General Information of Drug Off-Target (DOT) (ID: OTLE1JY8)

DOT Name eIF-2-alpha kinase GCN2 (EIF2AK4)
Synonyms EC 2.7.11.1; Eukaryotic translation initiation factor 2-alpha kinase 4; GCN2-like protein
Gene Name EIF2AK4
Related Disease
Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis ( )
Pulmonary venoocclusive disease 2 ( )
Heritable pulmonary arterial hypertension ( )
Pulmonary venoocclusive disease ( )
UniProt ID
E2AK4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6N3L; 6N3N; 6N3O; 7E2K; 7E2M; 7QQ6; 7QWK
EC Number
2.7.11.1
Pfam ID
PF12745 ; PF00069 ; PF05773 ; PF13393
Sequence
MAGGRGAPGRGRDEPPESYPQRQDHELQALEAIYGADFQDLRPDACGPVKEPPEINLVLY
PQGLTGEEVYVKVDLRVKCPPTYPDVVPEIELKNAKGLSNESVNLLKSRLEELAKKHCGE
VMIFELAYHVQSFLSEHNKPPPKSFHEEMLERRAQEEQQRLLEAKRKEEQEQREILHEIQ
RRKEEIKEEKKRKEMAKQERLEIASLSNQDHTSKKDPGGHRTAAILHGGSPDFVGNGKHR
ANSSGRSRRERQYSVCNSEDSPGSCEILYFNMGSPDQLMVHKGKCIGSDEQLGKLVYNAL
ETATGGFVLLYEWVLQWQKKMGPFLTSQEKEKIDKCKKQIQGTETEFNSLVKLSHPNVVR
YLAMNLKEQDDSIVVDILVEHISGVSLAAHLSHSGPIPVHQLRRYTAQLLSGLDYLHSNS
VVHKVLSASNVLVDAEGTVKITDYSISKRLADICKEDVFEQTRVRFSDNALPYKTGKKGD
VWRLGLLLLSLSQGQECGEYPVTIPSDLPADFQDFLKKCVCLDDKERWSPQQLLKHSFIN
PQPKMPLVEQSPEDSEGQDYVETVIPSNRLPSAAFFSETQRQFSRYFIEFEELQLLGKGA
FGAVIKVQNKLDGCCYAVKRIPINPASRQFRRIKGEVTLLSRLHHENIVRYYNAWIERHE
RPAGPGTPPPDSGPLAKDDRAARGQPASDTDGLDSVEAAAPPPILSSSVEWSTSGERSAS
ARFPATGPGSSDDEDDDEDEHGGVFSQSFLPASDSESDIIFDNEDENSKSQNQDEDCNEK
NGCHESEPSVTTEAVHYLYIQMEYCEKSTLRDTIDQGLYRDTVRLWRLFREILDGLAYIH
EKGMIHRDLKPVNIFLDSDDHVKIGDFGLATDHLAFSADSKQDDQTGDLIKSDPSGHLTG
MVGTALYVSPEVQGSTKSAYNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSP
KFPEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQMEESELHEVLHHTLT
NVDGKAYRTMMAQIFSQRISPAIDYTYDSDILKGNFSIRTAKMQQHVCETIIRIFKRHGA
VQLCTPLLLPRNRQIYEHNEAALFMDHSGMLVMLPFDLRIPFARYVARNNILNLKRYCIE
RVFRPRKLDRFHPKELLECAFDIVTSTTNSFLPTAEIIYTIYEIIQEFPALQERNYSIYL
NHTMLLKAILLHCGIPEDKLSQVYIILYDAVTEKLTRREVEAKFCNLSLSSNSLCRLYKF
IEQKGDLQDLMPTINSLIKQKTGIAQLVKYGLKDLEEVVGLLKKLGIKLQVLINLGLVYK
VQQHNGIIFQFVAFIKRRQRAVPEILAAGGRYDLLIPQFRGPQALGPVPTAIGVSIAIDK
ISAAVLNMEESVTISSCDLLVVSVGQMSMSRAINLTQKLWTAGITAEIMYDWSQSQEELQ
EYCRHHEITYVALVSDKEGSHVKVKSFEKERQTEKRVLETELVDHVLQKLRTKVTDERNG
REASDNLAVQNLKGSFSNASGLFEIHGATVVPIVSVLAPEKLSASTRRRYETQVQTRLQT
SLANLHQKSSEIEILAVDLPKETILQFLSLEWDADEQAFNTTVKQLLSRLPKQRYLKLVC
DEIYNIKVEKKVSVLFLYSYRDDYYRILF
Function
Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (EIF2S1/eIF-2-alpha) in response to low amino acid availability. Plays a role as an activator of the integrated stress response (ISR) required for adaptation to amino acid starvation. EIF2S1/eIF-2-alpha phosphorylation in response to stress converts EIF2S1/eIF-2-alpha into a global protein synthesis inhibitor, leading to a global attenuation of cap-dependent translation, and thus to a reduced overall utilization of amino acids, while concomitantly initiating the preferential translation of ISR-specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated reprogramming of amino acid biosynthetic gene expression to alleviate nutrient depletion. Binds uncharged tRNAs. Required for the translational induction of protein kinase PRKCH following amino acid starvation. Involved in cell