General Information of Drug Off-Target (DOT) (ID: OTMVHF9E)

DOT Name Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5)
Synonyms G-protein coupled receptor 49; G-protein coupled receptor 67; G-protein coupled receptor HG38
Gene Name LGR5
UniProt ID
LGR5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4BSR; 4BSS; 4BST; 4BSU; 4KNG; 4UFR; 4UFS
Pfam ID
PF00001 ; PF00560 ; PF13855 ; PF01462
Sequence
MDTSRLGVLLSLPVLLQLATGGSSPRSGVLLRGCPTHCHCEPDGRMLLRVDCSDLGLSEL
PSNLSVFTSYLDLSMNNISQLLPNPLPSLRFLEELRLAGNALTYIPKGAFTGLYSLKVLM
LQNNQLRHVPTEALQNLRSLQSLRLDANHISYVPPSCFSGLHSLRHLWLDDNALTEIPVQ
AFRSLSALQAMTLALNKIHHIPDYAFGNLSSLVVLHLHNNRIHSLGKKCFDGLHSLETLD
LNYNNLDEFPTAIRTLSNLKELGFHSNNIRSIPEKAFVGNPSLITIHFYDNPIQFVGRSA
FQHLPELRTLTLNGASQITEFPDLTGTANLESLTLTGAQISSLPQTVCNQLPNLQVLDLS
YNLLEDLPSFSVCQKLQKIDLRHNEIYEIKVDTFQQLLSLRSLNLAWNKIAIIHPNAFST
LPSLIKLDLSSNLLSSFPITGLHGLTHLKLTGNHALQSLISSENFPELKVIEMPYAYQCC
AFGVCENAYKISNQWNKGDNSSMDDLHKKDAGMFQAQDERDLEDFLLDFEEDLKALHSVQ
CSPSPGPFKPCEHLLDGWLIRIGVWTIAVLALTCNALVTSTVFRSPLYISPIKLLIGVIA
AVNMLTGVSSAVLAGVDAFTFGSFARHGAWWENGVGCHVIGFLSIFASESSVFLLTLAAL
ERGFSVKYSAKFETKAPFSSLKVIILLCALLALTMAAVPLLGGSKYGASPLCLPLPFGEP
STMGYMVALILLNSLCFLMMTIAYTKLYCNLDKGDLENIWDCSMVKHIALLLFTNCILNC
PVAFLSFSSLINLTFISPEVIKFILLVVVPLPACLNPLLYILFNPHFKEDLVSLRKQTYV
WTRSKHPSLMSINSDDVEKQSCDSTQALVTFTSSSITYDLPPSSVPSPAYPVTESCHLSS
VAFVPCL
Function
Receptor for R-spondins that potentiates the canonical Wnt signaling pathway and acts as a stem cell marker of the intestinal epithelium and the hair follicle. Upon binding to R-spondins (RSPO1, RSPO2, RSPO3 or RSPO4), associates with phosphorylated LRP6 and frizzled receptors that are activated by extracellular Wnt receptors, triggering the canonical Wnt signaling pathway to increase expression of target genes. In contrast to classical G-protein coupled receptors, does not activate heterotrimeric G-proteins to transduce the signal. Involved in the development and/or maintenance of the adult intestinal stem cells during postembryonic development.
Tissue Specificity
Expressed in skeletal muscle, placenta, spinal cord, and various region of brain. Expressed at the base of crypts in colonic and small mucosa stem cells. In premalignant cancer expression is not restricted to the cript base. Overexpressed in cancers of the ovary, colon and liver.
KEGG Pathway
Wnt sig.ling pathway (hsa04310 )
Reactome Pathway
Regulation of FZD by ubiquitination (R-HSA-4641263 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [8]
Triclosan DMZUR4N Approved Triclosan increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [9]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [10]
Menadione DMSJDTY Approved Menadione affects the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [7]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [11]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [8]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [15]
CHIR-99021 DMB8MNU Patented CHIR-99021 increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [18]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [19]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [20]
6-bromoindirubin-3-oxime DM12WYV Investigative 6-bromoindirubin-3-oxime increases the expression of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5). [16]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders. J Mol Endocrinol. 2015 Jun;54(3):289-303.
4 The aquaglyceroporin AQP9 contributes to the sex-specific effects of in utero arsenic exposure on placental gene expression. Environ Health. 2017 Jun 14;16(1):59. doi: 10.1186/s12940-017-0267-8.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
7 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
11 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Fluorinated N,N-dialkylaminostilbenes for Wnt pathway inhibition and colon cancer repression. J Med Chem. 2011 Mar 10;54(5):1288-97. doi: 10.1021/jm101248v. Epub 2011 Feb 3.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Analysis of glycogen synthase kinase inhibitors that regulate cytochrome P450 expression in primary human hepatocytes by activation of beta-catenin, aryl hydrocarbon receptor and pregnane X receptor signaling. Toxicol Sci. 2015 Nov;148(1):261-75.
18 Bisphenol A Analogues Suppress Spheroid Attachment on Human Endometrial Epithelial Cells through Modulation of Steroid Hormone Receptors Signaling Pathway. Cells. 2021 Oct 26;10(11):2882. doi: 10.3390/cells10112882.
19 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
20 Okadaic acid activates Wnt/-catenin-signaling in human HepaRG cells. Arch Toxicol. 2019 Jul;93(7):1927-1939. doi: 10.1007/s00204-019-02489-4. Epub 2019 May 21.