General Information of Drug Off-Target (DOT) (ID: OTO557N2)

DOT Name Trifunctional enzyme subunit alpha, mitochondrial (HADHA)
Synonyms 78 kDa gastrin-binding protein; Monolysocardiolipin acyltransferase; EC 2.3.1.-; TP-alpha
Gene Name HADHA
Related Disease
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency ( )
Metabolic disorder ( )
Non-insulin dependent diabetes ( )
Prostatitis ( )
Abetalipoproteinemia ( )
Adrenogenital syndrome ( )
Adult respiratory distress syndrome ( )
Alpha-1 antitrypsin deficiency ( )
Barth syndrome ( )
Cardiac failure ( )
Cardiomyopathy ( )
Carnitine palmitoyltransferase II deficiency ( )
Carnitine-acylcarnitine translocase deficiency ( )
Castration-resistant prostate carcinoma ( )
Congenital adrenal hyperplasia ( )
Congestive heart failure ( )
Cytochrome-c oxidase deficiency disease ( )
Disorder of glycogen metabolism ( )
Fatty liver disease ( )
Fetal growth restriction ( )
Hepatitis C virus infection ( )
HIV infectious disease ( )
Hydrops fetalis ( )
Hypoglycemia ( )
Inborn error of metabolism ( )
Inflammatory bowel disease ( )
Lung cancer ( )
Lung carcinoma ( )
Lung neoplasm ( )
Mitochondrial trifunctional protein deficiency ( )
Myocardial ischemia ( )
Neoplasm ( )
Peripheral neuropathy ( )
Polyp ( )
Prostate cancer ( )
Prostate carcinoma ( )
Retinitis pigmentosa ( )
Von Willebrand disease type 2N ( )
Dilated cardiomyopathy ( )
Amyotrophic lateral sclerosis ( )
Breast cancer ( )
Lactic acidosis ( )
Osteoarthritis ( )
UniProt ID
ECHA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5ZQZ; 5ZRV; 6DV2
EC Number
1.1.1.211; 2.3.1.-; 4.2.1.17
Pfam ID
PF00725 ; PF02737 ; PF00378
Sequence
MVACRAIGILSRFSAFRILRSRGYICRNFTGSSALLTRTHINYGVKGDVAVVRINSPNSK
VNTLSKELHSEFSEVMNEIWASDQIRSAVLISSKPGCFIAGADINMLAACKTLQEVTQLS
QEAQRIVEKLEKSTKPIVAAINGSCLGGGLEVAISCQYRIATKDRKTVLGTPEVLLGALP
GAGGTQRLPKMVGVPAALDMMLTGRSIRADRAKKMGLVDQLVEPLGPGLKPPEERTIEYL
EEVAITFAKGLADKKISPKRDKGLVEKLTAYAMTIPFVRQQVYKKVEEKVRKQTKGLYPA
PLKIIDVVKTGIEQGSDAGYLCESQKFGELVMTKESKALMGLYHGQVLCKKNKFGAPQKD
VKHLAILGAGLMGAGIAQVSVDKGLKTILKDATLTALDRGQQQVFKGLNDKVKKKALTSF
ERDSIFSNLTGQLDYQGFEKADMVIEAVFEDLSLKHRVLKEVEAVIPDHCIFASNTSALP
ISEIAAVSKRPEKVIGMHYFSPVDKMQLLEIITTEKTSKDTSASAVAVGLKQGKVIIVVK
DGPGFYTTRCLAPMMSEVIRILQEGVDPKKLDSLTTSFGFPVGAATLVDEVGVDVAKHVA
EDLGKVFGERFGGGNPELLTQMVSKGFLGRKSGKGFYIYQEGVKRKDLNSDMDSILASLK
LPPKSEVSSDEDIQFRLVTRFVNEAVMCLQEGILATPAEGDIGAVFGLGFPPCLGGPFRF
VDLYGAQKIVDRLKKYEAAYGKQFTPCQLLADHANSPNKKFYQ
Function
Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional enzyme subunit alpha/HADHA described here carries the 2,3-enoyl-CoA hydratase and the 3-hydroxyacyl-CoA dehydrogenase activities while the trifunctional enzyme subunit beta/HADHB bears the 3-ketoacyl-CoA thiolase activity. Independently of the subunit beta, the trifunctional enzyme subunit alpha/HADHA also has a monolysocardiolipin acyltransferase activity. It acylates monolysocardiolipin into cardiolipin, a major mitochondrial membrane phospholipid which plays a key role in apoptosis and supports mitochondrial respiratory chain complexes in the generation of ATP. Allows the acylation of monolysocardiolipin with different acyl-CoA substrates including oleoyl-CoA for which it displays the highest activity.
