General Information of Drug Off-Target (DOT) (ID: OTJMTM72)

DOT Name Laminin subunit gamma-2 (LAMC2)
Synonyms
Cell-scattering factor 140 kDa subunit; CSF 140 kDa subunit; Epiligrin subunit gamma; Kalinin subunit gamma; Kalinin/nicein/epiligrin 100 kDa subunit; Ladsin 140 kDa subunit; Laminin B2t chain; Laminin-5 subunit gamma; Large adhesive scatter factor 140 kDa subunit; Nicein subunit gamma
Gene Name LAMC2
Related Disease
Junctional epidermolysis bullosa ( )
Junctional epidermolysis bullosa Herlitz type ( )
Junctional epidermolysis bullosa, non-Herlitz type ( )
Generalized junctional epidermolysis bullosa non-Herlitz type ( )
UniProt ID
LAMC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00052 ; PF00053
Sequence
MPALWLGCCLCFSLLLPAARATSRREVCDCNGKSRQCIFDRELHRQTGNGFRCLNCNDNT
DGIHCEKCKNGFYRHRERDRCLPCNCNSKGSLSARCDNSGRCSCKPGVTGARCDRCLPGF
HMLTDAGCTQDQRLLDSKCDCDPAGIAGPCDAGRCVCKPAVTGERCDRCRSGYYNLDGGN
PEGCTQCFCYGHSASCRSSAEYSVHKITSTFHQDVDGWKAVQRNGSPAKLQWSQRHQDVF
SSAQRLDPVYFVAPAKFLGNQQVSYGQSLSFDYRVDRGGRHPSAHDVILEGAGLRITAPL
MPLGKTLPCGLTKTYTFRLNEHPSNNWSPQLSYFEYRRLLRNLTALRIRATYGEYSTGYI
DNVTLISARPVSGAPAPWVEQCICPVGYKGQFCQDCASGYKRDSARLGPFGTCIPCNCQG
GGACDPDTGDCYSGDENPDIECADCPIGFYNDPHDPRSCKPCPCHNGFSCSVMPETEEVV
CNNCPPGVTGARCELCADGYFGDPFGEHGPVRPCQPCQCNNNVDPSASGNCDRLTGRCLK
CIHNTAGIYCDQCKAGYFGDPLAPNPADKCRACNCNPMGSEPVGCRSDGTCVCKPGFGGP
NCEHGAFSCPACYNQVKIQMDQFMQQLQRMEALISKAQGGDGVVPDTELEGRMQQAEQAL
QDILRDAQISEGASRSLGLQLAKVRSQENSYQSRLDDLKMTVERVRALGSQYQNRVRDTH
RLITQMQLSLAESEASLGNTNIPASDHYVGPNGFKSLAQEATRLAESHVESASNMEQLTR
ETEDYSKQALSLVRKALHEGVGSGSGSPDGAVVQGLVEKLEKTKSLAQQLTREATQAEIE
ADRSYQHSLRLLDSVSRLQGVSDQSFQVEEAKRIKQKADSLSSLVTRHMDEFKRTQKNLG
NWKEEAQQLLQNGKSGREKSDQLLSRANLAKSRAQEALSMGNATFYEVESILKNLREFDL
QVDNRKAEAEEAMKRLSYISQKVSDASDKTQQAERALGSAAADAQRAKNGAGEALEISSE
IEQEIGSLNLEANVTADGALAMEKGLASLKSEMREVEGELERKELEFDTNMDAVQMVITE
AQKVDTRAKNAGVTIQDTLNTLDGLLHLMDQPLSVDEEGLVLLEQKLSRAKTQINSQLRP
MMSELEERARQQRGHLHLLETSIDGILADVKNLENIRDNLPPGCYNTQALEQQ
Function
Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components. Ladsin exerts cell-scattering activity toward a wide variety of cells, including epithelial, endothelial, and fibroblastic cells.
Tissue Specificity
The large variant is expressed only in specific epithelial cells of embryonic and neonatal tissues. In 17-week old embryo the small variant is found in cerebral cortex, lung, and distal tubes of kidney, but not in epithelia except for distal tubuli.
