General Information of Drug Off-Target (DOT) (ID: OTH3XY8B)

DOT Name Dedicator of cytokinesis protein 4 (DOCK4)
Gene Name DOCK4
Related Disease
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Arteriosclerosis ( )
Atherosclerosis ( )
Autism spectrum disorder ( )
Bipolar disorder ( )
Bone osteosarcoma ( )
Carcinoma ( )
Lung adenocarcinoma ( )
Major depressive disorder ( )
Myelodysplastic syndrome ( )
Neuroblastoma ( )
Non-insulin dependent diabetes ( )
Osteosarcoma ( )
Ovarian cancer ( )
Pancytopenia ( )
Neoplasm ( )
Schizophrenia ( )
Adult glioblastoma ( )
Breast cancer ( )
Breast carcinoma ( )
Glioblastoma multiforme ( )
UniProt ID
DOCK4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF06920 ; PF20422 ; PF20421 ; PF14429 ; PF16172 ; PF07653
Sequence
MWIPTEHEKYGVVIASFRGTVPYGLSLEIGDTVQILEKCDGWYRGFALKNPNIKGIFPSS
YVHLKNACVKNKGQFEMVIPTEDSVITEMTSTLRDWGTMWKQLYVRNEGDLFHRLWHIMN
EILDLRRQVLVGHLTHDRMKDVKRHITARLDWGNEQLGLDLVPRKEYAMVDPEDISITEL
YRLMEHRHRKKDTPVQASSHHLFVQMKSLMCSNLGEELEVIFSLFDSKENRPISERFFLR
LNRNGLPKAPDKPERHCSLFVDLGSSELRKDIYITVHIIRIGRMGAGEKKNACSVQYRRP
FGCAVLSIADLLTGETKDDLILKVYMCNTESEWYQIHENIIKKLNARYNLTGSNAGLAVS
LQLLHGDIEQIRREYSSVFSHGVSITRKLGFSNIIMPGEMRNDLYITIERGEFEKGGKSV
ARNVEVTMFIVDSSGQTLKDFISFGSGEPPASEYHSFVLYHNNSPRWSELLKLPIPVDKF
RGAHIRFEFRHCSTKEKGEKKLFGFSFVPLMQEDGRTLPDGTHELIVHKCEENTNLQDTT
RYLKLPFSKGIFLGNNNQAMKATKESFCITSFLCSTKLTQNGDMLDLLKWRTHPDKITGC
LSKLKEIDGSEIVKFLQDTLDTLFGILDENSQKYGSKVFDSLVHIINLLQDSKFHHFKPV
MDTYIESHFAGALAYRDLIKVLKWYVDRITEAERQEHIQEVLKAQEYIFKYIVQSRRLFS
LATGGQNEEEFRCCIQELLMSVRFFLSQESKGSGALSQSQAVFLSSFPAVYSELLKLFDV
REVANLVQDTLGSLPTILHVDDSLQAIKLQCIGKTVESQLYTNPDSRYILLPVVLHHLHI
HLQEQKDLIMCARILSNVFCLIKKNSSEKSVLEEIDVIVASLLDILLRTILEITSRPQPS
SSAMRFQFQDVTGEFVACLLSLLRQMTDRHYQQLLDSFNTKEELRDFLLQIFTVFRILIR
PEMFPKDWTVMRLVANNVIITTVLYLSDALRKNFLNENFDYKIWDSYFYLAVIFINQLCL
QLEMFTPSKKKKVLEKYGDMRVTMGCEIFSMWQNLGEHKLHFIPALIGPFLEVTLIPQPD
LRNVMIPIFHDMMDWEQRRSGNFKQVEAKLIDKLDSLMSEGKGDETYRELFNSILLKKIE
RETWRESGVSLIATVTRLMERLLDYRDCMKMGEVDGKKIGCTVSLLNFYKTELNKEEMYI
RYIHKLYDLHLKAQNFTEAAYTLLLYDELLEWSDRPLREFLTYPMQTEWQRKEHLHLTII
QNFDRGKCWENGIILCRKIAEQYESYYDYRNLSKMRMMEASLYDKIMDQQRLEPEFFRVG
FYGKKFPFFLRNKEFVCRGHDYERLEAFQQRMLNEFPHAIAMQHANQPDETIFQAEAQYL
QIYAVTPIPESQEVLQREGVPDNIKSFYKVNHIWKFRYDRPFHKGTKDKENEFKSLWVER
TSLYLVQSLPGISRWFEVEKREVVEMSPLENAIEVLENKNQQLKTLISQCQTRQMQNINP
LTMCLNGVIDAAVNGGVSRYQEAFFVKEYILSHPEDGEKIARLRELMLEQAQILEFGLAV
HEKFVPQDMRPLHKKLVDQFFVMKSSLGIQEFSACMQASPVHFPNGSPRVCRNSAPASVS
PDGTRVIPRRSPLSYPAVNRYSSSSLSSQASAEVSNITGQSESSDEVFNMQPSPSTSSLS
STHSASPNVTSSAPSSARASPLLSDKHKHSRENSCLSPRERPCSAIYPTPVEPSQRMLFN
HIGDGALPRSDPNLSAPEKAVNPTPSSWSLDSGKEAKNMSDSGKLISPPVPPRPTQTASP
ARHTTSVSPSPAGRSPLKGSVQSFTPSPVEYHSPGLISNSPVLSGSYSSGISSLSRCSTS
ETSGFENQVNEQSAPLPVPVPVPVPSYGGEEPVRKESKTPPPYSVYERTLRRPVPLPHSL
SIPVTSEPPALPPKPLAARSSHLENGARRTDPGPRPRPLPRKVSQL
Function
Functions as a guanine nucleotide exchange factor (GEF) that promotes the exchange of GDP to GTP, converting inactive GDP-bound small GTPases into their active GTP-bound form. Involved in regulation of adherens junction between cells. Plays a role in cell migration ; [Isoform 2]: Has a higher guanine nucleotide exchange factor activity compared to other isoforms.
Tissue Specificity Widely expressed at low level. Highly expressed in skeletal muscle, prostate and ovary.; [Isoform 2]: May be specifically expressed in the brain and eye.
KEGG Pathway
Rap1 sig.ling pathway (hsa04015 )
Reactome Pathway
RAC2 GTPase cycle (R-HSA-9013404 )
RHOG GTPase cycle (R-HSA-9013408 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
RAC1 GTPase cycle (R-HSA-9013149 )

