 10.1002/jcb.27446. Epub 2018 Aug 30.
225 Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice.J Thromb Haemost. 2018 Nov;16(11):2258-2269. doi: 10.1111/jth.14277. Epub 2018 Sep 27.
226 Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.J Biol Chem. 2008 May 2;283(18):12293-304. doi: 10.1074/jbc.M709493200. Epub 2008 Feb 28.
227 Loss of Par3 promotes prostatic tumorigenesis by enhancing cell growth and changing cell division modes.Oncogene. 2019 Mar;38(12):2192-2205. doi: 10.1038/s41388-018-0580-x. Epub 2018 Nov 22.
228 Overexpression of protease-activated receptors-1,-2, and-4 (PAR-1, -2, and -4) in prostate cancer.Prostate. 2007 May 15;67(7):743-56. doi: 10.1002/pros.20503.
229 Expression of cutaneous fatty acid-binding protein (C-FABP) in prostate cancer: potential prognostic marker and target for tumourigenicity-suppression.Int J Oncol. 2008 Apr;32(4):767-75.
230 Squalene synthase, a determinant of Raft-associated cholesterol and modulator of cancer cell proliferation. J Biol Chem. 2007 Jun 29;282(26):18777-85. doi: 10.1074/jbc.M611763200. Epub 2007 May 5.
231 The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth.Mol Cancer Res. 2009 Jan;7(1):142-55. doi: 10.1158/1541-7786.MCR-08-0117.
232 Restoration of fibroblast growth factor receptor2 suppresses growth and tumorigenicity of malignant human prostate carcinoma PC-3 cells.Prostate. 2004 Nov 1;61(3):236-42. doi: 10.1002/pros.20093.
233 FGF-8 is involved in bone metastasis of prostate cancer.Int J Cancer. 2008 Jul 1;123(1):22-31. doi: 10.1002/ijc.23422.
234 Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2.Cancer Res. 1998 Apr 1;58(7):1509-14.
235 Polymorphisms of fibroblast growth factor receptor 4 have association with the development of prostate cancer and benign prostatic hyperplasia and the progression of prostate cancer in a Japanese population.Int J Cancer. 2008 Dec 1;123(11):2574-9. doi: 10.1002/ijc.23578.
236 Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2).J Thromb Haemost. 2008 Jan;6(1):176-83. doi: 10.1111/j.1538-7836.2007.02808.x. Epub 2007 Oct 22.
237 Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk.PLoS One. 2008;3(10):e3533. doi: 10.1371/journal.pone.0003533. Epub 2008 Oct 27.
238 Identification and validation of novel androgen-regulated genes in prostate cancer.Endocrinology. 2004 Aug;145(8):3913-24. doi: 10.1210/en.2004-0311. Epub 2004 May 6.
239 Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis.Prostate. 2005 Oct 1;65(2):110-6. doi: 10.1002/pros.20276.
240 Identification of genes showing differential expression in antisense K-ras-transduced pancreatic cancer cells with suppressed tumorigenicity.Cancer Res. 1999 Nov 1;59(21):5565-71.
241 Gene transfer of alpha1,3-fucosyltransferase increases tumor growth of the PC-3 human prostate cancer cell line through enhanced adhesion to prostatic stromal cells.Int J Cancer. 2003 Dec 20;107(6):949-57. doi: 10.1002/ijc.11513.
242 Global reactivation of epigenetically silenced genes in prostate cancer. Cancer Prev Res (Phila). 2010 Sep;3(9):1084-92.
243 An androgen receptor gene mutation (A645D) in a boy with a normal phenotype.Hum Mutat. 1998;11(4):339.
244 Morphological effects on expression of growth differentiation factor 15 (GDF15), a marker of metastasis. J Cell Physiol. 2014 Mar;229(3):362-73. doi: 10.1002/jcp.24458.
245 RTVP-1, a tumor suppressor inactivated by methylation in prostate cancer.Cancer Res. 2004 Feb 1;64(3):969-76. doi: 10.1158/0008-5472.can-03-2592.
246 Alteration of glyoxalase genes expression in response to testosterone in LNCaP and PC3 human prostate cancer cells.Cancer Biol Ther. 2007 Dec;6(12):1880-8. doi: 10.4161/cbt.6.12.4961. Epub 2007 Sep 1.
247 The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary.Mol Cell Endocrinol. 1994 Dec;106(1-2):145-9. doi: 10.1016/0303-7207(94)90196-1.
248 Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.Cancer Res. 2017 Jul 1;77(13):3417-3430. doi: 10.1158/0008-5472.CAN-16-1616. Epub 2017 May 4.
249 Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth.J Biol Chem. 2003 Sep 26;278(39):37569-73. doi: 10.1074/jbc.M306276200. Epub 2003 Jul 17.
250 GRK3 is essential for metastatic cells and promotes prostate tumor progression.Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1521-6. doi: 10.1073/pnas.1320638111. Epub 2014 Jan 13.
251 Glycogen synthase kinase 3 regulates cell death and survival signaling in tumor cells under redox stress. Neoplasia. 2014 Sep;16(9):710-22.
252 NF-B2/p52:c-Myc:hnRNPA1 Pathway Regulates Expression of Androgen Receptor Splice Variants and Enzalutamide Sensitivity in Prostate Cancer.Mol Cancer Ther. 2015 Aug;14(8):1884-95. doi: 10.1158/1535-7163.MCT-14-1057. Epub 2015 Jun 8.
253 Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer.Nature. 2007 Aug 2;448(7153):595-9. doi: 10.1038/nature06024.
254 Molecular analyses of prostate tumors for diagnosis of malignancy on fine-needle aspiration biopsies.Oncotarget. 2017 Nov 6;8(62):104761-104771. doi: 10.18632/oncotarget.22289. eCollection 2017 Dec 1.
255 Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression.Proteomics. 2007 Jun;7(12):1973-83. doi: 10.1002/pmic.200600643.
256 Transcriptional activation by NFB increases perlecan/HSPG2 expression in the desmoplastic prostate tumor microenvironment.J Cell Biochem. 2014 Jul;115(7):1322-33. doi: 10.1002/jcb.24788.
257 TIP30 is associated with progression and metastasis of prostate cancer.Int J Cancer. 2008 Aug 15;123(4):810-6. doi: 10.1002/ijc.23638.
258 Id-1 and Id-2 proteins as molecular markers for human prostate cancer progression.Clin Cancer Res. 2004 Mar 15;10(6):2044-51. doi: 10.1158/1078-0432.ccr-03-0933.
259 IFNL4-G Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer.Clin Cancer Res. 2018 Nov 1;24(21):5471-5481. doi: 10.1158/1078-0432.CCR-18-1060. Epub 2018 Jul 16.
260 Circulating IGF-1 promotes prostate adenocarcinoma via FOXO3A/BIM signaling in a double-transgenic mouse model.Oncogene. 2019 Sep;38(36):6338-6353. doi: 10.1038/s41388-019-0880-9. Epub 2019 Jul 16.
261 Insulin-like growth factor I (IGF-I) and IGF binding protein-1 modulate prostate cancer cell growth and apoptosis: possible mediators for the effects of diet and exercise on cancer cell survival.Endocrinology. 2003 Jun;144(6):2319-24. doi: 10.1210/en.2003-221028.
262 PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions.Mol Endocrinol. 2009 Feb;23(2):169-75. doi: 10.1210/me.2008-0168. Epub 2008 Dec 18.
263 Regulation of global gene expression in the bone marrow microenvironment by androgen: androgen ablation increases insulin-like growth factor binding protein-5 expression.Prostate. 2007 Nov 1;67(15):1621-9. doi: 10.1002/pros.20655.
264 Insulin-like growth factor binding protein-6 inhibits prostate cancer cell proliferation: implication for anticancer effect of diethylstilbestrol in hormone refractory prostate cancer. Br J Cancer. 2005 Apr 25;92(8):1538-44. doi: 10.1038/sj.bjc.6602520.
265 Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer.Cancer Res. 2004 Jan 15;64(2):435-9. doi: 10.1158/0008-5472.can-03-2675.
266 Human adrenomedullin up-regulates interleukin-13 receptor alpha2 chain in prostate cancer in vitro and in vivo: a novel approach to sensitize prostate cancer to anticancer therapy.Cancer Res. 2008 Nov 15;68(22):9311-7. doi: 10.1158/0008-5472.CAN-08-2810.
267 Multiple loci identified in a genome-wide association study of prostate cancer.Nat Genet. 2008 Mar;40(3):310-5. doi: 10.1038/ng.91. Epub 2008 Feb 10.
268 Interleukin-27 expression modifies prostate cancer cell crosstalk with bone and immune cells in vitro.J Cell Physiol. 2013 May;228(5):1127-36. doi: 10.1002/jcp.24265.
269 Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the toll-like receptor 6-1-10 gene cluster increase prostate cancer risk.Cancer Epidemiol Biomarkers Prev. 2006 Mar;15(3):480-5. doi: 10.1158/1055-9965.EPI-05-0645.
270 Integrin alpha V beta 3 targeted dendrimer-rapamycin conjugate reduces fibroblast-mediated prostate tumor progression and metastasis.J Cell Biochem. 2018 Nov;119(10):8074-8083. doi: 10.1002/jcb.26727. Epub 2018 Jun 22.
271 Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer.Nature. 2014 Nov 6;515(7525):134-7. doi: 10.1038/nature13638. Epub 2014 Aug 24.
272 Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells.Mol Imaging. 2008 Sep-Oct;7(5):199-213.
273 Repression of NF-kappaB and activation of AP-1 enhance apoptosis in prostate cancer cells.Int J Cancer. 2009 Apr 15;124(8):1980-9. doi: 10.1002/ijc.24139.
274 KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer.Oncogene. 2007 Apr 12;26(17):2525-34. doi: 10.1038/sj.onc.1210036. Epub 2006 Dec 4.
275 Klotho inhibits androgen/androgen receptorassociated epithelialmesenchymal transition in prostate cancer through inactivation of ERK1/2 signaling.Oncol Rep. 2018 Jul;40(1):217-225. doi: 10.3892/or.2018.6399. Epub 2018 Apr 25.
276 The molecular function of kallikrein-related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer.Mol Oncol. 2020 Jan;14(1):105-128. doi: 10.1002/1878-0261.12587. Epub 2019 Nov 28.
277 Evaluation of molecular forms of prostate-specific antigen and human kallikrein 2 in predicting biochemical failure after radical prostatectomy.Int J Cancer. 2009 Feb 1;124(3):659-63. doi: 10.1002/ijc.23983.
278 Treatment of PC3 prostate cancer cells with mitoxantrone, etoposide, doxorubicin and carboplatin induces distinct alterations in the expression of kallikreins 5 and 11.Thromb Haemost. 2009 Feb;101(2):373-80.
279 Inhibition of Karyopherin beta 1 suppresses prostate cancer growth.Oncogene. 2019 Jun;38(24):4700-4714. doi: 10.1038/s41388-019-0745-2. Epub 2019 Feb 11.
280 Association between prostate-specific antigen and leptin, adiponectin, HbA1c or C-peptide among African-American and Caucasian men.Prostate Cancer Prostatic Dis. 2008;11(3):264-9. doi: 10.1038/sj.pcan.4501022. Epub 2007 Oct 16.
281 LIM kinase1 modulates function of membrane type matrix metalloproteinase 1: implication in invasion of prostate cancer cells.Mol Cancer. 2011 Jan 10;10:6. doi: 10.1186/1476-4598-10-6.
282 Overexpression of the oncogenic kinase Pim-1 leads to genomic instability.Cancer Res. 2003 Dec 1;63(23):8079-84.
283 Down-regulation of Lsm1 is involved in human prostate cancer progression.Br J Cancer. 2002 Mar 18;86(6):940-6. doi: 10.1038/sj.bjc.6600163.
284 Immunohistochemical expression of tumor antigens MAGE-A1, MAGE-A3/4, and NY-ESO-1 in cancerous and benign prostatic tissue.Prostate. 2006 Jan 1;66(1):13-8. doi: 10.1002/pros.20312.
285 MEK5 overexpression is associated with metastatic prostate cancer, and stimulates proliferation, MMP-9 expression and invasion.Oncogene. 2003 Mar 6;22(9):1381-9. doi: 10.1038/sj.onc.1206154.
286 TNF/IL-1/NIK/NF-kappa B transduction pathway: a comparative study in normal and pathological human prostate (benign hyperplasia and carcinoma).Histopathology. 2008 Aug;53(2):166-76. doi: 10.1111/j.1365-2559.2008.03092.x.
287 Polypeptide expression in prostate hyperplasia and prostate adenocarcinoma.Anal Cell Pathol. 2000;21(1):1-9. doi: 10.1155/2000/351963.
288 Combined targeting of Arf1 and Ras potentiates anticancer activity for prostate cancer therapeutics.J Exp Clin Cancer Res. 2017 Aug 23;36(1):112. doi: 10.1186/s13046-017-0583-4.
289 JNK interacting protein 1 (JIP-1) protects LNCaP prostate cancer cells from growth arrest and apoptosis mediated by 12-0-tetradecanoylphorbol-13-acetate (TPA).Br J Cancer. 2004 May 17;90(10):2017-24. doi: 10.1038/sj.bjc.6601834.
290 MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer.Oncogene. 2006 May 18;25(21):2987-98. doi: 10.1038/sj.onc.1209337.
291 Carboxyl-terminal repressor domain of MBP-1 is sufficient for regression of prostate tumor growth in nude mice.Cancer Res. 2005 Feb 1;65(3):718-21.
292 CD146 protein in prostate cancer: revisited with two different antibodies.Pathology. 2008 Aug;40(5):457-64. doi: 10.1080/00313020802197996.
293 Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer.Cancer Res. 2008 Aug 1;68(15):6162-70. doi: 10.1158/0008-5472.CAN-08-0144.
294 Synergistic suppression of prostatic cancer cells by coexpression of both murine double minute 2 small interfering RNA and wild-type p53 gene in vitro and in vivo.J Pharmacol Exp Ther. 2011 Jul;338(1):173-83. doi: 10.1124/jpet.111.180364. Epub 2011 Mar 28.
295 Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia.Clin Invest Med. 2008;31(1):E8-E15. doi: 10.25011/cim.v31i1.3136.
296 Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients.Clin Cancer Res. 2008 Dec 1;14(23):7838-42. doi: 10.1158/1078-0432.CCR-08-1432.
