General Information of Drug Off-Target (DOT) (ID: OT0ZRV5C)

DOT Name Trafficking protein particle complex subunit 6A (TRAPPC6A)
Synonyms TRAPP complex subunit 6A
Gene Name TRAPPC6A
Related Disease
Complex neurodevelopmental disorder ( )
Intellectual disability ( )
UniProt ID
TPC6A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2C0J; 2J3T
Pfam ID
PF04051
Sequence
MADTVLFEFLHTEMVAELWAHDPDPGPGGQKMSLSVLEGMGFRVGQALGERLPRETLAFR
EELDVLKFLCKDLWVAVFQKQMDSLRTNHQGTYVLQDNSFPLLLPMASGLQYLEEAPKFL
AFTCGLLRGALYTLGIESVVTASVAALPVCKFQVVIPKS
Function May play a role in vesicular transport during the biogenesis of melanosomes.
Reactome Pathway
RAB GEFs exchange GTP for GDP on RABs (R-HSA-8876198 )
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Complex neurodevelopmental disorder DISB9AFI Limited Autosomal recessive [1]
Intellectual disability DISMBNXP Limited Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Trafficking protein particle complex subunit 6A (TRAPPC6A). [3]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [8]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [9]
Aspirin DM672AH Approved Aspirin increases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [10]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [11]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [14]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Trafficking protein particle complex subunit 6A (TRAPPC6A). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 A missense mutation in TRAPPC6A leads to build-up of the protein, in patients with a neurodevelopmental syndrome and dysmorphic features. Sci Rep. 2018 Feb 1;8(1):2053. doi: 10.1038/s41598-018-20658-w.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
10 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
11 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
12 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
13 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.