General Information of Drug Off-Target (DOT) (ID: OTSBNRT5)

DOT Name Glucose 1,6-bisphosphate synthase (PGM2L1)
Synonyms EC 2.7.1.106; PMMLP; Phosphoglucomutase-2-like 1
Gene Name PGM2L1
Related Disease
Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skin abnormalities ( )
UniProt ID
PGM2L_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.7.1.106
Pfam ID
PF02878 ; PF02879 ; PF02880
Sequence
MAENTEGDLNSNLLHAPYHTGDPQLDTAIGQWLRWDKNPKTKEQIENLLRNGMNKELRDR
LCCRMTFGTAGLRSAMGAGFCYINDLTVIQSTQGMYKYLERCFSDFKQRGFVVGYDTRGQ
VTSSCSSQRLAKLTAAVLLAKDVPVYLFSRYVPTPFVPYAVQKLKAVAGVMITASHNRKE
DNGYKVYWETGAQITSPHDKEILKCIEECVEPWNGSWNDNLVDTSPLKRDPLQDICRRYM
EDLKKICFYRELNSKTTLKFVHTSFHGVGHDYVQLAFKVFGFKPPIPVPEQKDPDPDFST
VKCPNPEEGESVLELSLRLAEKENARVVLATDPDADRLAAAELQENGCWKVFTGNELAAL
FGWWMFDCWKKNKSRNADVKNVYMLATTVSSKILKAIALKEGFHFEETLPGFKWIGSRII
DLLENGKEVLFAFEESIGFLCGTSVLDKDGVSAAVVVAEMASYLETMNITLKQQLVKVYE
KYGYHISKTSYFLCYEPPTIKSIFERLRNFDSPKEYPKFCGTFAILHVRDVTTGYDSSQP
NKKSVLPVSKNSQMITFTFQNGCVATLRTSGTEPKIKYYAEMCASPDQSDTALLEEELKK
LIDALIENFLQPSKNGLIWRSV
Function
Glucose 1,6-bisphosphate synthase using 1,3-bisphosphoglycerate as a phosphate donor and a series of 1-phosphate sugars, including glucose 1-phosphate, mannose 1-phosphate, ribose 1-phosphate and deoxyribose 1-phosphate, as acceptors. In vitro, also exhibits very low phosphopentomutase and phosphoglucomutase activity which are most probably not physiologically relevant.
KEGG Pathway
Starch and sucrose metabolism (hsa00500 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Glycolysis (R-HSA-70171 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neurodevelopmental disorder with hypotonia, dysmorphic facies, and skin abnormalities DISDOXT0 Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [10]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [12]
Irinotecan DMP6SC2 Approved Irinotecan increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [13]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [16]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [17]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [20]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [21]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of Glucose 1,6-bisphosphate synthase (PGM2L1). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 Impaired glucose-1,6-biphosphate production due to bi-allelic PGM2L1 mutations is associated with a neurodevelopmental disorder. Am J Hum Genet. 2021 Jun 3;108(6):1151-1160. doi: 10.1016/j.ajhg.2021.04.017. Epub 2021 May 11.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012 Mar 7;209(2):136-45.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
18 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
19 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
22 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.