297 Metalloproteinase 11, potential marker and molecular target in advanced and castration-resistant prostate cancer. Culture study of peritumoral fibroblasts.Actas Urol Esp. 2017 Jul-Aug;41(6):376-382. doi: 10.1016/j.acuro.2016.12.001. Epub 2017 Feb 1.
298 Prostate tumors downregulate microseminoprotein-beta (MSMB) in the surrounding benign prostate epithelium and this response is associated with tumor aggressiveness.Prostate. 2018 Mar;78(4):257-265. doi: 10.1002/pros.23466. Epub 2017 Dec 18.
299 MSR1 variants and the risks of prostate cancer and benign prostatic hyperplasia: a population-based study in China.Carcinogenesis. 2007 Dec;28(12):2530-6. doi: 10.1093/carcin/bgm196. Epub 2007 Sep 3.
300 The Ron receptor promotes prostate tumor growth in the TRAMP mouse model.Oncogene. 2011 Dec 15;30(50):4990-8. doi: 10.1038/onc.2011.205. Epub 2011 May 30.
301 Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1.Br J Cancer. 2018 Feb 20;118(4):587-599. doi: 10.1038/bjc.2017.431. Epub 2018 Feb 20.
302 MYH mutations are rare in prostate cancer.J Cancer Res Clin Oncol. 2007 Jun;133(6):373-8. doi: 10.1007/s00432-006-0181-x. Epub 2007 Jan 12.
303 Expression and secretion of N-acylethanolamine-hydrolysing acid amidase in human prostate cancer cells.J Biochem. 2008 Nov;144(5):685-90. doi: 10.1093/jb/mvn122. Epub 2008 Sep 19.
304 Androgen receptor coactivator ARA70alpha and ARA70beta isoform-specific antibodies: new tools for studies of expression and immunohistochemical localization.Appl Immunohistochem Mol Morphol. 2008 Jan;16(1):7-12. doi: 10.1097/PAI.0b013e31802e91ea.
305 Plasmid-based Survivin shRNA and GRIM-19 carried by attenuated Salmonella suppresses tumor cell growth.Asian J Androl. 2012 Jul;14(4):536-45. doi: 10.1038/aja.2011.179. Epub 2012 May 14.
306 A feedback loop between the androgen receptor and a NEDD4-binding protein, PMEPA1, in prostate cancer cells.J Biol Chem. 2008 Oct 24;283(43):28988-95. doi: 10.1074/jbc.M710528200. Epub 2008 Aug 14.
307 Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors.Int J Cancer. 2019 Aug 15;145(4):1055-1067. doi: 10.1002/ijc.32200. Epub 2019 Feb 25.
308 The aryl propionic acid R-flurbiprofen selectively induces p75NTR-dependent decreased survival of prostate tumor cells. Cancer Res. 2007 Apr 1;67(7):3254-62.
309 Targeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth.Prostate. 2013 Oct;73(14):1591-601. doi: 10.1002/pros.22709. Epub 2013 Jul 8.
310 NPM1 silencing reduces tumour growth and MAPK signalling in prostate cancer cells.PLoS One. 2014 May 5;9(5):e96293. doi: 10.1371/journal.pone.0096293. eCollection 2014.
311 C-type natriuretic peptide in prostate cancer.APMIS. 2009 Jan;117(1):60-7. doi: 10.1111/j.1600-0463.2008.00016.x.
312 Quantitative analysis of a panel of gene expression in prostate cancer--with emphasis on NPY expression analysis.J Zhejiang Univ Sci B. 2007 Dec;8(12):853-9. doi: 10.1631/jzus.2007.B0853.
313 Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells.Endocrinology. 2006 Mar;147(3):1466-73. doi: 10.1210/en.2005-0925. Epub 2005 Dec 8.
314 The liver X receptor agonist T0901317 acts as androgen receptor antagonist in human prostate cancer cells.Biochem Biophys Res Commun. 2007 Jun 1;357(2):341-6. doi: 10.1016/j.bbrc.2007.03.116. Epub 2007 Mar 28.
315 Identification and characterization of novel spliced variants of neuregulin 4 in prostate cancer.Clin Cancer Res. 2007 Jun 1;13(11):3147-55. doi: 10.1158/1078-0432.CCR-06-2237.
316 VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer.Cancer Discov. 2012 Oct;2(10):906-21. doi: 10.1158/2159-8290.CD-12-0085. Epub 2012 Jul 9.
317 Characterization of nerve growth factor precursor protein expression by human prostate stromal cells: a role in selective neurotrophin stimulation of prostate epithelial cell growth.Prostate. 1999 Sep 15;41(1):39-48. doi: 10.1002/(sici)1097-0045(19990915)41:1<39::aid-pros6>3.0.co;2-e.
318 A novel function of differentiation revealed by cDNA microarray profiling of p75NTR-regulated gene expression.Differentiation. 2005 Oct;73(8):385-96. doi: 10.1111/j.1432-0436.2005.00040.x.
319 Neurotensin receptor binding and neurotensin-induced growth signaling in prostate cancer PC3 cells are sensitive to metabolic stress.Regul Pept. 2007 Jun 7;141(1-3):140-53. doi: 10.1016/j.regpep.2006.12.027. Epub 2007 Jan 16.
320 Resolution of genotypic heterogeneity in prostate tumors using polymerase chain reaction and comparative genomic hybridization on microdissected carcinoma and prostatic intraepithelial neoplasia foci.Cancer Genet Cytogenet. 2002 Aug;137(1):15-22. doi: 10.1016/s0165-4608(02)00540-x.
321 Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression.Oncogene. 2016 Mar 3;35(9):1153-62. doi: 10.1038/onc.2015.170. Epub 2015 Jun 1.
322 Expression of 5-oxoETE receptor in prostate cancer cells: critical role in survival.Biochem Biophys Res Commun. 2006 Jan 6;339(1):93-8. doi: 10.1016/j.bbrc.2005.10.189. Epub 2005 Nov 8.
323 The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression.Oncotarget. 2014 Aug 30;5(16):6654-69. doi: 10.18632/oncotarget.2208.
324 P21 activated kinase-1 mediates transforming growth factor 1-induced prostate cancer cell epithelial to mesenchymal transition.Biochim Biophys Acta. 2015 May;1853(5):1229-39. doi: 10.1016/j.bbamcr.2015.02.023. Epub 2015 Mar 6.
325 Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK.J Biol Chem. 2005 Jul 15;280(28):26278-86. doi: 10.1074/jbc.M414467200. Epub 2005 May 20.
326 Tumour-suppression activity of the proapoptotic regulator Par4.EMBO Rep. 2005 Jun;6(6):577-83. doi: 10.1038/sj.embor.7400421.
327 Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells.Stem Cells. 2008 Jun;26(6):1425-35. doi: 10.1634/stemcells.2007-1076. Epub 2008 Apr 10.
328 A stroma targeted therapy enhances castration effects in a transplantable rat prostate cancer model.Prostate. 2007 Nov 1;67(15):1664-76. doi: 10.1002/pros.20657.
329 Expression of PDX-1 in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic tissue.APMIS. 2008 Jun;116(6):491-8. doi: 10.1111/j.1600-0463.2008.01020.x.
330 Reducing prohibitin increases histone acetylation, and promotes androgen independence in prostate tumours by increasing androgen receptor activation by adrenal androgens.Oncogene. 2012 Oct 25;31(43):4588-98. doi: 10.1038/onc.2011.591. Epub 2011 Dec 19.
331 Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model.Prostate. 2018 Sep;78(13):1013-1023. doi: 10.1002/pros.23659. Epub 2018 May 29.
332 Pim-2 upregulation: biological implications associated with disease progression and perinueral invasion in prostate cancer.Prostate. 2005 Nov 1;65(3):276-86. doi: 10.1002/pros.20294.
333 Small Molecule Pin1 Inhibitor Blocking NF-B Signaling in Prostate Cancer Cells.Chem Asian J. 2018 Feb 2;13(3):275-279. doi: 10.1002/asia.201701216. Epub 2018 Jan 15.
334 A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer.EMBO J. 2003 Jan 15;22(2):270-80. doi: 10.1093/emboj/cdg023.
335 Amplification of the urokinase gene and the sensitivity of prostate cancer cells to urokinase inhibitors.BJU Int. 2006 Feb;97(2):404-9. doi: 10.1111/j.1464-410X.2005.05912.x.
336 suPAR, a soluble form of urokinase plasminogen activator receptor, inhibits human prostate cancer cell growth and invasion.Int J Oncol. 2008 Jan;32(1):185-91. doi: 10.3892/ijo.32.1.185.
337 Targeting Plk1 to Enhance Efficacy of Olaparib in Castration-Resistant Prostate Cancer.Mol Cancer Ther. 2017 Mar;16(3):469-479. doi: 10.1158/1535-7163.MCT-16-0361. Epub 2017 Jan 9.
338 Transcription-targeted gene therapy for androgen-independent prostate cancer.Cancer Gene Ther. 2002 May;9(5):443-52. doi: 10.1038/sj.cgt.7700451.
339 PGC1 Suppresses Prostate Cancer Cell Invasion through ERR Transcriptional Control.Cancer Res. 2019 Dec 15;79(24):6153-6165. doi: 10.1158/0008-5472.CAN-19-1231. Epub 2019 Oct 8.
340 Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene. 2006 Nov 23;25(55):7311-23.
341 PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism.Cancer Res. 2007 Nov 15;67(22):10859-68. doi: 10.1158/0008-5472.CAN-07-2041.
342 Integrin signaling links protein kinase Cepsilon to the protein kinase B/Akt survival pathway in recurrent prostate cancer cells.Oncogene. 2004 Nov 11;23(53):8659-72. doi: 10.1038/sj.onc.1207900.
343 Expression of tumor-associated trypsinogens (TAT-1 and TAT-2) in prostate cancer.Prostate. 2005 Jun 15;64(1):29-39. doi: 10.1002/pros.20236.
344 Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate. 2006 Jun 15;66(9):911-20. doi: 10.1002/pros.20325.
345 The application of prostate specific membrane antigen in CARTcell therapy for treatment of prostate carcinoma (Review).Oncol Rep. 2018 Dec;40(6):3136-3143. doi: 10.3892/or.2018.6758. Epub 2018 Oct 1.
346 Correlation of Gankyrin oncoprotein overexpression with histopathological grade in prostate cancer.Neoplasma. 2017;64(5):732-737. doi: 10.4149/neo_2017_511.
347 Prostaglandin E2 regulates tumor angiogenesis in prostate cancer.Cancer Res. 2008 Oct 1;68(19):7750-9. doi: 10.1158/0008-5472.CAN-07-6689.
348 Genetic upregulation of matriptase-2 reduces the aggressiveness of prostate cancer cells in vitro and in vivo and affects FAK and paxillin localisation.J Cell Physiol. 2008 Sep;216(3):780-9. doi: 10.1002/jcp.21460.
349 RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer.Cancer Res. 2008 Sep 15;68(18):7613-20. doi: 10.1158/0008-5472.CAN-07-6700.
350 Heparin affin regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells.J Biol Chem. 2006 Oct 27;281(43):32217-26. doi: 10.1074/jbc.M607104200. Epub 2006 Aug 29.
351 PRL? increases the aggressive phenotype of prostate cancer cells invitro and its expression correlates with high-grade prostate tumors in patients.Int J Oncol. 2018 Feb;52(2):402-412. doi: 10.3892/ijo.2017.4208. Epub 2017 Nov 20.
352 PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer.Cancer Res. 2012 Mar 15;72(6):1529-37. doi: 10.1158/0008-5472.CAN-11-2602. Epub 2012 Jan 26.
353 Synergistic chromatin repression of the tumor suppressor gene RARB in human prostate cancers.Epigenetics. 2014 Apr;9(4):477-82. doi: 10.4161/epi.27869. Epub 2014 Feb 3.
354 Re: Anja Rabien, Mick Burkhardt, Monika Jung, Florian Fritzsche, Martin Ringsdorf, Hanka Schicktanz, Stefan A. Loening, Glen Kristiansen and Klaus Jung. Decreased RECK expression indicating proteolytic imbalance in prostate cancer is associated with higher tumor aggressiveness and risk of prostate-specific antigen relapse after radical prostatectomy. Eur Urol 2007;51:1259-66.Eur Urol. 2007 Nov;52(5):1533-4; author reply 1534-5. doi: 10.1016/j.eururo.2007.06.004. Epub 2007 Jun 12.
355 Regulator of G-protein signaling 2 (RGS2) inhibits androgen-independent activation of androgen receptor in prostate cancer cells.Oncogene. 2006 Jun 22;25(26):3719-34. doi: 10.1038/sj.onc.1209408. Epub 2006 Jan 30.
356 Rho/ROCK/actin signaling regulates membrane androgen receptor induced apoptosis in prostate cancer cells.Exp Cell Res. 2008 Oct 15;314(17):3162-74. doi: 10.1016/j.yexcr.2008.07.012. Epub 2008 Jul 25.
357 MicroRNA?22 downregulates Rhoassociated protein kinase 2 expression and inhibits the proliferation of prostate carcinoma cells.Mol Med Rep. 2019 May;19(5):3882-3888. doi: 10.3892/mmr.2019.9995. Epub 2019 Feb 27.
358 The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation.Cancer Res. 2005 Apr 15;65(8):3108-16. doi: 10.1158/0008-5472.CAN-04-3151.
359 Suppression of ribosomal protein RPS6KB1 by Nexrutine increases sensitivity of prostate tumors to radiation.Cancer Lett. 2018 Oct 1;433:232-241. doi: 10.1016/j.canlet.2018.07.009. Epub 2018 Jul 9.
360 Cell fate regulation by reticulon-4 in human prostate cancers.J Cell Physiol. 2019 Jul;234(7):10372-10385. doi: 10.1002/jcp.27704. Epub 2018 Nov 27.
361 Nitric Oxide Up-Regulates RUNX2 in LNCaP Prostate Tumours: Implications for Tumour Growth In Vitro and In Vivo.J Cell Physiol. 2016 Feb;231(2):473-82. doi: 10.1002/jcp.25093.
362 Induction of apoptosis in human prostate cancer cells by insulin-like growth factor binding protein-3 does not require binding to retinoid X receptor-alpha.Endocrinology. 2008 Apr;149(4):1802-12. doi: 10.1210/en.2007-1315. Epub 2007 Dec 27.
363 Immunohistochemical detection of the retinoid X receptors alpha, beta, and gamma in human prostate.J Androl. 2003 Jan-Feb;24(1):113-9.
