General Information of Drug Off-Target (DOT) (ID: OTVMGE2H)

DOT Name Endoplasmic reticulum resident protein 27 (ERP27)
Synonyms ER protein 27; ERp27; Inactive protein disulfide-isomerase 27
Gene Name ERP27
UniProt ID
ERP27_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2L4C; 4F9Z
Pfam ID
PF13848
Sequence
MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAV
IGFFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLE
DEDIESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMH
RYQKAAKLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEV
SVEHVQNFCDGFLSGKLLKENRESEGKTPKVEL
Function
Specifically binds unfolded proteins and may recruit protein disulfide isomerase PDIA3 to unfolded substrates. Binds protein substrates via a hydrophobic pocket in the C-terminal domain. May play a role in the unfolded stress response.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [2]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [6]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [7]
Triclosan DMZUR4N Approved Triclosan increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Endoplasmic reticulum resident protein 27 (ERP27). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [10]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [7]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [11]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [12]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [11]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [13]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [6]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Endoplasmic reticulum resident protein 27 (ERP27). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [16]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Endoplasmic reticulum resident protein 27 (ERP27). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
12 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
13 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
14 The genomic response of a human uterine endometrial adenocarcinoma cell line to 17alpha-ethynyl estradiol. Toxicol Sci. 2009 Jan;107(1):40-55.
15 The genomic response of Ishikawa cells to bisphenol A exposure is dose- and time-dependent. Toxicology. 2010 Apr 11;270(2-3):137-49. doi: 10.1016/j.tox.2010.02.008. Epub 2010 Feb 17.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.