General Information of Drug Off-Target (DOT) (ID: OTNCNUCO)

DOT Name Death-associated protein kinase 1 (DAPK1)
Synonyms DAP kinase 1; EC 2.7.11.1
Gene Name DAPK1
Related Disease
Follicular lymphoma ( )
Myelodysplastic syndrome ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Alzheimer disease ( )
B-cell lymphoma ( )
Bladder cancer ( )
Brain cancer ( )
Brain neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Cervical cancer ( )
Cervical carcinoma ( )
Cholangiocarcinoma ( )
Clear cell renal carcinoma ( )
Conjunctival disorder ( )
Depression ( )
Glioblastoma multiforme ( )
Head-neck squamous cell carcinoma ( )
Juvenile idiopathic arthritis ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Lymphoma ( )
Pancreatic cancer ( )
Papillary renal cell carcinoma ( )
Prostate cancer ( )
Small lymphocytic lymphoma ( )
Stroke ( )
Tarsal-carpal coalition syndrome ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Renal cell carcinoma ( )
Transitional cell carcinoma ( )
Autism spectrum disorder ( )
Colorectal carcinoma ( )
Nasopharyngeal carcinoma ( )
UniProt ID
DAPK1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1IG1 ; 1JKK ; 1JKL ; 1JKS ; 1JKT ; 1P4F ; 1WVW ; 1WVX ; 1WVY ; 1YR5 ; 2W4J ; 2W4K ; 2X0G ; 2XUU ; 2XZS ; 2Y0A ; 2Y4P ; 2Y4V ; 2YAK ; 3DFC ; 3DGK ; 3EH9 ; 3EHA ; 3F5G ; 3F5U ; 3GU4 ; 3GU5 ; 3GU6 ; 3GU7 ; 3GU8 ; 3GUB ; 3ZXT ; 4B4L ; 4PF4 ; 4TL0 ; 4TXC ; 4UV0 ; 4YO4 ; 4YPD ; 5AUT ; 5AUU ; 5AUV ; 5AUW ; 5AUX ; 5AUY ; 5AUZ ; 5AV0 ; 5AV1 ; 5AV2 ; 5AV3 ; 5AV4 ; 6AAR ; 6FHA ; 6FHB ; 6GY5 ; 6IN4 ; 6QMO ; 6QN4 ; 7CCU ; 7CCV ; 7CCW ; 8IE5 ; 8IE6 ; 8IE7 ; 8IE8
EC Number
2.7.11.1
Pfam ID
PF00023 ; PF12796 ; PF00531 ; PF00069
Sequence
MTVFRQENVDDYYDTGEELGSGQFAVVKKCREKSTGLQYAAKFIKKRRTKSSRRGVSRED
IEREVSILKEIQHPNVITLHEVYENKTDVILILELVAGGELFDFLAEKESLTEEEATEFL
KQILNGVYYLHSLQIAHFDLKPENIMLLDRNVPKPRIKIIDFGLAHKIDFGNEFKNIFGT
PEFVAPEIVNYEPLGLEADMWSIGVITYILLSGASPFLGDTKQETLANVSAVNYEFEDEY
FSNTSALAKDFIRRLLVKDPKKRMTIQDSLQHPWIKPKDTQQALSRKASAVNMEKFKKFA
ARKKWKQSVRLISLCQRLSRSFLSRSNMSVARSDDTLDEEDSFVMKAIIHAINDDNVPGL
QHLLGSLSNYDVNQPNKHGTPPLLIAAGCGNIQILQLLIKRGSRIDVQDKGGSNAVYWAA
RHGHVDTLKFLSENKCPLDVKDKSGEMALHVAARYGHADVAQLLCSFGSNPNIQDKEEET
PLHCAAWHGYYSVAKALCEAGCNVNIKNREGETPLLTASARGYHDIVECLAEHGADLNAC
DKDGHIALHLAVRRCQMEVIKTLLSQGCFVDYQDRHGNTPLHVACKDGNMPIVVALCEAN
CNLDISNKYGRTPLHLAANNGILDVVRYLCLMGASVEALTTDGKTAEDLARSEQHEHVAG
LLARLRKDTHRGLFIQQLRPTQNLQPRIKLKLFGHSGSGKTTLVESLKCGLLRSFFRRRR
PRLSSTNSSRFPPSPLASKPTVSVSINNLYPGCENVSVRSRSMMFEPGLTKGMLEVFVAP
THHPHCSADDQSTKAIDIQNAYLNGVGDFSVWEFSGNPVYFCCYDYFAANDPTSIHVVVF
SLEEPYEIQLNQVIFWLSFLKSLVPVEEPIAFGGKLKNPLQVVLVATHADIMNVPRPAGG
EFGYDKDTSLLKEIRNRFGNDLHISNKLFVLDAGASGSKDMKVLRNHLQEIRSQIVSVCP
PMTHLCEKIISTLPSWRKLNGPNQLMSLQQFVYDVQDQLNPLASEEDLRRIAQQLHSTGE
INIMQSETVQDVLLLDPRWLCTNVLGKLLSVETPRALHHYRGRYTVEDIQRLVPDSDVEE
LLQILDAMDICARDLSSGTMVDVPALIKTDNLHRSWADEEDEVMVYGGVRIVPVEHLTPF
PCGIFHKVQVNLCRWIHQQSTEGDADIRLWVNGCKLANRGAELLVLLVNHGQGIEVQVRG
LETEKIKCCLLLDSVCSTIENVMATTLPGLLTVKHYLSPQQLREHHEPVMIYQPRDFFRA
QTLKETSLTNTMGGYKESFSSIMCFGCHDVYSQASLGMDIHASDLNLLTRRKLSRLLDPP
DPLGKDWCLLAMNLGLPDLVAKYNTSNGAPKDFLPSPLHALLREWTTYPESTVGTLMSKL
RELGRRDAADFLLKASSVFKINLDGNGQEAYASSCNSGTSYNSISSVVSR
Function
Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Phosphorylates PIN1 resulting in inhibition of its catalytic activity, nuclear localization, and cellular function. Phosphorylates TPM1, enhancing stress fiber formation in endothelial cells. Phosphorylates STX1A and significantly decreases its binding to STXBP1. Phosphorylates PRKD1 and regulates JNK signaling by binding and activating PRKD1 under oxidative stress. Phosphorylates BECN1, reducing its interaction with BCL2 and BCL2L1 and promoting the induction of autophagy. Phosphorylates TSC2, disrupting the TSC1-TSC2 complex and stimulating mTORC1 activity in a growth factor-dependent