364 Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel.Mol Cancer. 2007 Nov 24;6:76. doi: 10.1186/1476-4598-6-76.
365 Role of desumoylation in the development of prostate cancer.Neoplasia. 2006 Aug;8(8):667-76. doi: 10.1593/neo.06445.
366 Maspin modulates prostate cancer cell apoptotic and angiogenic response to hypoxia via targeting AKT.Oncogene. 2008 Dec 4;27(57):7171-9. doi: 10.1038/onc.2008.321. Epub 2008 Oct 20.
367 Anti-thrombin is expressed in the benign prostatic epithelium and in prostate cancer and is capable of forming complexes with prostate-specific antigen and human glandular kallikrein 2.Am J Pathol. 2002 Dec;161(6):2053-63. doi: 10.1016/S0002-9440(10)64484-7.
368 Vacuolar H+-ATPase is down-regulated by the angiogenesis-inhibitory pigment epithelium-derived factor in metastatic prostate cancer cells.Cell Mol Biol (Noisy-le-grand). 2014 May 25;60(1):45-52.
369 TET2 binds the androgen receptor and loss is associated with prostate cancer.Oncogene. 2017 Apr;36(15):2172-2183. doi: 10.1038/onc.2016.376. Epub 2016 Nov 7.
370 Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.J Cell Physiol. 2005 Mar;202(3):654-62. doi: 10.1002/jcp.20166.
371 An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors.Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1655-60. doi: 10.1073/pnas.0610291104. Epub 2007 Jan 18.
372 Positron emission tomography of sodium glucose cotransport activity in high grade astrocytomas.J Neurooncol. 2018 Jul;138(3):557-569. doi: 10.1007/s11060-018-2823-7. Epub 2018 Mar 10.
373 A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer.BJU Int. 2008 Aug 5;102(5):617-21. doi: 10.1111/j.1464-410X.2008.07629.x. Epub 2008 Jun 4.
374 The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer.Oncogene. 2010 Sep 30;29(39):5370-80. doi: 10.1038/onc.2010.269. Epub 2010 Jul 12.
375 BRG1 is a prognostic indicator and a potential therapeutic target for prostate cancer.J Cell Physiol. 2019 Sep;234(9):15194-15205. doi: 10.1002/jcp.28161. Epub 2019 Jan 22.
376 SMYD3 as an oncogenic driver in prostate cancer by stimulation of androgen receptor transcription.J Natl Cancer Inst. 2013 Nov 20;105(22):1719-28. doi: 10.1093/jnci/djt304. Epub 2013 Oct 30.
377 The effect of superoxide anion and hydrogen peroxide imbalance on prostate cancer: an integrative in vivo and in vitro analysis. Med Oncol. 2015 Nov;32(11):251.
378 DNA fingerprinting tags novel altered chromosomal regions and identifies the involvement of SOX5 in the progression of prostate cancer.Int J Cancer. 2009 May 15;124(10):2323-32. doi: 10.1002/ijc.24243.
379 SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the Foxm1 oncogene.PLoS Genet. 2014 Sep 25;10(9):e1004656. doi: 10.1371/journal.pgen.1004656. eCollection 2014 Sep.
380 Plakophilin 1-deficient cells upregulate SPOCK1: implications for prostate cancer progression.Tumour Biol. 2015 Dec;36(12):9567-77. doi: 10.1007/s13277-015-3628-3. Epub 2015 Jul 4.
381 Inhibition of 5alpha-reductase enhances testosterone-induced expression of U19/Eaf2 tumor suppressor during the regrowth of LNCaP xenograft tumor in nude mice. Prostate. 2010 Oct 1;70(14):1575-85. doi: 10.1002/pros.21193.
382 KLF5 enhances SREBP-1 action in androgen-dependent induction of fatty acid synthase in prostate cancer cells.Biochem J. 2009 Jan 1;417(1):313-22. doi: 10.1042/BJ20080762.
383 Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence.Cancer Res. 2004 Mar 15;64(6):2212-21. doi: 10.1158/0008-5472.can-2148-2.
384 Identification of prognostic biomarkers for prostate cancer.Clin Cancer Res. 2008 Mar 15;14(6):1734-43. doi: 10.1158/1078-0432.CCR-07-1494.
385 Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer.Prostate. 2002 Sep 15;53(1):50-9. doi: 10.1002/pros.10121.
386 Localization and mRNA expression of somatostatin receptor subtypes in human prostatic tissue and prostate cancer cell lines.Urol Oncol. 2002 May-Jun;7(3):91-8. doi: 10.1016/s1078-1439(01)00173-9.
387 Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer.Oncogene. 2005 Jul 21;24(31):4934-45. doi: 10.1038/sj.onc.1208677.
388 Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell growth.Mol Endocrinol. 2007 Feb;21(2):343-58. doi: 10.1210/me.2006-0104. Epub 2006 Nov 2.
389 Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho.Cancer Res. 2008 Jan 1;68(1):115-21. doi: 10.1158/0008-5472.CAN-07-1018.
390 Frequency of TERT Promoter Mutations in Prostate Cancer.Pathobiology. 2015;82(2):53-7. doi: 10.1159/000381903. Epub 2015 May 21.
391 TGF signaling limits lineage plasticity in prostate cancer.PLoS Genet. 2018 May 21;14(5):e1007409. doi: 10.1371/journal.pgen.1007409. eCollection 2018 May.
392 Prognostic relevance of Tiam1 protein expression in prostate carcinomas.Br J Cancer. 2006 Oct 23;95(8):1081-6. doi: 10.1038/sj.bjc.6603385. Epub 2006 Sep 26.
393 CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer.Clin Cancer Res. 2007 Dec 1;13(23):6947-58. doi: 10.1158/1078-0432.CCR-07-0842.
394 Bax inhibitor-1 is overexpressed in prostate cancer and its specific down-regulation by RNA interference leads to cell death in human prostate carc... Am J Pathol. 2003 Aug;163(2):543-52.
395 Downregulation of thymosin beta4 expression by androgen in prostate cancer LNCaP cells. J Androl. 2008 Mar-Apr;29(2):207-12. doi: 10.2164/jandrol.107.003608. Epub 2007 Oct 3.
396 Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene. 2001 Nov 29;20(55):7965-75. doi: 10.1038/sj.onc.1204985.
397 Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor.PLoS One. 2010 Dec 28;5(12):e15627. doi: 10.1371/journal.pone.0015627.
398 Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells.Cell Res. 2008 Aug;18(8):858-70. doi: 10.1038/cr.2008.84.
399 Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.Proc Natl Acad Sci U S A. 2007 May 15;104(20):8438-43. doi: 10.1073/pnas.0700420104. Epub 2007 May 9.
400 Betulinic acid, a catalytic inhibitor of topoisomerase I, inhibits reactive oxygen species-mediated apoptotic topoisomerase I-DNA cleavable complex formation in prostate cancer cells but does not affect the process of cell death.Cancer Res. 2007 Dec 15;67(24):11848-58. doi: 10.1158/0008-5472.CAN-07-1615.
401 P202, an interferon-inducible protein, inhibits E2F1-mediated apoptosis in prostate cancer cells.Biochem Biophys Res Commun. 2003 Mar 28;303(1):219-22. doi: 10.1016/s0006-291x(03)00320-6.
402 A ribonucleotide reductase inhibitor, MDL 101,731, induces apoptosis and elevates TRPM-2 mRNA levels in human prostate tumor xenografts.Exp Cell Res. 1996 Jan 10;222(1):54-60. doi: 10.1006/excr.1996.0007.
403 Role of cationic channel TRPV2 in promoting prostate cancer migration and progression to androgen resistance.Cancer Res. 2010 Feb 1;70(3):1225-35. doi: 10.1158/0008-5472.CAN-09-2205. Epub 2010 Jan 26.
404 TRPV6.Handb Exp Pharmacol. 2007;(179):221-34. doi: 10.1007/978-3-540-34891-7_13.
405 The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer.Cancer Cell. 2004 Mar;5(3):253-61. doi: 10.1016/s1535-6108(04)00055-8.
406 Interleukin-6 induced overexpression of valosin-containing protein (VCP)/p97 is associated with androgen-independent prostate cancer (AIPC) progression. J Cell Physiol. 2018 Oct;233(10):7148-7164. doi: 10.1002/jcp.26639. Epub 2018 Apr 25.
407 Serum vascular endothelial growth factor C level in patients with prostate cancer and benign prostatic hyperplasia.Anal Quant Cytol Histol. 2008 Aug;30(4):199-202.
408 Stage-specific characterization of the vascular endothelial growth factor axis in prostate cancer: expression of lymphangiogenic markers is associated with advanced-stage disease.Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):584-93.
409 Serum undercarboxylated osteocalcin as biomarker of vitamin K intake and risk of prostate cancer: a nested case-control study in the Heidelberg cohort of the European prospective investigation into cancer and nutrition.Cancer Epidemiol Biomarkers Prev. 2009 Jan;18(1):49-56. doi: 10.1158/1055-9965.EPI-08-0554.
410 VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer.Nat Med. 2017 May;23(5):551-555. doi: 10.1038/nm.4308. Epub 2017 Mar 27.
411 The rs743572 common variant in the promoter of CYP17A1 is not associated with prostate cancer risk or circulating hormonal levels.BJU Int. 2008 Feb;101(4):492-6. doi: 10.1111/j.1464-410X.2007.07272.x. Epub 2007 Nov 6.
412 EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance.Mol Cancer Ther. 2008 Oct;7(10):3176-86. doi: 10.1158/1535-7163.MCT-08-0526.
413 SKP2 inactivation suppresses prostate tumorigenesis by mediating JARID1B ubiquitination.Oncotarget. 2015 Jan 20;6(2):771-88. doi: 10.18632/oncotarget.2718.
414 Membranous type matrix metalloproteinase 16 induces human prostate cancer metastasis.Oncol Lett. 2017 Sep;14(3):3096-3102. doi: 10.3892/ol.2017.6536. Epub 2017 Jul 7.
415 Silencing of GSTP1, a prostate cancer prognostic gene, by the estrogen receptor- and endothelial nitric oxide synthase complex.Mol Endocrinol. 2011 Dec;25(12):2003-16. doi: 10.1210/me.2011-1024. Epub 2011 Nov 3.
416 Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts.Oncotarget. 2015 Jun 10;6(16):14318-28. doi: 10.18632/oncotarget.3960.
417 Protein expressions and genetic variations of SLC5A8 in prostate cancer risk and aggressiveness.Urology. 2011 Oct;78(4):971.e1-9. doi: 10.1016/j.urology.2011.04.055. Epub 2011 Jul 29.
418 Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer.Oncogene. 2003 Sep 4;22(38):6005-12. doi: 10.1038/sj.onc.1206797.
419 The retinoic acid synthesis gene ALDH1a2 is a candidate tumor suppressor in prostate cancer.Cancer Res. 2005 Sep 15;65(18):8118-24. doi: 10.1158/0008-5472.CAN-04-4562.
420 CYP3A43 Pro(340)Ala polymorphism and prostate cancer risk in African Americans and Caucasians.Cancer Epidemiol Biomarkers Prev. 2005 May;14(5):1257-61. doi: 10.1158/1055-9965.EPI-04-0534.
421 Heterocyclic aromatic amine [HCA] intake and prostate cancer risk: effect modification by genetic variants. Nutr Cancer. 2012;64(5):704-13. doi: 10.1080/01635581.2012.678548. Epub 2012 May 7.
422 Association of the G289S single nucleotide polymorphism in the HSD17B3 gene with prostate cancer in Italian men.Prostate. 2002 Sep 15;53(1):65-8. doi: 10.1002/pros.10134.
423 SRD5A2 and HSD3B2 polymorphisms are associated with prostate cancer risk and aggressiveness.Prostate. 2007 Nov 1;67(15):1654-63. doi: 10.1002/pros.20625.
424 Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells.Oncol Rep. 2007 Nov;18(5):1145-53.
425 Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population.Prostate. 2005 Aug 1;64(3):246-52. doi: 10.1002/pros.20241.
426 Further evidence for null association of phenol sulfotransferase SULT1A1 polymorphism with prostate cancer risk: a case-control study of familial prostate cancer in a Japanese population.Int Urol Nephrol. 2008;40(4):947-51. doi: 10.1007/s11255-008-9364-5. Epub 2008 Mar 27.
427 Polymorphisms of GSTM1 and CYP1A1 genes and their genetic susceptibility to prostate cancer in Chinese men.Chin Med J (Engl). 2008 Feb 20;121(4):305-8.
428 Role of oncoprotein growth factor independent-1 (GFI1) in repression of 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1): a comparative analysis in human prostate cancer and kidney cells. J Steroid Biochem Mol Biol. 2007 Mar;103(3-5):742-6.
429 Cytochrome P-450 2C9 sensitizes human prostate tumor cells to cyclophosphamide via a bystander effect. Antimicrob Agents Chemother. 2000 Oct;44(10):2659-63.
430 Regulation and expression of human CYP7B1 in prostate: overexpression of CYP7B1 during progression of prostatic adenocarcinoma.Prostate. 2007 Sep 15;67(13):1439-46. doi: 10.1002/pros.20630.
431 Association between polymorphisms in HSD3B1 and UGT2B17 and prostate cancer risk. Urology. 2007 Aug;70(2):374-9.
432 Suppression of prostate tumor cell growth by stromal cell prostaglandin D synthase-derived products.Cancer Res. 2005 Jul 15;65(14):6189-98. doi: 10.1158/0008-5472.CAN-04-4439.
433 Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues.Prostate. 2008 May 15;68(7):766-72. doi: 10.1002/pros.20735.
434 Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer.Cancer Sci. 2008 Jan;99(1):81-6. doi: 10.1111/j.1349-7006.2007.00656.x. Epub 2007 Nov 6.
435 Calcitrol (1alpha,25-dihydroxyvitamin D3) inhibits androgen glucuronidation in prostate cancer cells.Mol Cancer Ther. 2008 Feb;7(2):380-90. doi: 10.1158/1535-7163.MCT-07-0455.
436 Exemestane and Its Active Metabolite 17-Hydroexemestane Induce UDP-Glucuronosyltransferase (UGT) 2B17 Expression in Breast Cancer Cells.J Pharmacol Exp Ther. 2017 Jun;361(3):482-491. doi: 10.1124/jpet.117.240317. Epub 2017 Apr 12.
437 Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis.Dis Markers. 2015;2015:241301. doi: 10.1155/2015/241301. Epub 2015 Sep 28.