Molecular Interaction Atlas (MIA) of This DOT

22 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute myelogenous leukaemia DISCSPTN Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Genetic Variation [2]
Arteriosclerosis DISK5QGC Strong Biomarker [3]
Atherosclerosis DISMN9J3 Strong Biomarker [3]
Autism spectrum disorder DISXK8NV Strong Biomarker [4]
Bipolar disorder DISAM7J2 Strong Genetic Variation [5]
Bone osteosarcoma DIST1004 Strong Biomarker [2]
Carcinoma DISH9F1N Strong Altered Expression [6]
Lung adenocarcinoma DISD51WR Strong Biomarker [7]
Major depressive disorder DIS4CL3X Strong Genetic Variation [5]
Myelodysplastic syndrome DISYHNUI Strong Biomarker [8]
Neuroblastoma DISVZBI4 Strong Biomarker [9]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [10]
Osteosarcoma DISLQ7E2 Strong Biomarker [2]
Ovarian cancer DISZJHAP Strong Genetic Variation [2]
Pancytopenia DISVKEHV Strong Biomarker [11]
Neoplasm DISZKGEW moderate Biomarker [7]
Schizophrenia DISSRV2N moderate Genetic Variation [5]
Adult glioblastoma DISVP4LU Limited Biomarker [12]
Breast cancer DIS7DPX1 Limited Biomarker [13]
Breast carcinoma DIS2UE88 Limited Biomarker [13]
Glioblastoma multiforme DISK8246 Limited Altered Expression [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [14]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [15]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [16]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [17]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [18]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [19]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [20]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [14]
Progesterone DMUY35B Approved Progesterone decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [21]
Demecolcine DMCZQGK Approved Demecolcine increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [22]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [23]
PD-0325901 DM27D4J Phase 2 PD-0325901 decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [24]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [29]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Dedicator of cytokinesis protein 4 (DOCK4). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Dedicator of cytokinesis protein 4 (DOCK4). [26]
------------------------------------------------------------------------------------

References

1 DOCK4 deletion at 7q31.1 in a de novo acute myeloid leukemia with a normal karyotype.Cell Oncol (Dordr). 2013 Oct;36(5):395-403. doi: 10.1007/s13402-013-0145-5. Epub 2013 Aug 27.
2 DOCK4, a GTPase activator, is disrupted during tumorigenesis.Cell. 2003 Mar 7;112(5):673-84. doi: 10.1016/s0092-8674(03)00155-7.
3 SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis.Nature. 2019 May;569(7757):565-569. doi: 10.1038/s41586-019-1140-4. Epub 2019 Apr 24.
4 Autism-like social deficit generated by Dock4 deficiency is rescued by restoration of Rac1 activity and NMDA receptor function.Mol Psychiatry. 2021 May;26(5):1505-1519. doi: 10.1038/s41380-019-0472-7. Epub 2019 Aug 6.
5 Genome-wide association study identifies common variants associated with pharmacokinetics of psychotropic drugs.J Psychopharmacol. 2015 Aug;29(8):884-91. doi: 10.1177/0269881115584469. Epub 2015 May 5.
6 Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas.Cancer Res. 2009 May 1;69(9):4036-42. doi: 10.1158/0008-5472.CAN-08-3913. Epub 2009 Apr 21.
7 TGF-/Smad signaling through DOCK4 facilitates lung adenocarcinoma metastasis.Genes Dev. 2015 Feb 1;29(3):250-61. doi: 10.1101/gad.248963.114.
8 Loss of Function of DOCK4 in Myelodysplastic Syndromes Stem Cells is Restored by Inhibitors of DOCK4 Signaling Networks.Clin Cancer Res. 2019 Sep 15;25(18):5638-5649. doi: 10.1158/1078-0432.CCR-19-0924. Epub 2019 Jul 15.
9 The atypical guanine nucleotide exchange factor Dock4 regulates neurite differentiation through modulation of Rac1 GTPase and actin dynamics.J Biol Chem. 2013 Jul 5;288(27):20034-45. doi: 10.1074/jbc.M113.458612. Epub 2013 May 17.
10 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
11 Aberrant epigenetic and genetic marks are seen in myelodysplastic leukocytes and reveal Dock4 as a candidate pathogenic gene on chromosome 7q.J Biol Chem. 2011 Jul 15;286(28):25211-23. doi: 10.1074/jbc.M111.235028. Epub 2011 Apr 30.
12 DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression.Oncogene. 2018 Jan 11;37(2):241-254. doi: 10.1038/onc.2017.323. Epub 2017 Sep 18.
13 Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer.J Pathol. 2019 Mar;247(3):381-391. doi: 10.1002/path.5197. Epub 2019 Jan 25.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
16 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
19 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
20 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
21 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
24 PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247-51.
25 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
26 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
27 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
28 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
29 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
30 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.