pathway. Phosphorylates RPS6, MYL9 and DAPK3. Acts as a signaling amplifier of NMDA receptors at extrasynaptic sites for mediating brain damage in stroke. Cerebral ischemia recruits DAPK1 into the NMDA receptor complex and it phosphorylates GRINB at Ser-1303 inducing injurious Ca(2+) influx through NMDA receptor channels, resulting in an irreversible neuronal death. Required together with DAPK3 for phosphorylation of RPL13A upon interferon-gamma activation which is causing RPL13A involvement in transcript-selective translation inhibition.; Isoform 2 cannot induce apoptosis but can induce membrane blebbing.
Tissue Specificity Isoform 2 is expressed in normal intestinal tissue as well as in colorectal carcinomas.
KEGG Pathway
Autophagy - animal (hsa04140 )
Pathways in cancer (hsa05200 )
Bladder cancer (hsa05219 )
Reactome Pathway
Caspase activation via Dependence Receptors in the absence of ligand (R-HSA-418889 )

Molecular Interaction Atlas (MIA) of This DOT

37 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Follicular lymphoma DISVEUR6 Definitive Posttranslational Modification [1]
Myelodysplastic syndrome DISYHNUI Definitive Altered Expression [2]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [3]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Alzheimer disease DISF8S70 Strong Biomarker [5]
B-cell lymphoma DISIH1YQ Strong Posttranslational Modification [1]
Bladder cancer DISUHNM0 Strong Biomarker [6]
Brain cancer DISBKFB7 Strong Biomarker [7]
Brain neoplasm DISY3EKS Strong Biomarker [7]
Breast cancer DIS7DPX1 Strong Genetic Variation [8]
Breast carcinoma DIS2UE88 Strong Genetic Variation [8]
Cervical cancer DISFSHPF Strong Genetic Variation [9]
Cervical carcinoma DIST4S00 Strong Genetic Variation [9]
Cholangiocarcinoma DIS71F6X Strong Biomarker [10]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [11]
Conjunctival disorder DISPTOTB Strong Biomarker [12]
Depression DIS3XJ69 Strong Biomarker [13]
Glioblastoma multiforme DISK8246 Strong Altered Expression [14]
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [15]
Juvenile idiopathic arthritis DISQZGBV Strong Biomarker [16]
Lung cancer DISCM4YA Strong Biomarker [17]
Lung carcinoma DISTR26C Strong Biomarker [17]
Lung neoplasm DISVARNB Strong Biomarker [18]
Lymphoma DISN6V4S Strong Posttranslational Modification [19]
Pancreatic cancer DISJC981 Strong Biomarker [20]
Papillary renal cell carcinoma DIS25HBV Strong Biomarker [21]
Prostate cancer DISF190Y Strong Biomarker [22]
Small lymphocytic lymphoma DIS30POX Strong Posttranslational Modification [23]
Stroke DISX6UHX Strong Biomarker [5]
Tarsal-carpal coalition syndrome DISY90L2 Strong Posttranslational Modification [24]
Urinary bladder cancer DISDV4T7 Strong Biomarker [6]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [6]
Renal cell carcinoma DISQZ2X8 moderate Altered Expression [25]
Transitional cell carcinoma DISWVVDR moderate Biomarker [26]
Autism spectrum disorder DISXK8NV Limited Autosomal dominant [27]
Colorectal carcinoma DIS5PYL0 Limited Altered Expression [28]
Nasopharyngeal carcinoma DISAOTQ0 Limited Posttranslational Modification [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 37 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Gemcitabine DMSE3I7 Approved Death-associated protein kinase 1 (DAPK1) increases the Haematotoxicity ADR of Gemcitabine. [60]
Mitoxantrone DMM39BF Approved Death-associated protein kinase 1 (DAPK1) affects the response to substance of Mitoxantrone. [61]
------------------------------------------------------------------------------------