KEGG Pathway
Fatty acid elongation (hsa00062 )
Fatty acid degradation (hsa00071 )
Valine, leucine and isoleucine degradation (hsa00280 )
Lysine degradation (hsa00310 )
Tryptophan metabolism (hsa00380 )
beta-Alanine metabolism (hsa00410 )
Propanoate metabolism (hsa00640 )
Butanoate metabolism (hsa00650 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
Reactome Pathway
Beta oxidation of myristoyl-CoA to lauroyl-CoA (R-HSA-77285 )
mitochondrial fatty acid beta-oxidation of unsaturated fatty acids (R-HSA-77288 )
Beta oxidation of palmitoyl-CoA to myristoyl-CoA (R-HSA-77305 )
Beta oxidation of lauroyl-CoA to decanoyl-CoA-CoA (R-HSA-77310 )
Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA (R-HSA-77346 )
Beta oxidation of octanoyl-CoA to hexanoyl-CoA (R-HSA-77348 )
Beta oxidation of hexanoyl-CoA to butanoyl-CoA (R-HSA-77350 )
Acyl chain remodeling of CL (R-HSA-1482798 )
BioCyc Pathway
MetaCyc:HS01481-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

43 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency DIS4F710 Definitive Autosomal recessive [1]
Metabolic disorder DIS71G5H Definitive Biomarker [2]
Non-insulin dependent diabetes DISK1O5Z Definitive Genetic Variation [3]
Prostatitis DISL8OGN Definitive Altered Expression [4]
Abetalipoproteinemia DISMSS7T Strong Genetic Variation [5]
Adrenogenital syndrome DIS2N76U Strong Genetic Variation [6]
Adult respiratory distress syndrome DISIJV47 Strong Biomarker [7]
Alpha-1 antitrypsin deficiency DISQKEHW Strong Genetic Variation [6]
Barth syndrome DISDI4KU Strong Altered Expression [8]
Cardiac failure DISDC067 Strong Biomarker [9]
Cardiomyopathy DISUPZRG Strong Biomarker [10]
Carnitine palmitoyltransferase II deficiency DIS3GFD9 Strong Biomarker [11]
Carnitine-acylcarnitine translocase deficiency DISR2O7P Strong Biomarker [11]
Castration-resistant prostate carcinoma DISVGAE6 Strong Altered Expression [12]
Congenital adrenal hyperplasia DISG873W Strong Genetic Variation [6]
Congestive heart failure DIS32MEA Strong Biomarker [9]
Cytochrome-c oxidase deficiency disease DISK7N3G Strong Genetic Variation [6]
Disorder of glycogen metabolism DISYGNOB Strong Biomarker [13]
Fatty liver disease DIS485QZ Strong Biomarker [14]
Fetal growth restriction DIS5WEJ5 Strong Altered Expression [15]
Hepatitis C virus infection DISQ0M8R Strong Biomarker [16]
HIV infectious disease DISO97HC Strong Biomarker [17]
Hydrops fetalis DISD9BBF Strong Biomarker [18]
Hypoglycemia DISRCKR7 Strong Biomarker [19]
Inborn error of metabolism DISO5FAY Strong Biomarker [20]
Inflammatory bowel disease DISGN23E Strong Biomarker [21]
Lung cancer DISCM4YA Strong Biomarker [22]
Lung carcinoma DISTR26C Strong Biomarker [22]
Lung neoplasm DISVARNB Strong Biomarker [22]
Mitochondrial trifunctional protein deficiency DIS2MYYR Strong Autosomal recessive [23]
Myocardial ischemia DISFTVXF Strong Biomarker [24]
Neoplasm DISZKGEW Strong Biomarker [25]
Peripheral neuropathy DIS7KN5G Strong Biomarker [18]
Polyp DISRSLYF Strong Genetic Variation [26]
Prostate cancer DISF190Y Strong Biomarker [12]
Prostate carcinoma DISMJPLE Strong Biomarker [12]
Retinitis pigmentosa DISCGPY8 Strong Genetic Variation [6]
Von Willebrand disease type 2N DIS7S2QL Strong Genetic Variation [6]
Dilated cardiomyopathy DISX608J moderate Genetic Variation [27]
Amyotrophic lateral sclerosis DISF7HVM Limited Biomarker [28]
Breast cancer DIS7DPX1 Limited Altered Expression [29]
Lactic acidosis DISZI1ZK Limited Biomarker [30]
Osteoarthritis DIS05URM Limited Biomarker [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [32]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [43]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [33]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [34]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [35]
Selenium DM25CGV Approved Selenium decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [36]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [37]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [38]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [39]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [40]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [36]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [42]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [45]
AHPN DM8G6O4 Investigative AHPN decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [46]
Oleic acid DM54O1Z Investigative Oleic acid increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [47]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [47]
Benzoquinone DMNBA0G Investigative Benzoquinone decreases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [48]
Farnesol DMV2X1B Investigative Farnesol increases the expression of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [47]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Trifunctional enzyme subunit alpha, mitochondrial (HADHA). [41]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Ocular characteristics in 10 children with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: a cross-sectional study with long-term follow-up.Acta Ophthalmol. 2008 May;86(3):329-37. doi: 10.1111/j.1600-0420.2007.01121.x. Epub 2007 Dec 19.
