General Information of Drug Off-Target (DOT) (ID: OTTO1Y11)

DOT Name 60 kDa heat shock protein, mitochondrial (HSPD1)
Synonyms EC 5.6.1.7; 60 kDa chaperonin; Chaperonin 60; CPN60; Heat shock protein 60; HSP-60; Hsp60; HuCHA60; Mitochondrial matrix protein P1; P60 lymphocyte protein
Gene Name HSPD1
Related Disease
Hereditary spastic paraplegia 13 ( )
Hypomyelinating leukodystrophy 4 ( )
UniProt ID
CH60_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4PJ1; 6HT7; 6MRC; 6MRD; 7AZP; 7L7S; 8G7J; 8G7K; 8G7L; 8G7M; 8G7N; 8G7O
EC Number
5.6.1.7
Pfam ID
PF00118
Sequence
MLRLPTVFRQMRPVSRVLAPHLTRAYAKDVKFGADARALMLQGVDLLADAVAVTMGPKGR
TVIIEQSWGSPKVTKDGVTVAKSIDLKDKYKNIGAKLVQDVANNTNEEAGDGTTTATVLA
RSIAKEGFEKISKGANPVEIRRGVMLAVDAVIAELKKQSKPVTTPEEIAQVATISANGDK
EIGNIISDAMKKVGRKGVITVKDGKTLNDELEIIEGMKFDRGYISPYFINTSKGQKCEFQ
DAYVLLSEKKISSIQSIVPALEIANAHRKPLVIIAEDVDGEALSTLVLNRLKVGLQVVAV
KAPGFGDNRKNQLKDMAIATGGAVFGEEGLTLNLEDVQPHDLGKVGEVIVTKDDAMLLKG
KGDKAQIEKRIQEIIEQLDVTTSEYEKEKLNERLAKLSDGVAVLKVGGTSDVEVNEKKDR
VTDALNATRAAVEEGIVLGGGCALLRCIPALDSLTPANEDQKIGIEIIKRTLKIPAMTIA
KNAGVEGSLIVEKIMQSSSEVGYDAMAGDFVNMVEKGIIDPTKVVRTALLDAAGVASLLT
TAEVVVTEIPKEEKDPGMGAMGGMGGGMGGGMF
Function
Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ring, followed by the binding of ATP and association with 2 heptameric rings of the co-chaperonin Hsp10. This leads to sequestration of the substrate protein in the inner cavity of Hsp60 where, for a certain period of time, it can fold undisturbed by other cell components. Synchronous hydrolysis of ATP in all Hsp60 subunits results in the dissociation of the chaperonin rings and the release of ADP and the folded substrate protein (Probable).
KEGG Pathway
R. degradation (hsa03018 )
Type I diabetes mellitus (hsa04940 )
Legionellosis (hsa05134 )
Tuberculosis (hsa05152 )
Lipid and atherosclerosis (hsa05417 )
Reactome Pathway
TFAP2A acts as a transcriptional repressor during retinoic acid induced cell differentiation (R-HSA-8869496 )
Mitochondrial protein import (R-HSA-1268020 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hereditary spastic paraplegia 13 DISBNUNW Strong Autosomal dominant [1]
Hypomyelinating leukodystrophy 4 DISLDO8X Strong Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Sulforaphane DMQY3L0 Investigative 60 kDa heat shock protein, mitochondrial (HSPD1) affects the binding of Sulforaphane. [46]
------------------------------------------------------------------------------------
46 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [9]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [10]
Quercetin DM3NC4M Approved Quercetin decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [11]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [12]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [4]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [13]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [14]
Marinol DM70IK5 Approved Marinol increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [15]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [16]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [17]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [18]
Menthol DMG2KW7 Approved Menthol decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [19]
Cocaine DMSOX7I Approved Cocaine affects the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [20]
Zidovudine DM4KI7O Approved Zidovudine affects the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [21]
Acocantherin DM7JT24 Approved Acocantherin affects the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [22]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [23]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [23]
Etretinate DM2CZFA Approved Etretinate decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [24]
Dihydroxyacetone DMM1LG2 Approved Dihydroxyacetone increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [25]
Gallium nitrate DMF9O6B Approved Gallium nitrate decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [26]
Stavudine DM6DEK9 Approved Stavudine affects the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [21]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [27]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [16]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [31]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [33]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [35]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [36]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [37]
Deguelin DMXT7WG Investigative Deguelin increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [38]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [39]
Paraquat DMR8O3X Investigative Paraquat increases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [40]
D-glucose DMMG2TO Investigative D-glucose decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [41]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [42]
Rutin DMEHRAJ Investigative Rutin decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [44]
Lead acetate DML0GZ2 Investigative Lead acetate decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [45]
CATECHIN DMY38SB Investigative CATECHIN decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [44]
Flavone DMEQH6J Investigative Flavone decreases the expression of 60 kDa heat shock protein, mitochondrial (HSPD1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 46 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of 60 kDa heat shock protein, mitochondrial (HSPD1). [28]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal affects the binding of 60 kDa heat shock protein, mitochondrial (HSPD1). [43]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of 60 kDa heat shock protein, mitochondrial (HSPD1). [32]
------------------------------------------------------------------------------------