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Death-associated protein kinase 1 (DAPK1). [30]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Death-associated protein kinase 1 (DAPK1). [31]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Death-associated protein kinase 1 (DAPK1). [32]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Death-associated protein kinase 1 (DAPK1). [33]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Death-associated protein kinase 1 (DAPK1). [34]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Death-associated protein kinase 1 (DAPK1). [12]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Death-associated protein kinase 1 (DAPK1). [36]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Death-associated protein kinase 1 (DAPK1). [37]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Death-associated protein kinase 1 (DAPK1). [38]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Death-associated protein kinase 1 (DAPK1). [39]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Death-associated protein kinase 1 (DAPK1). [40]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Death-associated protein kinase 1 (DAPK1). [41]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Death-associated protein kinase 1 (DAPK1). [42]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Death-associated protein kinase 1 (DAPK1). [43]
Etoposide DMNH3PG Approved Etoposide increases the expression of Death-associated protein kinase 1 (DAPK1). [43]
Menthol DMG2KW7 Approved Menthol decreases the expression of Death-associated protein kinase 1 (DAPK1). [44]
Hydralazine DMU8JGH Approved Hydralazine increases the expression of Death-associated protein kinase 1 (DAPK1). [46]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Death-associated protein kinase 1 (DAPK1). [47]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Death-associated protein kinase 1 (DAPK1). [48]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Death-associated protein kinase 1 (DAPK1). [49]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Death-associated protein kinase 1 (DAPK1). [51]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Death-associated protein kinase 1 (DAPK1). [52]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Death-associated protein kinase 1 (DAPK1). [53]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Death-associated protein kinase 1 (DAPK1). [54]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Death-associated protein kinase 1 (DAPK1). [56]
GALLICACID DM6Y3A0 Investigative GALLICACID decreases the expression of Death-associated protein kinase 1 (DAPK1). [57]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of Death-associated protein kinase 1 (DAPK1). [37]
Z-Pro-Prolinal DM43O2U Investigative Z-Pro-Prolinal decreases the expression of Death-associated protein kinase 1 (DAPK1). [59]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Azacitidine DMTA5OE Approved Azacitidine affects the methylation of Death-associated protein kinase 1 (DAPK1). [45]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Death-associated protein kinase 1 (DAPK1). [50]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Death-associated protein kinase 1 (DAPK1). [55]
BRN-3548355 DM4KXT0 Investigative BRN-3548355 increases the methylation of Death-associated protein kinase 1 (DAPK1). [58]
------------------------------------------------------------------------------------

References

1 Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma.Leuk Res. 2017 Jun;57:89-96. doi: 10.1016/j.leukres.2017.02.012. Epub 2017 Mar 9.
2 Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.Stem Cell Res. 2015 Mar;14(2):198-210. doi: 10.1016/j.scr.2015.01.006. Epub 2015 Jan 28.
3 The role of epigenetics in the regulation of apoptosis in myelodysplastic syndromes and acute myeloid leukemia.Crit Rev Oncol Hematol. 2014 Apr;90(1):1-16. doi: 10.1016/j.critrevonc.2013.10.003. Epub 2013 Oct 12.