3 DEVOTE 5: Evaluating the Short-Term Cost-Utility of Insulin Degludec Versus Insulin Glargine U100 in Basal-Bolus Regimens for Type 2 Diabetes in the UK.Diabetes Ther. 2018 Jun;9(3):1217-1232. doi: 10.1007/s13300-018-0430-4. Epub 2018 Apr 30.
4 Differential expression of the TP and TP isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TP during monocyte-macrophage differentiation.Exp Mol Pathol. 2019 Oct;110:104277. doi: 10.1016/j.yexmp.2019.104277. Epub 2019 Jul 2.
5 HADHA and HADHB gene associated phenotypes - Identification of rare variants in a patient cohort by Next Generation Sequencing. Mol Cell Probes. 2019 Apr;44:14-20. doi: 10.1016/j.mcp.2019.01.003. Epub 2019 Jan 22.
6 Exome-based search for recurrent disease-causing alleles in Russian population.Eur J Med Genet. 2019 Jul;62(7):103656. doi: 10.1016/j.ejmg.2019.04.013. Epub 2019 Apr 24.
7 Acute respiratory distress syndrome in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies.J Inherit Metab Dis. 2003;26(6):537-41. doi: 10.1023/a:1025995813914.
8 Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts.J Biol Chem. 2018 May 18;293(20):7564-7577. doi: 10.1074/jbc.RA117.001024. Epub 2018 Mar 21.
9 Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure.J Lipid Res. 2009 Aug;50(8):1600-8. doi: 10.1194/jlr.M800561-JLR200. Epub 2008 Nov 10.
10 Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening.BMC Pediatr. 2018 Mar 8;18(1):103. doi: 10.1186/s12887-018-1069-z.
11 Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts.Mol Genet Metab. 2006 Jan;87(1):40-7. doi: 10.1016/j.ymgme.2005.09.018. Epub 2005 Nov 16.
12 Regulation of protein kinase C-related kinase (PRK) signalling by the TP and TP isoforms of the human thromboxane A(2) receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer.Biochim Biophys Acta Mol Basis Dis. 2017 Apr;1863(4):838-856. doi: 10.1016/j.bbadis.2017.01.011. Epub 2017 Jan 18.
13 Clinical Characteristics and Sequelae of Severe Hypertriglyceridemia in Pediatrics.Endocr Pract. 2018 Sep;24(9):789-795. doi: 10.4158/EP-2018-0106. Epub 2018 Aug 7.
14 A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women.N Engl J Med. 1999 Jun 3;340(22):1723-31. doi: 10.1056/NEJM199906033402204.
15 Role for the thromboxane A2 receptor -isoform in the pathogenesis of intrauterine growth restriction.Sci Rep. 2016 Jul 1;6:28811. doi: 10.1038/srep28811.
16 Clinical detection of Hepatitis C viral infection by yeast-secreted HCV-core:Gold-binding-peptide.Biosens Bioelectron. 2018 Nov 15;119:230-236. doi: 10.1016/j.bios.2018.07.026. Epub 2018 Aug 22.