References

1 A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet. 2000 Feb;66(2):702-7. doi: 10.1086/302776.
2 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci. 2003 Aug 15;73(13):1705-19. doi: 10.1016/s0024-3205(03)00515-0.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing's sarcoma cell lines. J Neurochem. 2007 Nov;103(4):1344-54. doi: 10.1111/j.1471-4159.2007.04835.x. Epub 2007 Aug 6.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1. Mol Endocrinol. 2004 Feb;18(2):402-11. doi: 10.1210/me.2003-0202. Epub 2003 Nov 6.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics. Toxicol Appl Pharmacol. 2010 Jan 15;242(2):126-35. doi: 10.1016/j.taap.2009.09.016. Epub 2009 Oct 7.
11 Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis. Int J Cancer. 2004 Mar 20;109(2):220-9. doi: 10.1002/ijc.11692.
12 Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Mol Cancer Ther. 2009 May;8(5):1197-206.
13 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
14 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
15 Genomic and proteomic analysis of the effects of cannabinoids on normal human astrocytes. Brain Res. 2008 Jan 29;1191:1-11.
16 Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J Cell Biochem. 2006 Aug 1;98(5):1163-84.
17 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
18 Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro. 2009 Oct;23(7):1387-95.
19 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
20 Proteomic analysis of the nucleus accumbens of rats with different vulnerability to cocaine addiction. Neuropharmacology. 2009 Jul;57(1):41-8. doi: 10.1016/j.neuropharm.2009.04.005. Epub 2009 Apr 22.
21 Lon protease and eiF2 are involved in acute, but not prolonged, antiretroviral induced stress response in HepG2 cells. Chem Biol Interact. 2016 May 25;252:82-6. doi: 10.1016/j.cbi.2016.03.021. Epub 2016 Apr 1.
22 Proteomics analysis of the proliferative effect of low-dose ouabain on human endothelial cells. Biol Pharm Bull. 2007 Feb;30(2):247-53. doi: 10.1248/bpb.30.247.
23 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
24 Consequences of the natural retinoid/retinoid X receptor ligands action in human breast cancer MDA-MB-231 cell line: Focus on functional proteomics. Toxicol Lett. 2017 Nov 5;281:26-34. doi: 10.1016/j.toxlet.2017.09.001. Epub 2017 Sep 5.
25 The sunless tanning agent dihydroxyacetone induces stress response gene expression and signaling in cultured human keratinocytes and reconstructed epidermis. Redox Biol. 2020 Sep;36:101594. doi: 10.1016/j.redox.2020.101594. Epub 2020 May 29.
26 Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic Biol Med. 2008 Sep 15;45(6):763-72.
27 Resveratrol and desferoxamine protect human OxLDL-treated granulosa cell subtypes from degeneration. J Clin Endocrinol Metab. 2014 Jan;99(1):229-39. doi: 10.1210/jc.2013-2692. Epub 2013 Dec 20.
28 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
29 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
30 Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib. Blood. 2015 Sep 24;126(13):1565-74.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
33 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
34 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
35 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
36 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
37 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
38 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
39 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
40 Cytotoxicity and gene array analysis of alveolar epithelial A549 cells exposed to paraquat. Chem Biol Interact. 2010 Dec 5;188(3):427-36.
41 Mitochondria are an essential mediator of nitric oxide/cyclic guanosine 3',5'-monophosphate blocking of glucose depletion induced cytotoxicity in human HepG2 cells. Mol Cancer Res. 2007 Sep;5(9):923-32.
42 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.
43 Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem Res Toxicol. 2008 Feb;21(2):432-44. doi: 10.1021/tx700347w. Epub 2008 Jan 31.
44 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.
45 Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway. Toxicol Lett. 2018 Jul;291:92-100. doi: 10.1016/j.toxlet.2018.04.012. Epub 2018 Apr 13.
46 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.