438 Expression of BNIP3 correlates with hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha and the androgen receptor in prostate cancer and is regulated directly by hypoxia but not androgens in cell lines.Prostate. 2008 Feb 15;68(3):336-43. doi: 10.1002/pros.20707.
439 Copy number alterations in prostate tumors and disease aggressiveness.Genes Chromosomes Cancer. 2012 Jan;51(1):66-76. doi: 10.1002/gcc.20932. Epub 2011 Oct 2.
440 Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer.J Clin Oncol. 2013 May 10;31(14):1748-57. doi: 10.1200/JCO.2012.43.1882. Epub 2013 Apr 8.
441 Genetic association analysis of the RTK/ERK pathway with aggressive prostate cancer highlights the potential role of CCND2 in disease progression.Sci Rep. 2017 Jul 3;7(1):4538. doi: 10.1038/s41598-017-04731-4.
442 Identification of recurrent fusion genes across multiple cancer types.Sci Rep. 2019 Jan 31;9(1):1074. doi: 10.1038/s41598-019-38550-6.
443 Sequence variants at the TERT-CLPTM1L locus associate with many cancer types.Nat Genet. 2009 Feb;41(2):221-7. doi: 10.1038/ng.296. Epub 2009 Jan 18.
444 The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer.Oncogene. 2015 Jan 8;34(2):226-36. doi: 10.1038/onc.2013.538. Epub 2014 Jan 20.
445 DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk.Epigenetics. 2016 Sep;11(9):674-689. doi: 10.1080/15592294.2016.1208891. Epub 2016 Jul 14.
446 CTBP1 depletion on prostate tumors deregulates miRNA/mRNA expression and impairs cancer progression in metabolic syndrome mice.Cell Death Dis. 2019 Apr 1;10(4):299. doi: 10.1038/s41419-019-1535-z.
447 A widely expressed transcription factor with multiple DNA sequence specificity, CTCF, is localized at chromosome segment 16q22.1 within one of the smallest regions of overlap for common deletions in breast and prostate cancers.Genes Chromosomes Cancer. 1998 May;22(1):26-36.
448 Transcriptional Repressor DAXX Promotes Prostate Cancer Tumorigenicity via Suppression of Autophagy.J Biol Chem. 2015 Jun 19;290(25):15406-15420. doi: 10.1074/jbc.M115.658765. Epub 2015 Apr 22.
449 DLEC1, a 3p tumor suppressor, represses NF-B signaling and is methylated in prostate cancer.J Mol Med (Berl). 2015 Jun;93(6):691-701. doi: 10.1007/s00109-015-1255-5. Epub 2015 Feb 5.
450 Downregulation of several fibulin genes in prostate cancer.Prostate. 2007 Dec 1;67(16):1770-80. doi: 10.1002/pros.20667.
451 Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer.Br J Cancer. 2004 Mar 8;90(5):1041-6. doi: 10.1038/sj.bjc.6601648.
452 Sequence variants of elaC homolog 2 (Escherichia coli) (ELAC2) gene and susceptibility to prostate cancer in the Health Professionals Follow-Up Study.Carcinogenesis. 2008 May;29(5):999-1004. doi: 10.1093/carcin/bgn081. Epub 2008 Mar 28.
453 PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Calpha-mediated Bcl-2 stabilization.Cancer Res. 2009 Jan 1;69(1):102-10. doi: 10.1158/0008-5472.CAN-08-2922.
454 Association of XPD polymorphisms with prostate cancer in Taiwanese patients.Anticancer Res. 2007 Jul-Aug;27(4C):2893-6.
455 PTX1(ERGIC2)-VP22 fusion protein upregulates interferon-beta in prostate cancer cell line PC-3.DNA Cell Biol. 2006 Sep;25(9):523-9. doi: 10.1089/dna.2006.25.523.
456 An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer.Cell Rep. 2016 Oct 25;17(5):1289-1301. doi: 10.1016/j.celrep.2016.10.001.
457 Minireview: Role of genetic changes of faciogenital dysplasia protein 1 in human disease.Physiol Genomics. 2016 Jul 1;48(7):446-54. doi: 10.1152/physiolgenomics.00101.2015. Epub 2016 May 6.
458 Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population.Nat Genet. 2010 Sep;42(9):751-4. doi: 10.1038/ng.635. Epub 2010 Aug 1.
459 An A/G polymorphism of core 2 branching enzyme gene is associated with prostate cancer.Biochem Biophys Res Commun. 2005 Jun 17;331(4):958-63. doi: 10.1016/j.bbrc.2005.04.022.
460 The role of sarcosine metabolism in prostate cancer progression.Neoplasia. 2013 May;15(5):491-501. doi: 10.1593/neo.13314.
461 Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression.PLoS One. 2015 Feb 18;10(2):e0117758. doi: 10.1371/journal.pone.0117758. eCollection 2015.
462 Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis.Cancer Res. 2007 Sep 1;67(17):8043-50. doi: 10.1158/0008-5472.CAN-07-0648.
463 Metabolic susceptibility genes and prostate cancer risk in a southern European population: the role of glutathione S-transferases GSTM1, GSTM3, and GSTT1 genetic polymorphisms.Prostate. 2004 Mar 1;58(4):414-20. doi: 10.1002/pros.10348.
464 Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life.Endocrinology. 2012 Jan;153(1):42-55. doi: 10.1210/en.2011-1308. Epub 2011 Nov 22.
465 Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer.Clin Cancer Res. 2016 Apr 1;22(7):1744-56. doi: 10.1158/1078-0432.CCR-15-1606. Epub 2015 Nov 9.
466 The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer.Int J Hyperthermia. 2004 Dec;20(8):835-49. doi: 10.1080/02656730410001721807.
467 Insulin-like growth factor I suppresses bone morphogenetic protein signaling in prostate cancer cells by activating mTOR signaling.Cancer Res. 2010 Nov 15;70(22):9106-17. doi: 10.1158/0008-5472.CAN-10-1119. Epub 2010 Nov 9.
468 Differential expression of IL-17RC isoforms in androgen-dependent and androgen-independent prostate cancers.Neoplasia. 2007 Jun;9(6):464-70. doi: 10.1593/neo.07109.
469 Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer.Oncogene. 2006 Jul 6;25(29):4122-7. doi: 10.1038/sj.onc.1209428. Epub 2006 Feb 13.
470 Analysis of integrin alpha7 mutations in prostate cancer, liver cancer, glioblastoma multiforme, and leiomyosarcoma.J Natl Cancer Inst. 2007 Jun 6;99(11):868-80. doi: 10.1093/jnci/djk199.
471 Characterization of the prostate cancer susceptibility gene KLF6 in human and mouse prostate cancers.Prostate. 2013 Jan;73(2):182-93. doi: 10.1002/pros.22554. Epub 2012 Jul 10.
472 miRNA-106a and prostate cancer radioresistance: a novel role for LITAF in ATM regulation.Mol Oncol. 2018 Aug;12(8):1324-1341. doi: 10.1002/1878-0261.12328. Epub 2018 Jun 14.
473 Germline sequence variants of the LZTS1 gene are associated with prostate cancer risk.Cancer Genet Cytogenet. 2002 Aug;137(1):1-7. doi: 10.1016/s0165-4608(02)00549-6.
474 Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.J Urol. 2008 May;179(5):2020-4. doi: 10.1016/j.juro.2008.01.009. Epub 2008 Mar 20.
475 Screening of genetic and expression alterations of SRC1 gene in prostate cancer.Prostate. 2006 Sep 15;66(13):1391-8. doi: 10.1002/pros.20427.
476 Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer.J Biol Chem. 2004 Feb 20;279(8):7119-30. doi: 10.1074/jbc.M307649200. Epub 2003 Dec 8.
477 P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor expression and enhanced matrix metalloproteinase 9 secretion.J Biol Chem. 2013 Feb 1;288(5):3025-35. doi: 10.1074/jbc.M112.424770. Epub 2012 Dec 20.
478 Protocadherin-PC promotes androgen-independent prostate cancer cell growth.Prostate. 2006 Jul 1;66(10):1100-13. doi: 10.1002/pros.20446.
479 Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer.Nat Genet. 2018 Feb;50(2):219-228. doi: 10.1038/s41588-017-0026-3. Epub 2018 Jan 15.
480 Overexpression of the Pluripotent Stem Cell Marker Podocalyxin in Prostate Cancer.Anticancer Res. 2018 Nov;38(11):6361-6366. doi: 10.21873/anticanres.12994.
481 Somatic Mutations in Catalytic Core of POLK Reported in Prostate Cancer Alter Translesion DNA Synthesis.Hum Mutat. 2015 Sep;36(9):873-80. doi: 10.1002/humu.22820. Epub 2015 Jun 25.
482 Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer.Nat Commun. 2015 Oct 7;6:8469. doi: 10.1038/ncomms9469.
483 PPP2R2A prostate cancer haploinsufficiency is associated with worse prognosis and a high vulnerability to B55/PP2A reconstitution that triggers centrosome destabilization.Oncogenesis. 2019 Dec 10;8(12):72. doi: 10.1038/s41389-019-0180-9.
484 EGF signalling in prostate cancer cell lines is inhibited by a high expression level of the endocytosis protein REPS2.Int J Cancer. 2005 Feb 10;113(4):561-7. doi: 10.1002/ijc.20612.
485 A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding.Nat Genet. 2014 Feb;46(2):126-35. doi: 10.1038/ng.2862. Epub 2014 Jan 5.
486 Interaction between single nucleotide polymorphisms in selenoprotein P and mitochondrial superoxide dismutase determines prostate cancer risk.Cancer Res. 2008 Dec 15;68(24):10171-7. doi: 10.1158/0008-5472.CAN-08-1827.
487 Alpha 1 antichymotrypsin genotype is associated with increased risk of prostate carcinoma and PSA levels.Anticancer Res. 2008 Jan-Feb;28(1B):395-9.
488 ssDNA-binding protein 2 is frequently hypermethylated and suppresses cell growth in human prostate cancer.Clin Cancer Res. 2008 Jun 15;14(12):3754-60. doi: 10.1158/1078-0432.CCR-07-4763.
489 Inducible expression of a prostate cancer-testis antigen, SSX-2, following treatment with a DNA methylation inhibitor.Prostate. 2007 Dec 1;67(16):1781-90. doi: 10.1002/pros.20665.
490 STAT5a/b Deficiency Delays, but does not Prevent, Prolactin-Driven Prostate Tumorigenesis in Mice.Cancers (Basel). 2019 Jul 2;11(7):929. doi: 10.3390/cancers11070929.
491 Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer.Oncotarget. 2019 Oct 22;10(58):6234-6244. doi: 10.18632/oncotarget.27263. eCollection 2019 Oct 22.
492 Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genet Cytogenet. 2006 Apr 15;166(2):130-8. doi: 10.1016/j.cancergencyto.2005.09.012.
493 Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone.J Clin Invest. 2018 Jan 2;128(1):248-266. doi: 10.1172/JCI92466. Epub 2017 Nov 27.
494 Progenitors from the central nervous system drive neurogenesis in cancer.Nature. 2019 May;569(7758):672-678. doi: 10.1038/s41586-019-1219-y. Epub 2019 May 15.
495 Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of Wnt-3a and matrix metalloproteinases.Mol Biol Rep. 2013 Jul;40(7):4241-50. doi: 10.1007/s11033-013-2506-6. Epub 2013 May 8.
496 The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment.Oncotarget. 2016 Nov 22;7(47):76756-76768. doi: 10.18632/oncotarget.12525.
497 ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-B and drives prostate cancer progression.Cancer Res. 2013 Jul 15;73(14):4533-47. doi: 10.1158/0008-5472.CAN-12-4537. Epub 2013 May 16.
498 Ras-Induced miR-146a and 193a Target Jmjd6 to Regulate Melanoma Progression.Front Genet. 2018 Dec 18;9:675. doi: 10.3389/fgene.2018.00675. eCollection 2018.
499 Transcription factor KLF13 inhibits AKT activation and suppresses the growth of prostate carcinoma cells.Cancer Biomark. 2018;22(3):533-541. doi: 10.3233/CBM-181196.
500 Quantified KLK15 gene expression levels discriminate prostate cancer from benign tumors and constitute a novel independent predictor of disease progression.Prostate. 2013 Aug;73(11):1191-201. doi: 10.1002/pros.22667. Epub 2013 Apr 26.
501 N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype.Oncogene. 2014 Nov 6;33(45):5274-87. doi: 10.1038/onc.2013.464. Epub 2013 Nov 18.
502 PRSS3/mesotrypsin is a therapeutic target for metastatic prostate cancer.Mol Cancer Res. 2012 Dec;10(12):1555-66. doi: 10.1158/1541-7786.MCR-12-0314.
503 Role of ribosomal protein RPS2 in controlling let-7a expression in human prostate cancer.Mol Cancer Res. 2011 Jan;9(1):36-50. doi: 10.1158/1541-7786.MCR-10-0158. Epub 2010 Dec 8.
504 SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia.J Clin Invest. 2011 Nov;121(11):4257-67. doi: 10.1172/JCI58509. Epub 2011 Oct 3.
505 SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer.Prostate. 2019 Jul;79(10):1156-1165. doi: 10.1002/pros.23830. Epub 2019 May 15.
506 RNASEL and RNASEL-inhibitor variation and prostate cancer risk in Afro-Caribbeans.Prostate. 2008 Mar 1;68(4):354-9. doi: 10.1002/pros.20687.
507 Effects of ACE I/D polymorphism on prostate cancer risk, tumor grade and metastatis.Anticancer Res. 2007 Mar-Apr;27(2):933-6.
508 Peroxisomal branched chain fatty acid beta-oxidation pathway is upregulated in prostate cancer.Prostate. 2005 Jun 1;63(4):316-23. doi: 10.1002/pros.20177.
509 Vitamin D3 inhibits fatty acid synthase expression by stimulating the expression of long-chain fatty-acid-CoA ligase 3 in prostate cancer cells.FEBS Lett. 2004 Nov 19;577(3):451-4. doi: 10.1016/j.febslet.2004.10.044.
510 ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction.Cancer Res. 2008 Feb 15;68(4):1092-9. doi: 10.1158/0008-5472.CAN-07-2432.
511 Expression and function of the human androgen-responsive gene ADI1 in prostate cancer. Neoplasia. 2007 Aug;9(8):643-51. doi: 10.1593/neo.07415.