17 Reconnaissance of the candidate genes involved in the pathogenesis of human immunodeficiency virus and targeted by antiretroviral therapy.J Med Virol. 2019 Dec;91(12):2134-2141. doi: 10.1002/jmv.25549. Epub 2019 Jul 30.
18 Long-chain fatty acid oxidation during early human development.Pediatr Res. 2005 Jun;57(6):755-9. doi: 10.1203/01.PDR.0000161413.42874.74. Epub 2005 Apr 21.
19 A role for exogenous GLP-1 in the management of postprandial hypoglycaemia after Roux-en-Y gastric bypass?.Eur J Endocrinol. 2019 Sep;181(3):C5-C8. doi: 10.1530/EJE-19-0473.
20 Diagnosis of LCHAD/TFP deficiency in an at risk newborn using umbilical cord blood acylcarnitine analysis.Mol Genet Metab Rep. 2016 Dec 9;10:8-10. doi: 10.1016/j.ymgmr.2016.11.007. eCollection 2017 Mar.
21 HADHA, the alpha subunit of the mitochondrial trifunctional protein, is involved in long-chain fatty acid-induced autophagy in intestinal epithelial cells.Biochem Biophys Res Commun. 2017 Mar 11;484(3):636-641. doi: 10.1016/j.bbrc.2017.01.159. Epub 2017 Jan 30.
22 Thromboxane A2 receptor promotes tumor growth through an autoregulatory feedback pathway.J Mol Cell Biol. 2013 Dec;5(6):380-90. doi: 10.1093/jmcb/mjt038. Epub 2013 Oct 9.
23 Comprehensive cDNA study and quantitative analysis of mutant HADHA and HADHB transcripts in a French cohort of 52 patients with mitochondrial trifunctional protein deficiency. Mol Genet Metab. 2011 Aug;103(4):341-8. doi: 10.1016/j.ymgme.2011.04.006. Epub 2011 Apr 19.
24 Cardioplegia prevents ischemia-induced transcriptional alterations of cytoprotective genes in rat hearts: a DNA microarray study.J Thorac Cardiovasc Surg. 2005 Oct;130(4):1151. doi: 10.1016/j.jtcvs.2005.06.027.
25 Glypican-3 (GPC3) targeted Fe(3)O(4) core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy.Biomater Sci. 2019 Dec 1;7(12):5258-5269. doi: 10.1039/c9bm01248f. Epub 2019 Oct 11.
26 Correlation of dyslipidemias and gallbladder polyps-A large retrospective study among Chinese population.Asian J Surg. 2020 Jan;43(1):181-185. doi: 10.1016/j.asjsur.2019.01.013. Epub 2019 Mar 15.
27 Acute dilated cardiomyopathy in a patient with deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase.Pediatr Cardiol. 2009 May;30(4):523-6. doi: 10.1007/s00246-008-9351-8. Epub 2008 Dec 16.
28 Metabolic Reprogramming in Amyotrophic Lateral Sclerosis.Sci Rep. 2018 Mar 2;8(1):3953. doi: 10.1038/s41598-018-22318-5.
29 Transcriptional regulation of the human thromboxane A2 receptor gene by Wilms' tumor (WT)1 and hypermethylated in cancer (HIC) 1 in prostate and breast cancers.Biochim Biophys Acta. 2014 Jun;1839(6):476-92. doi: 10.1016/j.bbagrm.2014.04.010. Epub 2014 Apr 18.
30 Pathology of skeletal muscle and impaired respiratory chain function in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency with the G1528C mutation.Neuromuscul Disord. 1996 Oct;6(5):327-37. doi: 10.1016/0960-8966(96)00352-5.
31 Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance.Mol Cell Proteomics. 2009 Jan;8(1):172-89. doi: 10.1074/mcp.M800292-MCP200. Epub 2008 Sep 9.
32 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
33 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
34 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
35 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
36 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
37 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
38 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
39 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
40 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
41 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
42 Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology. 2021 Jan 30;448:152652. doi: 10.1016/j.tox.2020.152652. Epub 2020 Dec 2.
43 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
44 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
45 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
46 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.
47 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.
48 l-Carnitine protects against 1,4-benzoquinone-induced apoptosis and DNA damage by suppressing oxidative stress and promoting fatty acid oxidation in K562 cells. Environ Toxicol. 2020 Oct;35(10):1033-1042. doi: 10.1002/tox.22939. Epub 2020 Jun 1.