4 Activation of death-associated protein kinase 1 promotes neutrophil apoptosis to accelerate inflammatory resolution in acute respiratory distress syndrome.Lab Invest. 2019 Jul;99(8):1143-1156. doi: 10.1038/s41374-019-0242-9. Epub 2019 Mar 25.
5 MicroRNA-26a/Death-Associated Protein Kinase1 Signaling Induces Synucleinopathy andDopaminergic Neuron Degeneration in Parkinson's Disease.Biol Psychiatry. 2019 May 1;85(9):769-781. doi: 10.1016/j.biopsych.2018.12.008. Epub 2018 Dec 19.
6 The prognostic significance of DAPK1 in bladder cancer.PLoS One. 2017 Apr 7;12(4):e0175290. doi: 10.1371/journal.pone.0175290. eCollection 2017.
7 DAPK1 promoter hypermethylaiton in brain metastases and peripheral blood.Neoplasma. 2007;54(2):123-6.
8 Correlation between Candidate Single Nucleotide Variants and Several Clinicopathological Risk Factors Related to Breast Cancer in Jordanian Women: A Genotype-Phenotype Study.J Cancer. 2019 Aug 8;10(19):4647-4654. doi: 10.7150/jca.33857. eCollection 2019.
9 Identification of DAPK1 Promoter Hypermethylation as a Biomarker for Intra-Epithelial Lesion and Cervical Cancer: A Meta-Analysis of Published Studies, TCGA, and GEO Datasets.Front Genet. 2018 Jul 17;9:258. doi: 10.3389/fgene.2018.00258. eCollection 2018.
10 Dihydroartemisinin induces apoptosis and autophagy-dependent cell death in cholangiocarcinoma through a DAPK1-BECLIN1 pathway.Mol Carcinog. 2018 Dec;57(12):1735-1750. doi: 10.1002/mc.22893. Epub 2018 Sep 5.
11 Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma.Mol Oncol. 2019 Oct;13(10):2079-2097. doi: 10.1002/1878-0261.12545. Epub 2019 Aug 24.
12 Epigenetic modifications of DAPK and p16 genes contribute to arsenic-induced skin lesions and nondermatological health effects. Toxicol Sci. 2013 Oct;135(2):300-8. doi: 10.1093/toxsci/kft163. Epub 2013 Jul 20.
13 Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes.Med Res Rev. 2019 Jan;39(1):349-385. doi: 10.1002/med.21518. Epub 2018 Jun 27.
14 Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1.Neuro Oncol. 2016 Jun;18(6):819-29. doi: 10.1093/neuonc/nov281. Epub 2015 Nov 17.
15 Expression profiles of selected genes in tumors and matched surgical margins in oral cavity cancer: Do we have to pay attention to the molecular analysis of the surgical margins?.Adv Clin Exp Med. 2018 Jun;27(6):833-840. doi: 10.17219/acem/79846.
16 Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets.Arthritis Rheum. 2009 Jul;60(7):2113-23. doi: 10.1002/art.24534.
17 Clinical significance of DAPK promoter hypermethylation in lung cancer: a meta-analysis.Drug Des Devel Ther. 2015 Mar 24;9:1785-96. doi: 10.2147/DDDT.S78012. eCollection 2015.
18 Aberrant promoter methylation of CDH13 and MGMT genes is associated with clinicopathologic characteristics of primary non-small-cell lung carcinoma.Clin Lung Cancer. 2012 Jul;13(4):297-303. doi: 10.1016/j.cllc.2011.11.003. Epub 2011 Dec 13.
19 Prognostic significance of DAPK promoter methylation in lymphoma: A meta-analysis.PLoS One. 2019 Jan 25;14(1):e0210943. doi: 10.1371/journal.pone.0210943. eCollection 2019.
20 Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line.Int J Clin Exp Pathol. 2014 Oct 15;7(11):7536-44. eCollection 2014.
21 Methylation of tumour suppressor genes APAF-1 and DAPK-1 and in vitro effects of demethylating agents in bladder and kidney cancer.Br J Cancer. 2006 Dec 18;95(12):1701-7. doi: 10.1038/sj.bjc.6603482. Epub 2006 Nov 28.
22 UNC5D, suppressed by promoter hypermethylation, inhibits cell metastasis by activating death-associated protein kinase 1 in prostate cancer.Cancer Sci. 2019 Apr;110(4):1244-1255. doi: 10.1111/cas.13935. Epub 2019 Feb 20.
23 Death-associated Protein Kinase-1 Expression and Autophagy in Chronic Lymphocytic Leukemia Are Dependent on Activating Transcription Factor-6 and CCAAT/Enhancer-binding Protein-.J Biol Chem. 2016 Oct 14;291(42):22030-22042. doi: 10.1074/jbc.M116.725796. Epub 2016 Sep 2.