512 The regulation of adiponectin receptors in human prostate cancer cell lines.Biochem Biophys Res Commun. 2006 Sep 29;348(3):832-8. doi: 10.1016/j.bbrc.2006.07.139. Epub 2006 Jul 31.
513 GGAP2/PIKE-a directly activates both the Akt and nuclear factor-kappaB pathways and promotes prostate cancer progression.Cancer Res. 2009 Feb 1;69(3):819-27. doi: 10.1158/0008-5472.CAN-08-2537. Epub 2009 Jan 27.
514 The enzymatic activity of apoptosis-inducing factor supports energy metabolism benefiting the growth and invasiveness of advanced prostate cancer cells.J Biol Chem. 2012 Dec 21;287(52):43862-75. doi: 10.1074/jbc.M112.407650. Epub 2012 Nov 1.
515 AIRE promotes androgen-independent prostate cancer by directly regulating IL-6 and modulating tumor microenvironment.Oncogenesis. 2018 May 25;7(5):43. doi: 10.1038/s41389-018-0053-7.
516 A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes.Nat Genet. 2017 May;49(5):730-741. doi: 10.1038/ng.3817. Epub 2017 Mar 20.
517 Characterization of a novel human breast cancer associated gene (BCA3) encoding an alternatively spliced proline-rich protein.Biochim Biophys Acta. 2003 Jan 3;1625(1):116-21. doi: 10.1016/s0167-4781(02)00562-6.
518 No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk.Cancer Epidemiol Biomarkers Prev. 2008 Dec;17(12):3612-4. doi: 10.1158/1055-9965.EPI-08-0789.
519 Prostate cancer antigen-1 as a potential novel marker for prostate cancer.Asian J Androl. 2007 Nov;9(6):821-6. doi: 10.1111/j.1745-7262.2007.00279.x.
520 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size).Prostaglandins Other Lipid Mediat. 2007 Jan;82(1-4):135-46. doi: 10.1016/j.prostaglandins.2006.05.022. Epub 2006 Jul 7.
521 Down-regulation of matriptase by overexpression of bikunin attenuates cell invasion in prostate carcinoma cells.Anticancer Res. 2008 Jul-Aug;28(4A):1977-83.
522 Humoral and cellular immune responses against the breast cancer antigen NY-BR-1: definition of two HLA-A2 restricted peptide epitopes.Cancer Immun. 2005 Dec 12;5:11.
523 Annexin-A7 protects normal prostate cells and induces distinct patterns of RB-associated cytotoxicity in androgen-sensitive and -resistant prostate cancer cells.Int J Cancer. 2009 Dec 1;125(11):2528-39. doi: 10.1002/ijc.24592.
524 Apolipoprotein-D: a novel cellular marker for HGPIN and prostate cancer.Prostate. 2004 Feb 1;58(2):103-8. doi: 10.1002/pros.10343.
525 The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates.Carcinogenesis. 2008 May;29(5):1077-82. doi: 10.1093/carcin/bgn069. Epub 2008 Mar 20.
526 The Discovery and Preclinical Development of ASG-5ME, an Antibody-Drug Conjugate Targeting SLC44A4-Positive Epithelial Tumors Including Pancreatic and Prostate Cancer.Mol Cancer Ther. 2016 Nov;15(11):2679-2687. doi: 10.1158/1535-7163.MCT-16-0225. Epub 2016 Aug 22.
527 The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy.Cancer Biol Ther. 2007 Sep;6(9):1455-60. doi: 10.4161/cbt.6.9.4623. Epub 2007 Jun 23.
528 ASAP1, a gene at 8q24, is associated with prostate cancer metastasis.Cancer Res. 2008 Jun 1;68(11):4352-9. doi: 10.1158/0008-5472.CAN-07-5237.
529 Immunohistochemical study of the neural development transcription factors (TTF1, ASCL1 and BRN2) in neuroendocrine prostate tumours.Actas Urol Esp. 2017 Oct;41(8):529-534. doi: 10.1016/j.acuro.2016.11.009. Epub 2017 Mar 9.
530 ATPase family AAA domain containing 3A is an anti-apoptotic factor and a secretion regulator of PSA in prostate cancer.Int J Mol Med. 2011 Jul;28(1):9-15. doi: 10.3892/ijmm.2011.670. Epub 2011 Apr 6.
531 Knockdown of antizyme inhibitor decreases prostate tumor growth in vivo.Amino Acids. 2012 Feb;42(2-3):549-58. doi: 10.1007/s00726-011-1032-x. Epub 2011 Sep 11.
532 Dynamic diffusion-weighted hyperpolarized (13) C imaging based on a slice-selective double spin echo sequence for measurements of cellular transport.Magn Reson Med. 2019 Mar;81(3):2001-2010. doi: 10.1002/mrm.27501. Epub 2018 Oct 28.
533 Analysis and sorting of prostate cancer cell types by flow cytometry.Prostate. 1999 Aug 1;40(3):192-9. doi: 10.1002/(sici)1097-0045(19990801)40:3<192::aid-pros7>3.0.co;2-f.
534 Expression of BAG-1 protein correlates with aggressive behavior of prostate cancers.Prostate. 2006 Jun 1;66(8):801-10. doi: 10.1002/pros.20384.
535 Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response.J Cell Sci. 2015 Feb 15;128(4):728-40. doi: 10.1242/jcs.160051. Epub 2015 Jan 20.
536 Analysis of candidate genes for prostate cancer.Hum Hered. 2004;57(4):172-8. doi: 10.1159/000081443.
537 Differential expression of osteocalcin during the metastatic progression of prostate cancer.Oncol Rep. 2009 Apr;21(4):903-8. doi: 10.3892/or_00000302.
538 Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma.Int J Cancer. 2000 Apr 15;86(2):155-61. doi: 10.1002/(sici)1097-0215(20000415)86:2<155::aid-ijc2>3.0.co;2-m.
539 Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase.J Biol Chem. 2006 Jul 14;281(28):19320-6. doi: 10.1074/jbc.M513203200. Epub 2006 May 1.
540 Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4.Oncogene. 2006 Mar 9;25(10):1446-53. doi: 10.1038/sj.onc.1209192.
541 Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway.Mol Cancer. 2006 Mar 1;5:9. doi: 10.1186/1476-4598-5-9.
542 Modifier locus mapping of a transgenic F2 mouse population identifies CCDC115 as a novel aggressive prostate cancer modifier gene in humans.BMC Genomics. 2018 Jun 11;19(1):450. doi: 10.1186/s12864-018-4827-2.
543 Ultrasound-guided intra-tumor injection of combined immunotherapy cures mice from orthotopic prostate cancer.Cancer Immunol Immunother. 2013 Dec;62(12):1811-9. doi: 10.1007/s00262-013-1486-7. Epub 2013 Oct 18.
544 Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis.J Natl Cancer Inst. 2008 Jul 16;100(14):1022-36. doi: 10.1093/jnci/djn214. Epub 2008 Jul 8.
545 The role of sialomucin CD164 (MGC-24v or endolyn) in prostate cancer metastasis.BMC Cancer. 2006 Jul 21;6:195. doi: 10.1186/1471-2407-6-195.
546 Epidermal growth factor receptor mRNA levels in human prostatic tumors and cell lines.J Urol. 1990 Jun;143(6):1272-4. doi: 10.1016/s0022-5347(17)40253-9.
547 Androgen receptor regulates Cdc6 in synchronized LNCaP cells progressing from G1 to S phase. J Cell Physiol. 2005 Aug;204(2):381-7. doi: 10.1002/jcp.20422.
548 Targeting CUB domain-containing protein 1 with a monoclonal antibody inhibits metastasis in a prostate cancer model.Cancer Res. 2008 May 15;68(10):3759-66. doi: 10.1158/0008-5472.CAN-07-1657.
549 PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.Cancer Res. 2014 Oct 15;74(20):5795-807. doi: 10.1158/0008-5472.CAN-14-0872. Epub 2014 Sep 9.
550 C/EBPdelta is a downstream mediator of IL-6 induced growth inhibition of prostate cancer cells.Prostate. 2005 May 1;63(2):143-54. doi: 10.1002/pros.20159.
551 Gene expression profiling predicts clinical outcome of prostate cancer.J Clin Invest. 2004 Mar;113(6):913-23. doi: 10.1172/JCI20032.
552 SRRM4 gene expression correlates with neuroendocrine prostate cancer.Prostate. 2019 Jan;79(1):96-104. doi: 10.1002/pros.23715. Epub 2018 Aug 28.
553 Nkx3.1 and p27(KIP1) cooperate in proliferation inhibition and apoptosis induction in human androgen-independent prostate cancer cells.Cancer Invest. 2009 May;27(4):369-75. doi: 10.1080/07357900802232749.
554 Aberrant expression of Cks1 and Cks2 contributes to prostate tumorigenesis by promoting proliferation and inhibiting programmed cell death.Int J Cancer. 2008 Aug 1;123(3):543-51. doi: 10.1002/ijc.23548.
555 Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsense-mediated decay and microarray analysis.Cancer Genet Cytogenet. 2005 Sep;161(2):97-103. doi: 10.1016/j.cancergencyto.2005.02.006.
556 Ubiquitylation of epsilon-COP by PIRH2 and regulation of the secretion of PSA.Mol Cell Biochem. 2008 Jan;307(1-2):73-82. doi: 10.1007/s11010-007-9586-3. Epub 2007 Aug 25.
557 The expression of inducible cAMP early repressor (ICER) is altered in prostate cancer cells and reverses the transformed phenotype of the LNCaP prostate tumor cell line.Cancer Res. 2001 Aug 15;61(16):6055-9.
558 Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse.Cancer Res. 2003 Jul 15;63(14):4196-203.
559 Identification of extracellular delta-catenin accumulation for prostate cancer detection.Prostate. 2009 Mar 1;69(4):411-8. doi: 10.1002/pros.20902.
560 Increased nucleotide polymorphic changes in the 5'-untranslated region of delta-catenin (CTNND2) gene in prostate cancer.Oncogene. 2009 Jan 29;28(4):555-64. doi: 10.1038/onc.2008.399. Epub 2008 Nov 3.
561 Potential use of chymotrypsin-like proteasomal activity as a biomarker for prostate cancer.Oncol Lett. 2018 Apr;15(4):5149-5154. doi: 10.3892/ol.2018.7936. Epub 2018 Feb 2.
562 CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth.Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3414-9. doi: 10.1073/pnas.0813144106. Epub 2009 Feb 13.
563 CXCL16 functions as a novel chemotactic factor for prostate cancer cells in vitro.Mol Cancer Res. 2008 Apr;6(4):546-54. doi: 10.1158/1541-7786.MCR-07-0277. Epub 2008 Mar 14.
564 The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2.J Biol Chem. 2002 Apr 12;277(15):12622-31. doi: 10.1074/jbc.M110568200. Epub 2002 Jan 25.
565 Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP.J Natl Cancer Inst. 2007 Dec 19;99(24):1836-44. doi: 10.1093/jnci/djm250. Epub 2007 Dec 11.
566 Downregulation of DACT-2 by Promoter Methylation and its Clinicopathological Significance in Prostate Cancer.J Cancer. 2019 Apr 20;10(7):1755-1763. doi: 10.7150/jca.28577. eCollection 2019.
567 Dermcidin expression confers a survival advantage in prostate cancer cells subjected to oxidative stress or hypoxia.Prostate. 2007 Sep 1;67(12):1308-17. doi: 10.1002/pros.20618.
568 Aberrant expression of the neuronal-specific protein DCDC2 promotes malignant phenotypes and is associated with prostate cancer progression.Oncogene. 2013 May 2;32(18):2315-24, 2324.e1-4. doi: 10.1038/onc.2012.245. Epub 2012 Jun 25.
569 Genetic variants of the copy number polymorphic beta-defensin locus are associated with sporadic prostate cancer.Tumour Biol. 2008;29(2):83-92. doi: 10.1159/000135688. Epub 2008 Jun 2.
570 DGCR8 is essential for tumor progression following PTEN loss in the prostate.EMBO Rep. 2015 Sep;16(9):1219-32. doi: 10.15252/embr.201439925. Epub 2015 Jul 23.
571 Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease.Cancer Res. 2009 Jul 1;69(13):5601-9. doi: 10.1158/0008-5472.CAN-08-3860. Epub 2009 Jun 23.
572 Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers.Cancer Genet Cytogenet. 2003 Jan 15;140(2):113-7. doi: 10.1016/s0165-4608(02)00674-x.
573 Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.Epigenetics Chromatin. 2016 Nov 9;9:50. doi: 10.1186/s13072-016-0102-4. eCollection 2016.
574 BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia.Mod Pathol. 2009 Jan;22(1):1-6. doi: 10.1038/modpathol.2008.168. Epub 2008 Oct 17.
575 Loss of heterozygosity on 8p in prostate cancer implicates a role for dematin in tumor progression.Cancer Genet Cytogenet. 1999 Nov;115(1):65-9. doi: 10.1016/s0165-4608(99)00081-3.
576 Dolichol-phosphate-mannose-3 (DPM3)/prostin-1 is a novel phospholipase C-gamma regulated gene negatively associated with prostate tumor invasion.Oncogene. 2001 May 17;20(22):2781-90. doi: 10.1038/sj.onc.1204379.
577 The Drg-1 gene suppresses tumor metastasis in prostate cancer.Cancer Res. 2003 Apr 15;63(8):1731-6.
578 Small integrin-binding proteins as serum markers for prostate cancer detection.Clin Cancer Res. 2009 Aug 15;15(16):5199-207. doi: 10.1158/1078-0432.CCR-09-0783. Epub 2009 Aug 11.
579 Upregulation and overexpression of DVL1, the human counterpart of the Drosophila dishevelled gene, in prostate cancer.Tumori. 2005 Nov-Dec;91(6):546-51. doi: 10.1177/030089160509100616.
580 EBAG9/RCAS1 expression and its prognostic significance in prostatic cancer.Int J Cancer. 2003 Sep 1;106(3):310-5. doi: 10.1002/ijc.11205.
581 Transient reduction of PTI-1 expression by short interfering RNAs inhibits the growth of human prostate cancer cell lines.Tohoku J Exp Med. 2006 Jun;209(2):141-8. doi: 10.1620/tjem.209.141.
582 Early Growth Response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer.Br J Cancer. 2015 Feb 17;112(4):755-64. doi: 10.1038/bjc.2014.622. Epub 2015 Jan 29.
583 Genetic susceptibility loci, pesticide exposure and prostate cancer risk. PLoS One. 2013 Apr 4;8(4):e58195. doi: 10.1371/journal.pone.0058195. Print 2013.
