General Information of Drug Off-Target (DOT) (ID: OTVCLKQQ)

DOT Name Monocarboxylate transporter 9 (SLC16A9)
Synonyms MCT 9; Solute carrier family 16 member 9
Gene Name SLC16A9
UniProt ID
MOT9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MELKKSPDGGWGWVIVFVSFLTQFLCYGSPLAVGVLYIEWLDAFGEGKGKTAWVGSLASG
VGLLASPVCSLCVSSFGARPVTIFSGFMVAGGLMLSSFAPNIYFLFFSYGIVVGLGCGLL
YTATVTITCQYFDDRRGLALGLISTGSSVGLFIYAALQRMLVEFYGLDGCLLIVGALALN
ILACGSLMRPLQSSDCPLPKKIAPEDLPDKYSIYNEKGKNLEENINILDKSYSSEEKCRI
TLANGDWKQDSLLHKNPTVTHTKEPETYKKKVAEQTYFCKQLAKRKWQLYKNYCGETVAL
FKNKVFSALFIAILLFDIGGFPPSLLMEDVARSSNVKEEEFIMPLISIIGIMTAVGKLLL
GILADFKWINTLYLYVATLIIMGLALCAIPFAKSYVTLALLSGILGFLTGNWSIFPYVTT
KTVGIEKLAHAYGILMFFAGLGNSLGPPIVGWFYDWTQTYDIAFYFSGFCVLLGGFILLL
AALPSWDTCNKQLPKPAPTTFLYKVASNV
Function Extracellular pH-and Na(+)-sensitive low-affinity creatine transporter. Functions also as a pH-independent carnitine efflux transporter.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [1]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [2]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Monocarboxylate transporter 9 (SLC16A9). [3]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Monocarboxylate transporter 9 (SLC16A9). [4]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Monocarboxylate transporter 9 (SLC16A9). [5]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Monocarboxylate transporter 9 (SLC16A9). [6]
Ethanol DMDRQZU Approved Ethanol increases the expression of Monocarboxylate transporter 9 (SLC16A9). [7]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Monocarboxylate transporter 9 (SLC16A9). [8]
Testosterone Undecanoate DMZO10Y Approved Testosterone Undecanoate decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Monocarboxylate transporter 9 (SLC16A9). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Monocarboxylate transporter 9 (SLC16A9). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Monocarboxylate transporter 9 (SLC16A9). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Monocarboxylate transporter 9 (SLC16A9). [14]
------------------------------------------------------------------------------------

References

1 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
2 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
3 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
4 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
5 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
6 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
7 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
8 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
9 Levonorgestrel enhances spermatogenesis suppression by testosterone with greater alteration in testicular gene expression in men. Biol Reprod. 2009 Mar;80(3):484-92.
10 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
11 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.