24 Hypermethylation of tumor-suppressor gene CpG islands in small-cell carcinoma of the urinary bladder.Mod Pathol. 2008 Mar;21(3):355-62. doi: 10.1038/modpathol.3801012. Epub 2008 Jan 11.
25 CYP1B1 promotes tumorigenesis via altered expression of CDC20 and DAPK1 genes in renal cell carcinoma.BMC Cancer. 2015 Dec 1;15:942. doi: 10.1186/s12885-015-1951-0.
26 Quantitative methylation analysis of BCL2, hTERT, and DAPK promoters in urine sediment for the detection of non-muscle-invasive urothelial carcinoma of the bladder: a prospective, two-center validation study.Urol Oncol. 2011 Mar-Apr;29(2):150-6. doi: 10.1016/j.urolonc.2009.01.003. Epub 2009 Mar 9.
27 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
28 Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer.J Mol Med (Berl). 2019 Jan;97(1):89-102. doi: 10.1007/s00109-018-1716-8. Epub 2018 Nov 20.
29 Molecular profile of nasopharyngeal carcinoma: analysing tumour suppressor gene promoter hypermethylation by multiplex ligation-dependent probe amplification.J Clin Pathol. 2018 Apr;71(4):351-359. doi: 10.1136/jclinpath-2017-204661. Epub 2017 Sep 11.
30 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
31 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
32 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
33 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
34 Analysis of estrogen agonism and antagonism of tamoxifen, raloxifene, and ICI182780 in endometrial cancer cells: a putative role for the epidermal growth factor receptor ligand amphiregulin. J Soc Gynecol Investig. 2005 Oct;12(7):e55-67.
35 Epigenetic modifications of DAPK and p16 genes contribute to arsenic-induced skin lesions and nondermatological health effects. Toxicol Sci. 2013 Oct;135(2):300-8. doi: 10.1093/toxsci/kft163. Epub 2013 Jul 20.
36 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
37 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
38 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
39 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
40 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
41 Resistance to Fas-mediated apoptosis is restored by cycloheximide through the downregulation of cellular FLIPL in NK/T-cell lymphoma. Lab Invest. 2005 Jul;85(7):874-84. doi: 10.1038/labinvest.3700291.
42 Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol. 2009 Mar;144(5):667-76. doi: 10.1111/j.1365-2141.2008.07504.x. Epub 2008 Nov 20.
43 Transcriptional repression of IKK by p53 in arsenite-induced GADD45 accumulation and apoptosis. Oncogene. 2019 Jan;38(5):731-746. doi: 10.1038/s41388-018-0478-7. Epub 2018 Sep 3.
44 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
45 Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. J Clin Pathol. 2007 Jun;60(6):664-9. doi: 10.1136/jcp.2006.038331.
46 A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer. 2005 Apr 29;5:44.
47 Resveratrol induces autophagy through death-associated protein kinase 1 (DAPK1) in human dermal fibroblasts under normal culture conditions. Exp Dermatol. 2013 Jul;22(7):491-4. doi: 10.1111/exd.12175.
48 New TNF-alpha releasing inhibitors as cancer preventive agents from traditional herbal medicine and combination cancer prevention study with EGCG and sulindac or tamoxifen. Mutat Res. 2003 Feb-Mar;523-524:119-25. doi: 10.1016/s0027-5107(02)00327-5.
49 Arsenic mediates cell proliferation and gene expression in the bladder epithelium: association with activating protein-1 transactivation. Cancer Res. 2000 Jul 1;60(13):3445-53.
50 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
51 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
52 Genome-wide expression changes induced by bisphenol A, F and S in human stem cell derived hepatocyte-like cells. EXCLI J. 2020 Nov 4;19:1459-1476. doi: 10.17179/excli2020-2934. eCollection 2020.
53 Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep. 2006 Sep;16(3):563-8.
54 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
55 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
56 Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways. J Toxicol Environ Health A. 2008;71(22):1457-67. doi: 10.1080/15287390802329364.
57 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
58 Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res. 2004 Jun 1;64(11):3844-8. doi: 10.1158/0008-5472.CAN-03-2119.
59 Prolyl endopeptidase is involved in cellular signalling in human neuroblastoma SH-SY5Y cells. Neurosignals. 2011;19(2):97-109. doi: 10.1159/000326342. Epub 2011 Apr 10.
60 A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet Genomics. 2012 Apr;22(4):229-35. doi: 10.1097/FPC.0b013e32834e9eba.
61 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.