584 GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells.Regul Pept. 2002 Nov 15;109(1-3):141-8. doi: 10.1016/s0167-0115(02)00197-0.
585 A variant of the KLK4 gene is expressed as a cis sense-antisense chimeric transcript in prostate cancer cells.RNA. 2010 Jun;16(6):1156-66. doi: 10.1261/rna.2019810. Epub 2010 Apr 20.
586 Conditional deletion of ELL2 induces murine prostate intraepithelial neoplasia.J Endocrinol. 2017 Nov;235(2):123-136. doi: 10.1530/JOE-17-0112.
587 TCEB1 promotes invasion of prostate cancer cells.Int J Cancer. 2009 Jan 1;124(1):95-102. doi: 10.1002/ijc.23916.
588 Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and-Independent Mechanisms.Cancers (Basel). 2018 Jul 23;10(7):239. doi: 10.3390/cancers10070239.
589 Knockdown of MBP-1 in human prostate cancer cells delays cell cycle progression.J Biol Chem. 2006 Aug 18;281(33):23652-7. doi: 10.1074/jbc.M602930200. Epub 2006 Jun 8.
590 Potential role of EPB41L3 (protein 4.1B/Dal-1) as a target for treatment of advanced prostate cancer.Expert Opin Ther Targets. 2008 Jul;12(7):845-53. doi: 10.1517/14728222.12.7.845.
591 Discovery and validation of 3 novel DNA methylation markers of prostate cancer prognosis.J Urol. 2007 May;177(5):1753-8. doi: 10.1016/j.juro.2007.01.010.
592 Xenobiotic metabolizing gene variants, dietary heterocyclic amine intake, and risk of prostate cancer. Cancer Res. 2009 Mar 1;69(5):1877-84. doi: 10.1158/0008-5472.CAN-08-2447. Epub 2009 Feb 17.
593 NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans.Prostate Cancer Prostatic Dis. 2008;11(4):349-56. doi: 10.1038/sj.pcan.4501027. Epub 2007 Nov 20.
594 Overexpression and mislocalization of the chromosomal segregation protein separase in multiple human cancers.Clin Cancer Res. 2009 Apr 15;15(8):2703-10. doi: 10.1158/1078-0432.CCR-08-2454. Epub 2009 Apr 7.
595 Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1.J Clin Invest. 2016 Feb;126(2):706-20. doi: 10.1172/JCI78132. Epub 2016 Jan 5.
596 Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2.Mol Endocrinol. 2007 Mar;21(3):613-24. doi: 10.1210/me.2006-0269. Epub 2006 Dec 27.
597 Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors.Cancer Cell. 2019 Dec 9;36(6):674-689.e6. doi: 10.1016/j.ccell.2019.10.005. Epub 2019 Nov 14.
598 Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors.Cancer Cell. 2010 Jul 13;18(1):23-38. doi: 10.1016/j.ccr.2010.05.024.
599 Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells.Int J Oncol. 2004 Jan;24(1):97-105.
600 Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res. 2009 Feb 15;69(4):1527-35. doi: 10.1158/0008-5472.CAN-08-3609. Epub 2009 Feb 3.
601 Chromium(VI) promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer.Toxicol Lett. 2019 Jan;300:10-17. doi: 10.1016/j.toxlet.2018.10.012. Epub 2018 Oct 10.
602 CR6-interacting factor 1 represses the transactivation of androgen receptor by direct interaction.Mol Endocrinol. 2008 Jan;22(1):33-46. doi: 10.1210/me.2007-0194. Epub 2007 Sep 20.
603 miR-15a/miR-16 cluster inhibits invasion of prostate cancer cells by suppressing TGF- signaling pathway.Biomed Pharmacother. 2018 Aug;104:637-644. doi: 10.1016/j.biopha.2018.05.041. Epub 2018 May 25.
604 Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer.Prostate. 2019 Oct;79(14):1629-1639. doi: 10.1002/pros.23887. Epub 2019 Aug 2.
605 A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion.J Biol Chem. 2006 Sep 8;281(36):26483-90. doi: 10.1074/jbc.M604376200. Epub 2006 Jun 20.
606 Expression of GnRH type II is regulated by the androgen receptor in prostate cancer.Endocr Relat Cancer. 2007 Sep;14(3):613-24. doi: 10.1677/ERC-07-0041.
607 GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics.Br J Cancer. 2008 Sep 16;99(6):939-48. doi: 10.1038/sj.bjc.6604614.
608 Increased expression of mitochondrial glycerophosphate dehydrogenase and antioxidant enzymes in prostate cancer cell lines/cancer.Free Radic Res. 2007 Oct;41(10):1116-24. doi: 10.1080/10715760701579314.
609 GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells.Biochim Biophys Acta Mol Cell Biol Lipids. 2020 Feb;1865(2):158573. doi: 10.1016/j.bbalip.2019.158573. Epub 2019 Nov 21.
610 Activator of G protein signaling 3 modulates prostate tumor development and progression.Carcinogenesis. 2019 Dec 31;40(12):1504-1513. doi: 10.1093/carcin/bgz076.
611 GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Prostate. 2006 Jun 1;66(8):886-94. doi: 10.1002/pros.20403.
612 Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [(64)Cu]-DOTHA(2)-PEG-RM26.Nucl Med Biol. 2018 Jan;56:31-38. doi: 10.1016/j.nucmedbio.2017.10.006. Epub 2017 Oct 23.
613 JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer.Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19226-31. doi: 10.1073/pnas.0700735104. Epub 2007 Nov 28.
614 CpG island promoter methylation and silencing of 14-3-3sigma gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2.Oncogene. 2006 Aug 3;25(33):4559-72. doi: 10.1038/sj.onc.1209462. Epub 2006 Jun 19.
615 Use of a cryptic splice site for the expression of huntingtin interacting protein 1 in select normal and neoplastic tissues.Cancer Res. 2008 Feb 15;68(4):1064-73. doi: 10.1158/0008-5472.CAN-07-5892.
616 JNK regulates HIPK3 expression and promotes resistance to Fas-mediated apoptosis in DU 145 prostate carcinoma cells.J Biol Chem. 2004 Apr 23;279(17):17090-100. doi: 10.1074/jbc.M307629200. Epub 2004 Feb 6.
617 Androgen receptor regulates CD168 expression and signaling in prostate cancer.Carcinogenesis. 2008 Feb;29(2):282-90. doi: 10.1093/carcin/bgm259. Epub 2008 Jan 3.
618 Heterogeneous nuclear ribonucleoprotein K is a novel regulator of androgen receptor translation.Cancer Res. 2009 Mar 15;69(6):2210-8. doi: 10.1158/0008-5472.CAN-08-2308. Epub 2009 Mar 3.
619 Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing.Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5207-E5215. doi: 10.1073/pnas.1617467114. Epub 2017 Jun 13.
620 HOXA10 expression profiling in prostate cancer.Prostate. 2019 Apr;79(5):554-563. doi: 10.1002/pros.23761. Epub 2019 Jan 6.
621 Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene. 2016 Sep 30;590(2):234-43. doi: 10.1016/j.gene.2016.05.009. Epub 2016 May 13.
622 PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation.Prostate. 2006 Jul 1;66(10):1092-9. doi: 10.1002/pros.20443.
623 Decreased HoxD10 Expression Promotes a Proliferative and Aggressive Phenotype in Prostate Cancer.Curr Mol Med. 2017;17(1):70-78. doi: 10.2174/1566524017666170220104920.
624 Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One. 2009;4(3):e4830. doi: 10.1371/journal.pone.0004830. Epub 2009 Mar 13.
625 Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res. 2005 Feb 1;11(3):1028-36.
626 HRK inactivation associated with promoter methylation and LOH in prostate cancer.Prostate. 2008 Jan 1;68(1):105-13. doi: 10.1002/pros.20600.
627 Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling.Matrix Biol. 2019 May;78-79:165-179. doi: 10.1016/j.matbio.2018.05.002. Epub 2018 May 10.
628 Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma.Clin Exp Metastasis. 2003;20(5):437-44. doi: 10.1023/a:1025419708343.
629 IFI16 in human prostate cancer.Mol Cancer Res. 2007 Mar;5(3):251-9. doi: 10.1158/1541-7786.MCR-06-0269. Epub 2007 Mar 5.
630 EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells.Cancer Res. 2003 May 15;63(10):2665-74.
631 Miz1, a Novel Target of ING4, Can Drive Prostate Luminal Epithelial Cell Differentiation.Prostate. 2017 Jan;77(1):49-59. doi: 10.1002/pros.23249. Epub 2016 Aug 16.
632 INPP4B suppresses prostate cancer cell invasion.Cell Commun Signal. 2014 Sep 25;12:61. doi: 10.1186/s12964-014-0061-y.
633 The iroquois homeobox gene 5 is regulated by 1,25-dihydroxyvitamin D3 in human prostate cancer and regulates apoptosis and the cell cycle in LNCaP prostate cancer cells.Clin Cancer Res. 2008 Jun 1;14(11):3562-70. doi: 10.1158/1078-0432.CCR-07-4649.
634 Role of the orphan nuclear receptor ROR alpha in the control of the metastatic behavior of androgen-independent prostate cancer cells.Oncol Rep. 2002 Sep-Oct;9(5):1139-43.
635 Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies.Oncogene. 2010 Feb 11;29(6):831-44. doi: 10.1038/onc.2009.399. Epub 2009 Nov 23.
636 Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis.Prostate. 2009 May 15;69(7):727-36. doi: 10.1002/pros.20920.
637 Elevation of androgen receptor promotes prostate cancer metastasis by induction of epithelial-mesenchymal transition and reduction of KAT5.Cancer Sci. 2018 Nov;109(11):3564-3574. doi: 10.1111/cas.13776. Epub 2018 Sep 25.
638 A new human gene KCNRG encoding potassium channel regulating protein is a cancer suppressor gene candidate located in 13q14.3.FEBS Lett. 2003 Mar 27;539(1-3):156-60. doi: 10.1016/s0014-5793(03)00211-4.
639 JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis.Cancer Res. 2016 Feb 15;76(4):831-43. doi: 10.1158/0008-5472.CAN-15-0906. Epub 2016 Jan 8.
640 Direct and distant antitumor effects of a telomerase-selective oncolytic adenoviral agent, OBP-301, in a mouse prostate cancer model.Cancer Gene Ther. 2008 May;15(5):315-22. doi: 10.1038/cgt.2008.3. Epub 2008 Feb 15.
641 KIF7 attenuates prostate tumor growth through LKB1-mediated AKT inhibition.Oncotarget. 2017 Apr 26;8(33):54558-54571. doi: 10.18632/oncotarget.17421. eCollection 2017 Aug 15.
642 KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1 accumulation.Mol Cancer. 2015 Apr 21;14:91. doi: 10.1186/s12943-015-0365-6.
643 Downregulation of human kallikrein 10 (KLK10/NES1) by CpG island hypermethylation in breast, ovarian and prostate cancers.Tumour Biol. 2005 Nov-Dec;26(6):324-36. doi: 10.1159/000089290. Epub 2005 Oct 26.
644 Keratin 13 Is Enriched in Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone.PLoS One. 2016 Oct 6;11(10):e0163232. doi: 10.1371/journal.pone.0163232. eCollection 2016.
645 In vivo functional studies of tumor-specific retrogene NanogP8 in transgenic animals.Cell Cycle. 2013 Aug 1;12(15):2395-408. doi: 10.4161/cc.25402. Epub 2013 Jun 26.
646 Membrane type 1 matrix metalloprotease cleaves laminin-10 and promotes prostate cancer cell migration.Neoplasia. 2005 Apr;7(4):380-9. doi: 10.1593/neo.04619.
647 Luteinizing hormone beta polymorphism and risk of familial and sporadic prostate cancer.Prostate. 2003 Jun 15;56(1):30-6. doi: 10.1002/pros.10220.
648 DNA-based detection of prostate cancer in blood, urine, and ejaculates.Ann N Y Acad Sci. 2001 Sep;945:51-8. doi: 10.1111/j.1749-6632.2001.tb03863.x.
649 Multiple newly identified loci associated with prostate cancer susceptibility.Nat Genet. 2008 Mar;40(3):316-21. doi: 10.1038/ng.90. Epub 2008 Feb 10.
650 LAPSER1: a novel candidate tumor suppressor gene from 10q24.3.Oncogene. 2001 Oct 11;20(46):6707-17. doi: 10.1038/sj.onc.1204866.
651 Increased expression of androgen receptor coregulator MAGE-11 in prostate cancer by DNA hypomethylation and cyclic AMP.Mol Cancer Res. 2009 Apr;7(4):523-35. doi: 10.1158/1541-7786.MCR-08-0400.
652 MAGI2 is an independent predictor of biochemical recurrence in prostate cancer.Prostate. 2018 Jun;78(8):616-622. doi: 10.1002/pros.23506. Epub 2018 Mar 14.
653 Male germ cell-associated kinase, a male-specific kinase regulated by androgen, is a coactivator of androgen receptor in prostate cancer cells.Cancer Res. 2006 Sep 1;66(17):8439-47. doi: 10.1158/0008-5472.CAN-06-1636.
654 Caveolin-1 and MAL are located on prostasomes secreted by the prostate cancer PC-3 cell line.J Cell Sci. 2004 Oct 15;117(Pt 22):5343-51. doi: 10.1242/jcs.01420. Epub 2004 Oct 5.
655 Activation of pro-apoptotic p38-MAPK pathway in the prostate cancer cell line M12 expressing a truncated IGF-IR.Horm Metab Res. 2003 Nov-Dec;35(11-12):751-7. doi: 10.1055/s-2004-814160.
656 Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene.Oncogene. 2004 Mar 18;23(12):2241-9. doi: 10.1038/sj.onc.1207328.
657 PTOV1 antagonizes MED25 in RAR transcriptional activation.Biochem Biophys Res Commun. 2011 Jan 7;404(1):239-44. doi: 10.1016/j.bbrc.2010.11.100. Epub 2010 Nov 24.
658 MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease.Clin Cancer Res. 2018 Aug 1;24(15):3668-3680. doi: 10.1158/1078-0432.CCR-17-3673. Epub 2018 May 1.
659 Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis.Anticancer Res. 2008 Jul-Aug;28(4A):1993-9.
