General Information of Drug Off-Target (DOT) (ID: OTSSDPWN)

DOT Name Beta-chimaerin (CHN2)
Synonyms Beta-chimerin; Rho GTPase-activating protein 3
Gene Name CHN2
UniProt ID
CHIO_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1XA6
Pfam ID
PF00130 ; PF00620 ; PF00017
Sequence
MAASSNSSLSGSSVSSDAEEYQPPIWKSYLYQLQQEAPRPKRIICPREVENRPKYYGREF
HGIISREQADELLGGVEGAYILRESQRQPGCYTLALRFGNQTLNYRLFHDGKHFVGEKRF
ESIHDLVTDGLITLYIETKAAEYISKMTTNPIYEHIGYATLLREKVSRRLSRSKNEPRKT
NVTHEEHTAVEKISSLVRRAALTHNDNHFNYEKTHNFKVHTFRGPHWCEYCANFMWGLIA
QGVRCSDCGLNVHKQCSKHVPNDCQPDLKRIKKVYCCDLTTLVKAHNTQRPMVVDICIRE
IEARGLKSEGLYRVSGFTEHIEDVKMAFDRDGEKADISANVYPDINIITGALKLYFRDLP
IPVITYDTYSKFIDAAKISNADERLEAVHEVLMLLPPAHYETLRYLMIHLKKVTMNEKDN
FMNAENLGIVFGPTLMRPPEDSTLTTLHDMRYQKLIVQILIENEDVLF
Function
GTPase-activating protein for p21-rac. Insufficient expression of beta-2 chimaerin is expected to lead to higher Rac activity and could therefore play a role in the progression from low-grade to high-grade tumors.
Tissue Specificity
Highest levels in the brain and pancreas. Also expressed in the heart, placenta, and weakly in the kidney and liver. Expression is much reduced in the malignant gliomas, compared to normal brain or low-grade astrocytomas.
Reactome Pathway
RAC1 GTPase cycle (R-HSA-9013149 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Beta-chimaerin (CHN2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Beta-chimaerin (CHN2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Beta-chimaerin (CHN2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Beta-chimaerin (CHN2). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Beta-chimaerin (CHN2). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Beta-chimaerin (CHN2). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Beta-chimaerin (CHN2). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Beta-chimaerin (CHN2). [8]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Beta-chimaerin (CHN2). [9]
Selenium DM25CGV Approved Selenium increases the expression of Beta-chimaerin (CHN2). [10]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Beta-chimaerin (CHN2). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Beta-chimaerin (CHN2). [2]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Beta-chimaerin (CHN2). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Beta-chimaerin (CHN2). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Beta-chimaerin (CHN2). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Beta-chimaerin (CHN2). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of Beta-chimaerin (CHN2). [11]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
6 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.