cycle arrest by promoting cyclin D1 mRNA translation repression after the unfolded protein response pathway (UPR) activation or cell cycle inhibitor CDKN1A/p21 mRNA translation activation in response to amino acid deprivation. Plays a role in the consolidation of synaptic plasticity, learning as well as formation of long-term memory. Plays a role in neurite outgrowth inhibition. Plays a proapoptotic role in response to glucose deprivation. Promotes global cellular protein synthesis repression in response to UV irradiation independently of the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 MAPK signaling pathways. Plays a role in the antiviral response against alphavirus infection; impairs early viral mRNA translation of the incoming genomic virus RNA, thus preventing alphavirus replication; (Microbial infection) Plays a role in modulating the adaptive immune response to yellow fever virus infection; promotes dendritic cells to initiate autophagy and antigene presentation to both CD4(+) and CD8(+) T-cells under amino acid starvation.
Tissue Specificity Widely expressed . Expressed in lung, smooth muscle cells and macrophages .
KEGG Pathway
Autophagy - animal (hsa04140 )
Hepatitis C (hsa05160 )
Measles (hsa05162 )
Herpes simplex virus 1 infection (hsa05168 )
Reactome Pathway
Response of EIF2AK4 (GCN2) to amino acid deficiency (R-HSA-9633012 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis DIS2QWBE Definitive Autosomal recessive [1]
Pulmonary venoocclusive disease 2 DISJIUZP Strong Autosomal recessive [2]
Heritable pulmonary arterial hypertension DISD1Y94 Supportive Autosomal dominant [3]
Pulmonary venoocclusive disease DIS62DX8 Supportive Autosomal recessive [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [6]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [8]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [10]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [13]
Irinotecan DMP6SC2 Approved Irinotecan affects the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [14]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [15]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [21]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of eIF-2-alpha kinase GCN2 (EIF2AK4). [22]
Borrelidin DMBSQTR Investigative Borrelidin increases the activity of eIF-2-alpha kinase GCN2 (EIF2AK4). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of eIF-2-alpha kinase GCN2 (EIF2AK4). [19]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol. 2002 Oct;22(19):6681-8. doi: 10.1128/MCB.22.19.6681-6688.2002.
3 A founder EIF2AK4 mutation causes an aggressive form of pulmonary arterial hypertension in Iberian Gypsies. Clin Genet. 2015 Dec;88(6):579-83. doi: 10.1111/cge.12549. Epub 2015 Jan 7.
4 EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014 Jan;46(1):65-9. doi: 10.1038/ng.2844. Epub 2013 Dec 1.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
13 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
14 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
23 Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs. 2012 Aug;30(4):1361-70. doi: 10.1007/s10637-011-9700-y. Epub 2011 Jun 17.