660 Expression of novel molecules, MICAL2-PV (MICAL2 prostate cancer variants), increases with high Gleason score and prostate cancer progression.Clin Cancer Res. 2006 May 1;12(9):2767-73. doi: 10.1158/1078-0432.CCR-05-1995.
661 Coordinated peak expression of MMP-26 and TIMP-4 in preinvasive human prostate tumor.Cell Res. 2006 Sep;16(9):750-8. doi: 10.1038/sj.cr.7310089.
662 The differentiation-related gene 1, Drg1, is markedly upregulated by androgens in LNCaP prostatic adenocarcinoma cells.FEBS Lett. 1999 Jul 16;455(1-2):23-6. doi: 10.1016/s0014-5793(99)00845-5.
663 The MRPS18-2 protein levels correlate with prostate tumor progression and it induces CXCR4-dependent migration of cancer cells.Sci Rep. 2018 Feb 2;8(1):2268. doi: 10.1038/s41598-018-20765-8.
664 Metallothionein isoform 3 expression inhibits cell growth and increases drug resistance of PC-3 prostate cancer cells.Prostate. 2002 Jul 1;52(2):89-97. doi: 10.1002/pros.10097.
665 MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer.Clin Exp Metastasis. 2005;22(7):565-73. doi: 10.1007/s10585-005-5376-z. Epub 2006 Feb 11.
666 Mxi1, a Myc antagonist, suppresses proliferation of DU145 human prostate cells.Prostate. 2001 May 15;47(3):194-204. doi: 10.1002/pros.1063.
667 Spatial genomic heterogeneity within localized, multifocal prostate cancer.Nat Genet. 2015 Jul;47(7):736-45. doi: 10.1038/ng.3315. Epub 2015 May 25.
668 Somatic mutation analysis of MYH11 in breast and prostate cancer.BMC Cancer. 2008 Sep 17;8:263. doi: 10.1186/1471-2407-8-263.
669 GOLPH2 and MYO6: putative prostate cancer markers localized to the Golgi apparatus.Prostate. 2008 Sep 15;68(13):1387-95. doi: 10.1002/pros.20806.
670 Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses.Virology. 2004 Dec 5;330(1):34-49. doi: 10.1016/j.virol.2004.08.039.
671 MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3 signaling impedes castration-resistant prostate cancer growth.Aging (Albany NY). 2019 Nov 24;11(22):10644-10663. doi: 10.18632/aging.102482. Epub 2019 Nov 24.
672 Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress.Oncogene. 2015 Jul;34(29):3839-47. doi: 10.1038/onc.2014.310. Epub 2014 Oct 6.
673 Frequent and early loss of the EGR1 corepressor NAB2 in human prostate carcinoma.Hum Pathol. 2001 Sep;32(9):935-9. doi: 10.1053/hupa.2001.27102.
674 HIF induces human embryonic stem cell markers in cancer cells.Cancer Res. 2011 Jul 1;71(13):4640-52. doi: 10.1158/0008-5472.CAN-10-3320. Epub 2011 Jun 28.
675 hCAP-D3 expression marks a prostate cancer subtype with favorable clinical behavior and androgen signaling signature.Am J Surg Pathol. 2008 Feb;32(2):205-9. doi: 10.1097/PAS.0b013e318124a865.
676 Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells.Oncogene. 2004 Sep 2;23(40):6712-25. doi: 10.1038/sj.onc.1207772.
677 The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion.Mol Oncol. 2017 Jun;11(6):655-669. doi: 10.1002/1878-0261.12059. Epub 2017 May 2.
678 BRCA1 Interacting Protein COBRA1 Facilitates Adaptation to Castrate-Resistant Growth Conditions.Int J Mol Sci. 2018 Jul 20;19(7):2104. doi: 10.3390/ijms19072104.
679 NOL8, the binding protein for beta-catenin, promoted the growth and migration of prostate cancer cells.Chem Biol Interact. 2018 Oct 1;294:40-47. doi: 10.1016/j.cbi.2018.08.019. Epub 2018 Aug 18.
680 Increased Nox1 and hydrogen peroxide in prostate cancer.Prostate. 2005 Feb 1;62(2):200-7. doi: 10.1002/pros.20137.
681 Atrial natriuretic peptide and long acting natriuretic peptide inhibit MEK 1/2 activation in human prostate cancer cells. Anticancer Res. 2007 Nov-Dec;27(6B):3813-8.
682 TR2 orphan receptor functions as negative modulator for androgen receptor in prostate cancer cells PC-3.Prostate. 2003 Oct 1;57(2):129-33. doi: 10.1002/pros.10282.
683 Inhibition of prostate tumor growth by overexpression of NudC, a microtubule motor-associated protein.Oncogene. 2004 Apr 1;23(14):2499-506. doi: 10.1038/sj.onc.1207343.
684 Overexpression of hMTH in peripheral lymphocytes and risk of prostate cancer: a case-control analysis.Mol Carcinog. 2003 Mar;36(3):123-9. doi: 10.1002/mc.10108.
685 Com-1/p8 acts as a putative tumour suppressor in prostate cancer.Int J Mol Med. 2006 Nov;18(5):981-6.
686 PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer.Int J Cancer. 2006 Mar 15;118(6):1471-80. doi: 10.1002/ijc.21527.
687 Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate.J Biol Chem. 2011 Sep 23;286(38):33478-88. doi: 10.1074/jbc.M111.269894. Epub 2011 Jul 27.
688 Magmas expression in neoplastic human prostate.J Mol Histol. 2005 Feb;36(1-2):69-75. doi: 10.1007/s10735-004-3840-8.
689 The RNA-Binding Protein PCBP1 Functions as a Tumor Suppressor in Prostate Cancer by Inhibiting Mitogen Activated Protein Kinase 1.Cell Physiol Biochem. 2018;48(4):1747-1754. doi: 10.1159/000492315. Epub 2018 Aug 3.
690 Selection and cloning of poly(rC)-binding protein 2 and Raf kinase inhibitor protein RNA activators of 2',5'-oligoadenylate synthetase from prostate cancer cells.Nucleic Acids Res. 2006;34(22):6684-95. doi: 10.1093/nar/gkl968. Epub 2006 Dec 1.
691 Glycolytic reprogramming through PCK2 regulates tumor initiation of prostate cancer cells.Oncotarget. 2017 Jun 28;8(48):83602-83618. doi: 10.18632/oncotarget.18787. eCollection 2017 Oct 13.
692 Activated in prostate cancer: a PDZ domain-containing protein highly expressed in human primary prostate tumors.Cancer Res. 2001 Mar 15;61(6):2390-4.
693 Androgens down-regulate the expression of the human homologue of paternally expressed gene-3 in the prostatic adenocarcinoma cell line LNCaP.Mol Cell Endocrinol. 1999 Sep 10;155(1-2):69-76. doi: 10.1016/s0303-7207(99)00113-6.
694 Pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP): a new player in cell signaling.J Biol Chem. 2012 Feb 3;287(6):3610-6. doi: 10.1074/jbc.R111.318675. Epub 2011 Dec 5.
695 Prognostic value of prostate secretory protein of 94 amino acids and its binding protein after radical prostatectomy.Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):6018-22. doi: 10.1158/1078-0432.CCR-06-0625.
696 Effects of PTX1 expression on growth and tumorigenicity of the prostate cancer cell line PC-3.DNA Cell Biol. 2003 Jul;22(7):469-74. doi: 10.1089/104454903322247343.
697 Differential expression of secretory phospholipases A2 in normal and malignant prostate cell lines: regulation by cytokines, cell signaling pathways, and epigenetic mechanisms. Neoplasia. 2008 Mar;10(3):279-86. doi: 10.1593/neo.07965.
698 Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression.Eur Urol. 2018 Mar;73(3):322-339. doi: 10.1016/j.eururo.2017.08.027. Epub 2017 Sep 18.
699 Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.Epigenetics. 2014 Jun;9(6):918-27. doi: 10.4161/epi.28710. Epub 2014 Apr 2.
700 Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.Prostate. 2007 Feb 1;67(2):214-25. doi: 10.1002/pros.20522.
701 Brn-3a neuronal transcription factor functional expression in human prostate cancer.Prostate Cancer Prostatic Dis. 2006;9(1):83-91. doi: 10.1038/sj.pcan.4500837.
702 Liprin-alpha2 gene, protein tyrosine phosphatase LAR interacting protein related gene, is downregulated by androgens in the human prostate cancer cell line LNCaP.Int J Mol Med. 2002 Aug;10(2):173-6.
703 Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer.Cancer Genomics Proteomics. 2008 Mar-Apr;5(2):123-36.
704 PPP2R2C loss promotes castration-resistance and is associated with increased prostate cancer-specific mortality.Mol Cancer Res. 2013 Jun;11(6):568-78. doi: 10.1158/1541-7786.MCR-12-0710. Epub 2013 Mar 14.
705 Biodistribution and Pharmacokinetic Evaluations of a Novel Taxoid DHA-SBT-1214 in an Oil-in-Water Nanoemulsion Formulation in Nave and Tumor-Bearing Mice.Pharm Res. 2018 Mar 8;35(4):91. doi: 10.1007/s11095-018-2349-x.
706 Androgen dependent regulation of protein kinase A subunits in prostate cancer cells. Cell Signal. 2007 Feb;19(2):401-9. doi: 10.1016/j.cellsig.2006.07.011. Epub 2006 Jul 25.
707 ARP2 a novel protein involved in apoptosis of LNCaP cells shares a high degree homology with splicing factor Prp8.Mol Cell Biochem. 2005 Jan;269(1-2):189-201. doi: 10.1007/s11010-005-3084-2.
708 Prosaposin is a novel androgen-regulated gene in prostate cancer cell line LNCaP.J Cell Biochem. 2007 Jun 1;101(3):631-41. doi: 10.1002/jcb.21207.
709 Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth.Cancer Res. 2013 Nov 15;73(22):6574-83. doi: 10.1158/0008-5472.CAN-12-4692. Epub 2013 Sep 26.
710 Expression of prothymosin alpha is correlated with development and progression in human prostate cancers.Prostate. 2006 Apr 1;66(5):463-9. doi: 10.1002/pros.20385.
711 Depleting PTOV1 sensitizes non-small cell lung cancer cells to chemotherapy through attenuating cancer stem cell traits.J Exp Clin Cancer Res. 2019 Aug 6;38(1):341. doi: 10.1186/s13046-019-1349-y.
712 Androgen receptor overexpression in prostate cancer linked to Pur alpha loss from a novel repressor complex.Cancer Res. 2008 Apr 15;68(8):2678-88. doi: 10.1158/0008-5472.CAN-07-6017.
713 Rad9 has a functional role in human prostate carcinogenesis.Cancer Res. 2008 Mar 1;68(5):1267-74. doi: 10.1158/0008-5472.CAN-07-2304.
714 Rap2 regulates androgen sensitivity in human prostate cancer cells.Prostate. 2007 Oct 1;67(14):1590-9. doi: 10.1002/pros.20644.
715 RasGRP3 contributes to formation and maintenance of the prostate cancer phenotype.Cancer Res. 2010 Oct 15;70(20):7905-17. doi: 10.1158/0008-5472.CAN-09-4729. Epub 2010 Sep 28.
716 RASL11A, member of a novel small monomeric GTPase gene family, is down-regulated in prostate tumors.Biochem Biophys Res Commun. 2004 Apr 9;316(3):618-27. doi: 10.1016/j.bbrc.2004.02.091.
717 Promoter hypermethylation in circulating blood cells identifies prostate cancer progression.Int J Cancer. 2008 Feb 15;122(4):952-6. doi: 10.1002/ijc.23196.
718 The Ras effector RASSF2 controls the PAR-4 tumor suppressor.Mol Cell Biol. 2010 Jun;30(11):2608-20. doi: 10.1128/MCB.00208-09. Epub 2010 Apr 5.
719 Characterization and Evidence of the miR-888 Cluster as a Novel Cancer Network in Prostate.Mol Cancer Res. 2018 Apr;16(4):669-681. doi: 10.1158/1541-7786.MCR-17-0321. Epub 2018 Jan 12.
720 Distinct roles for p107 and p130 in Rb-independent cellular senescence.Cell Cycle. 2008 May 1;7(9):1262-8. doi: 10.4161/cc.7.9.5945. Epub 2008 Mar 7.
721 CHC1-L, a candidate gene for prostate carcinogenesis at 13q14.2, is frequently affected by loss of heterozygosity and underexpressed in human prostate cancer.Int J Cancer. 2002 Jun 10;99(5):689-96. doi: 10.1002/ijc.10393.
722 Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer.Mol Cell Biol. 2006 Sep;26(17):6502-10. doi: 10.1128/MCB.00147-06.
723 RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells.Oncogene. 2006 Mar 9;25(10):1554-9. doi: 10.1038/sj.onc.1209186.
724 Involvement of riboflavin kinase expression in cellular sensitivity against cisplatin. Int J Oncol. 2011 Apr;38(4):893-902. doi: 10.3892/ijo.2011.938. Epub 2011 Feb 9.
725 RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway.Cancer Res. 2009 Mar 1;69(5):2108-16. doi: 10.1158/0008-5472.CAN-08-3495. Epub 2009 Feb 24.
726 Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events.Genes Dev. 2008 Aug 15;22(16):2172-7. doi: 10.1101/gad.1699608.
727 Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features.Eur Urol. 2007 Aug;52(2):455-63. doi: 10.1016/j.eururo.2006.11.020. Epub 2006 Nov 17.
728 Oncogenic and osteolytic functions of histone demethylase NO66 in castration-resistant prostate cancer.Oncogene. 2019 Jun;38(25):5038-5049. doi: 10.1038/s41388-019-0774-x. Epub 2019 Mar 11.
729 Relaxin promotes prostate cancer progression.Clin Cancer Res. 2007 Mar 15;13(6):1695-702. doi: 10.1158/1078-0432.CCR-06-2492.
730 Interaction between angiotensin II and relaxin 2 in the progress of growth and spread of prostate cancer cells.Int J Oncol. 2016 Jun;48(6):2619-28. doi: 10.3892/ijo.2016.3458. Epub 2016 Mar 24.
731 Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis.Prostate. 2005 Sep 1;64(4):332-40. doi: 10.1002/pros.20243.
732 A dominant-negative mutant of androgen receptor coregulator ARA54 inhibits androgen receptor-mediated prostate cancer growth.J Biol Chem. 2002 Feb 15;277(7):4609-17. doi: 10.1074/jbc.M108312200. Epub 2001 Oct 22.