KEGG Pathway
PI3K-Akt sig.ling pathway (hsa04151 )
Focal adhesion (hsa04510 )
ECM-receptor interaction (hsa04512 )
Toxoplasmosis (hsa05145 )
Amoebiasis (hsa05146 )
Human papillomavirus infection (hsa05165 )
Pathways in cancer (hsa05200 )
Small cell lung cancer (hsa05222 )
Reactome Pathway
Assembly of collagen fibrils and other multimeric structures (R-HSA-2022090 )
Anchoring fibril formation (R-HSA-2214320 )
Laminin interactions (R-HSA-3000157 )
Non-integrin membrane-ECM interactions (R-HSA-3000171 )
Type I hemidesmosome assembly (R-HSA-446107 )
MET activates PTK2 signaling (R-HSA-8874081 )
Degradation of the extracellular matrix (R-HSA-1474228 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Junctional epidermolysis bullosa DISJRXWU Definitive Autosomal recessive [1]
Junctional epidermolysis bullosa Herlitz type DIS6X2W8 Strong Autosomal recessive [2]
Junctional epidermolysis bullosa, non-Herlitz type DISQM23S Strong Autosomal recessive [2]
Generalized junctional epidermolysis bullosa non-Herlitz type DISSD3MX Supportive Autosomal recessive [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved Laminin subunit gamma-2 (LAMC2) decreases the response to substance of Arsenic trioxide. [29]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Laminin subunit gamma-2 (LAMC2). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Laminin subunit gamma-2 (LAMC2). [17]
------------------------------------------------------------------------------------
26 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Laminin subunit gamma-2 (LAMC2). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Laminin subunit gamma-2 (LAMC2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Laminin subunit gamma-2 (LAMC2). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Laminin subunit gamma-2 (LAMC2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Laminin subunit gamma-2 (LAMC2). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Laminin subunit gamma-2 (LAMC2). [10]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Laminin subunit gamma-2 (LAMC2). [11]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Laminin subunit gamma-2 (LAMC2). [12]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Laminin subunit gamma-2 (LAMC2). [13]
Mifepristone DMGZQEF Approved Mifepristone increases the expression of Laminin subunit gamma-2 (LAMC2). [14]
Palbociclib DMD7L94 Approved Palbociclib increases the expression of Laminin subunit gamma-2 (LAMC2). [15]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Laminin subunit gamma-2 (LAMC2). [13]
Mechlorethamine DM0CVXA Approved Mechlorethamine decreases the expression of Laminin subunit gamma-2 (LAMC2). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Laminin subunit gamma-2 (LAMC2). [18]
Sphingosine-1-Phosphate DMJCQKA Phase 1 Sphingosine-1-Phosphate increases the expression of Laminin subunit gamma-2 (LAMC2). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Laminin subunit gamma-2 (LAMC2). [20]
Roxithromycin DMVMIK2 Withdrawn from market Roxithromycin decreases the expression of Laminin subunit gamma-2 (LAMC2). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Laminin subunit gamma-2 (LAMC2). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Laminin subunit gamma-2 (LAMC2). [23]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Laminin subunit gamma-2 (LAMC2). [24]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Laminin subunit gamma-2 (LAMC2). [25]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Laminin subunit gamma-2 (LAMC2). [26]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Laminin subunit gamma-2 (LAMC2). [27]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Laminin subunit gamma-2 (LAMC2). [28]
LPA DMI5XR1 Investigative LPA increases the expression of Laminin subunit gamma-2 (LAMC2). [19]
Lysophosphatidylcholine DMOGFVH Investigative Lysophosphatidylcholine increases the expression of Laminin subunit gamma-2 (LAMC2). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Junctional Epidermolysis Bullosa. 2008 Feb 22 [updated 2018 Dec 20]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Cyclosporine A--induced oxidative stress in human renal mesangial cells: a role for ERK 1/2 MAPK signaling. Toxicol Sci. 2012 Mar;126(1):101-13.
6 Constitutive gene expression predisposes morphogen-mediated cell fate responses of NT2/D1 and 27X-1 human embryonal carcinoma cells. Stem Cells. 2007 Mar;25(3):771-8. doi: 10.1634/stemcells.2006-0271. Epub 2006 Nov 30.
7 Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol. 2009 Nov 1;240(3):355-66.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci. 2023 Feb 17;191(2):227-238. doi: 10.1093/toxsci/kfac131.
13 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
14 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
15 Cdk4/6 inhibition induces epithelial-mesenchymal transition and enhances invasiveness in pancreatic cancer cells. Mol Cancer Ther. 2012 Oct;11(10):2138-48. doi: 10.1158/1535-7163.MCT-12-0562. Epub 2012 Aug 6.
16 Histopathologic and immunohistochemical features in human skin after exposure to nitrogen and sulfur mustard. Am J Dermatopathol. 1998 Feb;20(1):22-8. doi: 10.1097/00000372-199802000-00005.
17 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
18 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
19 Increase of laminin 5 synthesis in human keratinocytes by acute wound fluid, inflammatory cytokines and growth factors, and lysophospholipids. Br J Dermatol. 2004 Nov;151(5):961-70. doi: 10.1111/j.1365-2133.2004.06175.x.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Effects of eight antibacterial agents on cell survival and expression of epithelial-cell- or cell-adhesion-related genes in human gingival epithelial cells. J Periodontal Res. 2004 Feb;39(1):50-8. doi: 10.1111/j.1600-0765.2004.00704.x.
22 Characterization of the Molecular Alterations Induced by the Prolonged Exposure of Normal Colon Mucosa and Colon Cancer Cells to Low-Dose Bisphenol A. Int J Mol Sci. 2022 Oct 1;23(19):11620. doi: 10.3390/ijms231911620.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol Appl Pharmacol. 2016 Nov 1;310:185-194.
25 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
26 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
27 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
28 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
29 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.