733 Ribosomal protein l19 is a prognostic marker for human prostate cancer.Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2061-5. doi: 10.1158/1078-0432.CCR-05-2445.
734 A novel component of the ubiquitin pathway, ubiquitin carboxyl extension protein 1 is overexpressed in prostate cancer.Int J Mol Med. 2005 Feb;15(2):183-96.
735 RPS7 promotes cell migration through targeting epithelial-mesenchymal transition in prostate cancer.Urol Oncol. 2019 May;37(5):297.e1-297.e7. doi: 10.1016/j.urolonc.2019.01.011. Epub 2019 Feb 6.
736 SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells.Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20793-8. doi: 10.1073/pnas.0710343105. Epub 2007 Dec 17.
737 Functional evidence implicating S100P in prostate cancer progression.Int J Cancer. 2008 Jul 15;123(2):330-339. doi: 10.1002/ijc.23447.
738 CSR1 suppresses tumor growth and metastasis of prostate cancer.Am J Pathol. 2006 Feb;168(2):597-607. doi: 10.2353/ajpath.2006.050620.
739 Genomic and expression analysis of the 3q25-q26 amplification unit reveals TLOC1/SEC62 as a probable target gene in prostate cancer.Mol Cancer Res. 2006 Mar;4(3):169-76. doi: 10.1158/1541-7786.MCR-05-0165.
740 SPOP E3 Ubiquitin Ligase Adaptor Promotes Cellular Senescence by Degrading the SENP7 deSUMOylase.Cell Rep. 2015 Nov 10;13(6):1183-1193. doi: 10.1016/j.celrep.2015.09.083. Epub 2015 Oct 29.
741 Epigenetic Suppression of SERPINB1 Promotes Inflammation-Mediated Prostate Cancer Progression.Mol Cancer Res. 2019 Apr;17(4):845-859. doi: 10.1158/1541-7786.MCR-18-0638. Epub 2019 Jan 4.
742 Nucleotide variations in genes encoding plasminogen activator inhibitor-2 and serine proteinase inhibitor B10 associated with prostate cancer.J Hum Genet. 2005;50(10):507-515. doi: 10.1007/s10038-005-0285-1. Epub 2005 Sep 20.
743 Protease nexin 1 induces apoptosis of prostate tumor cells through inhibition of X-chromosome-linked inhibitor of apoptosis protein.Oncotarget. 2015 Feb 28;6(6):3784-96. doi: 10.18632/oncotarget.2921.
744 Molecular characterization of an MLL1 fusion and its role in chromosomal instability.Mol Oncol. 2019 Feb;13(2):422-440. doi: 10.1002/1878-0261.12423. Epub 2018 Dec 31.
745 Sensitizing hormone-refractory prostate cancer cells to drug treatment by targeting 14-3-3sigma.Mol Cancer Ther. 2006 Apr;5(4):903-12. doi: 10.1158/1535-7163.MCT-05-0393.
746 Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha.Cancer Res. 2007 Oct 15;67(20):10087-96. doi: 10.1158/0008-5472.CAN-07-1646.
747 Prostate-specific membrane antigen.Prostate. 1997 Jul 1;32(2):140-8. doi: 10.1002/(sici)1097-0045(19970701)32:2<140::aid-pros9>3.0.co;2-q.
748 Bax-interacting factor-1 expression in prostate cancer.Clin Genitourin Cancer. 2008 Sep;6(2):117-21. doi: 10.3816/CGC.2008.n.018.
749 SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade.Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3509-14. doi: 10.1073/pnas.0712269105. Epub 2008 Feb 26.
750 Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells.Oncogene. 2008 Aug 28;27(37):5057-68. doi: 10.1038/onc.2008.143. Epub 2008 May 26.
751 GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs.PLoS One. 2011;6(9):e24082. doi: 10.1371/journal.pone.0024082. Epub 2011 Sep 8.
752 Reduced number of CD169(+) macrophages in pre-metastatic regional lymph nodes is associated with subsequent metastatic disease in an animal model and with poor outcome in prostate cancer patients.Prostate. 2017 Nov;77(15):1468-1477. doi: 10.1002/pros.23407. Epub 2017 Sep 7.
753 The role of the transcription factor SIM2 in prostate cancer.PLoS One. 2011;6(12):e28837. doi: 10.1371/journal.pone.0028837. Epub 2011 Dec 9.
754 Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers.Prostate. 2007 Feb 1;67(2):203-13. doi: 10.1002/pros.20521.
755 SMARCC1 expression is upregulated in prostate cancer and positively correlated with tumour recurrence and dedifferentiation.Histol Histopathol. 2008 Sep;23(9):1069-76. doi: 10.14670/HH-23.1069.
756 SMC1A is associated with radioresistance in prostate cancer and acts by regulating epithelial-mesenchymal transition and cancer stem-like properties.Mol Carcinog. 2019 Jan;58(1):113-125. doi: 10.1002/mc.22913. Epub 2018 Oct 5.
757 The PCAT3/PCAT9-miR-203-SNAI2 axis functions as a key mediator for prostate tumor growth and progression.Oncotarget. 2018 Jan 12;9(15):12212-12225. doi: 10.18632/oncotarget.24198. eCollection 2018 Feb 23.
758 Evolution of the androgen receptor pathway during progression of prostate cancer.Cancer Res. 2006 May 15;66(10):5012-20. doi: 10.1158/0008-5472.CAN-05-3082.
759 Sox7 negatively regulates prostate-specific membrane antigen (PSMA) expression through PSMA-enhancer.Prostate. 2019 Mar;79(4):370-378. doi: 10.1002/pros.23743. Epub 2018 Nov 28.
760 Suppression of hepatocyte growth factor activator inhibitor-1 leads to a more aggressive phenotype of prostate cancer cells in vitro.Int J Mol Med. 2007 Oct;20(4):613-9.
761 Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma.Endocr Relat Cancer. 2006 Sep;13(3):839-49. doi: 10.1677/erc.1.01190.
762 Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer.Prostate. 2006 May 1;66(6):613-24. doi: 10.1002/pros.20353.
763 Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development.Cancer Epidemiol Biomarkers Prev. 2010 Oct;19(10):2611-22. doi: 10.1158/1055-9965.EPI-10-0555. Epub 2010 Sep 14.
764 Identification of transcription factors associated with castration-resistance: is the serum responsive factor a potential therapeutic target?.Prostate. 2013 May;73(7):743-53. doi: 10.1002/pros.22618. Epub 2013 Jan 28.
765 STAMP2 is required for human adipose-derived stem cell differentiation and adipocyte-facilitated prostate cancer growth in vivo.Oncotarget. 2016 Aug 9;8(54):91817-91827. doi: 10.18632/oncotarget.11131. eCollection 2017 Nov 3.
766 The Ste20 kinase MST4 plays a role in prostate cancer progression.Cancer Res. 2003 Jun 15;63(12):3356-63.
767 Pro-oncogene Pokemon Promotes Prostate Cancer Progression by Inducing STRN4 Expression.J Cancer. 2019 Apr 21;10(8):1833-1845. doi: 10.7150/jca.29471. eCollection 2019.
768 Induction of the SUMO-specific protease 1 transcription by the androgen receptor in prostate cancer cells.J Biol Chem. 2007 Dec 28;282(52):37341-9. doi: 10.1074/jbc.M706978200. Epub 2007 Oct 11.
769 Identification of a novel gene on chromosome 13 between BRCA-2 and RB-1.Prostate. 2001 May 1;47(2):91-101. doi: 10.1002/pros.1051.
770 TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12.Genomics. 2006 Dec;88(6):731-736. doi: 10.1016/j.ygeno.2006.05.009. Epub 2006 Jul 24.
771 PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer.Cancer Res. 2002 Oct 1;62(19):5420-4.
772 Persistence of tumor-infiltrating CD8 T cells is tumor-dependent but antigen-independent.Cell Mol Immunol. 2011 Sep;8(5):415-23. doi: 10.1038/cmi.2011.18. Epub 2011 Jun 13.
773 The Germ Cell Gene TDRD1 as an ERG Target Gene and a Novel Prostate Cancer Biomarker.Prostate. 2016 Oct;76(14):1271-84. doi: 10.1002/pros.23213. Epub 2016 Jun 8.
774 Extensive analysis of the 7q31 region in human prostate tumors supports TES as the best candidate tumor suppressor gene.Int J Cancer. 2004 Sep 20;111(5):798-804. doi: 10.1002/ijc.20337.
775 Expression of AR associated protein 55 (ARA55) and androgen receptor in prostate cancer.Prostate. 2003 Sep 1;56(4):280-6. doi: 10.1002/pros.10262.
776 TGFBR3 loss and consequences in prostate cancer.Prostate. 2007 Feb 15;67(3):301-11. doi: 10.1002/pros.20526.
777 Association of TGIFLX/Y mRNA expression with prostate cancer.Med Oncol. 2009;26(1):73-7. doi: 10.1007/s12032-008-9086-7. Epub 2008 Jul 29.
778 Splice variants of TLE family genes and up-regulation of a TLE3 isoform in prostate tumors.Biochem Biophys Res Commun. 2007 Dec 28;364(4):918-23. doi: 10.1016/j.bbrc.2007.10.097. Epub 2007 Oct 26.
779 Transmembrane protein 64 modulates prostate tumor progression by regulating Wnt3a secretion.Oncol Lett. 2019 Jul;18(1):283-290. doi: 10.3892/ol.2019.10324. Epub 2019 May 6.
780 Thymosin beta 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer.Nat Med. 1996 Dec;2(12):1322-8. doi: 10.1038/nm1296-1322.
781 2-Methoxyestradiol inhibits prostate tumor development in transgenic adenocarcinoma of mouse prostate: role of tumor necrosis factor-alpha-stimulated gene 6.Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):980-8. doi: 10.1158/1078-0432.CCR-05-2068.
782 Survey of differentially methylated promoters in prostate cancer cell lines.Neoplasia. 2005 Aug;7(8):748-60. doi: 10.1593/neo.05289.
783 Genetic and epigenetic inactivation of TNFRSF10C in human prostate cancer.Prostate. 2009 Feb 15;69(3):327-35. doi: 10.1002/pros.20882.
784 Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1.J Biol Chem. 2008 Feb 22;283(8):4834-40. doi: 10.1074/jbc.M708630200. Epub 2007 Dec 12.
785 Cytogenetic and expression profiles associated with transformation to androgen-resistant prostate cancer.Prostate. 2006 Feb 1;66(2):157-72. doi: 10.1002/pros.20328.
786 Sequence variants in the 3'-->5' deoxyribonuclease TREX2: identification in a genetic screen and effects on catalysis by the recombinant proteins.Adv Enzyme Regul. 2004;44:37-49. doi: 10.1016/j.advenzreg.2003.11.010.
787 A microsatellite repeat in PCA3 long non-coding RNA is associated with prostate cancer risk and aggressiveness.Sci Rep. 2017 Dec 4;7(1):16862. doi: 10.1038/s41598-017-16700-y.
788 Expression profiles of androgen independent bone metastatic prostate cancer cells indicate up-regulation of the putative serine-threonine kinase GS3955.J Urol. 2004 Sep;172(3):1145-50. doi: 10.1097/01.ju.0000135117.40086.fa.
789 TRIM16 suppresses the progression of prostate tumors by inhibiting the Snail signaling pathway.Int J Mol Med. 2016 Dec;38(6):1734-1742. doi: 10.3892/ijmm.2016.2774. Epub 2016 Oct 17.
790 Marked gene transcript level alterations occur early during radical prostatectomy.Eur Urol. 2008 Feb;53(2):333-44. doi: 10.1016/j.eururo.2007.03.075. Epub 2007 Apr 9.
791 Cloning and characterisation of the RBCC728/TRIM36 zinc-binding protein from the tumor suppressor gene region at chromosome 5q22.3.Gene. 2004 May 12;332:45-50. doi: 10.1016/j.gene.2004.02.045.
792 TRIM68 regulates ligand-dependent transcription of androgen receptor in prostate cancer cells.Cancer Res. 2008 May 1;68(9):3486-94. doi: 10.1158/0008-5472.CAN-07-6059.
793 Proteomic analysis of proteins regulated by TRPS1 transcription factor in DU145 prostate cancer cells.Biochim Biophys Acta. 2007 May;1774(5):575-82. doi: 10.1016/j.bbapap.2007.03.011. Epub 2007 Mar 24.
794 Over-expression of the testis-specific gene TSGA10 in cancers and its immunogenicity.Microbiol Immunol. 2004;48(4):339-45. doi: 10.1111/j.1348-0421.2004.tb03515.x.
795 Gene expression profiling reveals overexpression of TSPAN13 in prostate cancer.Int J Oncol. 2009 Feb;34(2):457-63.
796 Detection of recurrent copy number loss at Yp11.2 involving TSPY gene cluster in prostate cancer using array-based comparative genomic hybridization.Cancer Res. 2006 Apr 15;66(8):4055-64. doi: 10.1158/0008-5472.CAN-05-3822.
797 Testis specific Y-like 5: gene expression, methylation and implications for drug sensitivity in prostate carcinoma.BMC Cancer. 2017 Feb 24;17(1):158. doi: 10.1186/s12885-017-3134-7.
798 Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells.Carcinogenesis. 2013 Sep;34(9):1968-75. doi: 10.1093/carcin/bgt147. Epub 2013 Apr 30.
799 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
800 Conditional Deletion of Eaf1 Induces Murine Prostatic Intraepithelial Neoplasia in Mice.Neoplasia. 2019 Aug;21(8):752-764. doi: 10.1016/j.neo.2019.05.005. Epub 2019 Jun 21.
801 D-glucuronyl C5-epimerase cell type specifically affects angiogenesis pathway in different prostate cancer cells.Tumour Biol. 2014 Apr;35(4):3237-45. doi: 10.1007/s13277-013-1423-6. Epub 2013 Nov 22.
802 Prostate tumor OVerexpressed-1 (PTOV1) down-regulates HES1 and HEY1 notch targets genes and promotes prostate cancer progression.Mol Cancer. 2014 Mar 31;13:74. doi: 10.1186/1476-4598-13-74.
803 Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells.Mol Cancer Ther. 2014 Jul;13(7):1813-25. doi: 10.1158/1535-7163.MCT-13-1004. Epub 2014 Apr 30.
804 SHBG is an important factor in stemness induction of cells by DHT in vitro and associated with poor clinical features of prostate carcinomas.PLoS One. 2013 Jul 30;8(7):e70558. doi: 10.1371/journal.pone.0070558. Print 2013.