General Information of Drug Off-Target (DOT) (ID: OT10JTIO)

DOT Name Poly(ADP-ribose) glycohydrolase (PARG)
Synonyms EC 3.2.1.143
Gene Name PARG
UniProt ID
PARG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4A0D; 4B1G; 4B1H; 4B1I; 4B1J; 5A7R; 5LHB; 6HH6; 6HMK; 6HML; 6HMM; 6HMN; 6O9X; 6O9Y; 6OA0; 6OA1; 6OA3; 6OAK; 6OAL; 7KFP; 7KG0; 7KG1; 7KG6; 7KG7; 7KG8
EC Number
3.2.1.143
Pfam ID
PF05028 ; PF20811
Sequence
MNAGPGCEPCTKRPRWGAATTSPAASDARSFPSRQRRVLDPKDAHVQFRVPPSSPACVPG
RAGQHRGSATSLVFKQKTITSWMDTKGIKTAESESLDSKENNNTRIESMMSSVQKDNFYQ
HNVEKLENVSQLSLDKSPTEKSTQYLNQHQTAAMCKWQNEGKHTEQLLESEPQTVTLVPE
QFSNANIDRSPQNDDHSDTDSEENRDNQQFLTTVKLANAKQTTEDEQAREAKSHQKCSKS
CDPGEDCASCQQDEIDVVPESPLSDVGSEDVGTGPKNDNKLTRQESCLGNSPPFEKESEP
ESPMDVDNSKNSCQDSEADEETSPGFDEQEDGSSSQTANKPSRFQARDADIEFRKRYSTK
GGEVRLHFQFEGGESRTGMNDLNAKLPGNISSLNVECRNSKQHGKKDSKITDHFMRLPKA
EDRRKEQWETKHQRTERKIPKYVPPHLSPDKKWLGTPIEEMRRMPRCGIRLPLLRPSANH
TVTIRVDLLRAGEVPKPFPTHYKDLWDNKHVKMPCSEQNLYPVEDENGERTAGSRWELIQ
TALLNKFTRPQNLKDAILKYNVAYSKKWDFTALIDFWDKVLEEAEAQHLYQSILPDMVKI
ALCLPNICTQPIPLLKQKMNHSITMSQEQIASLLANAFFCTFPRRNAKMKSEYSSYPDIN
FNRLFEGRSSRKPEKLKTLFCYFRRVTEKKPTGLVTFTRQSLEDFPEWERCEKPLTRLHV
TYEGTIEENGQGMLQVDFANRFVGGGVTSAGLVQEEIRFLINPELIISRLFTEVLDHNEC
LIITGTEQYSEYTGYAETYRWSRSHEDGSERDDWQRRCTEIVAIDALHFRRYLDQFVPEK
MRRELNKAYCGFLRPGVSSENLSAVATGNWGCGAFGGDARLKALIQILAAAAAERDVVYF
TFGDSELMRDIYSMHIFLTERKLTVGDVYKLLLRYYNEECRNCSTPGPDIKLYPFIYHAV
ESCAETADHSGQRTGT
Function
Poly(ADP-ribose) glycohydrolase that degrades poly(ADP-ribose) by hydrolyzing the ribose-ribose bonds present in poly(ADP-ribose). PARG acts both as an endo- and exoglycosidase, releasing poly(ADP-ribose) of different length as well as ADP-ribose monomers. It is however unable to cleave the ester bond between the terminal ADP-ribose and ADP-ribosylated residues, leaving proteins that are mono-ADP-ribosylated. Poly(ADP-ribose) is synthesized after DNA damage is only present transiently and is rapidly degraded by PARG. Required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, while it is not required for recovery from transient replicative stress. Responsible for the prevalence of mono-ADP-ribosylated proteins in cells, thanks to its ability to degrade poly(ADP-ribose) without cleaving the terminal protein-ribose bond. Required for retinoid acid-dependent gene transactivation, probably by removing poly(ADP-ribose) from histone demethylase KDM4D, allowing chromatin derepression at RAR-dependent gene promoters. Involved in the synthesis of ATP in the nucleus, together with PARP1, NMNAT1 and NUDT5. Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming.
Tissue Specificity Ubiquitously expressed.
KEGG Pathway
Base excision repair (hsa03410 )
Reactome Pathway
POLB-Dependent Long Patch Base Excision Repair (R-HSA-110362 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Poly(ADP-ribose) glycohydrolase (PARG). [1]
Quercetin DM3NC4M Approved Quercetin decreases the phosphorylation of Poly(ADP-ribose) glycohydrolase (PARG). [8]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Poly(ADP-ribose) glycohydrolase (PARG). [8]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Poly(ADP-ribose) glycohydrolase (PARG). [8]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [7]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [10]
Triclosan DMZUR4N Approved Triclosan increases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [13]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [15]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Poly(ADP-ribose) glycohydrolase (PARG). [16]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [17]
Deguelin DMXT7WG Investigative Deguelin decreases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [18]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Poly(ADP-ribose) glycohydrolase (PARG). [19]
ELLAGIC ACID DMX8BS5 Investigative ELLAGIC ACID decreases the activity of Poly(ADP-ribose) glycohydrolase (PARG). [20]
Myricetin DMTV4L0 Investigative Myricetin decreases the activity of Poly(ADP-ribose) glycohydrolase (PARG). [20]
ROSMARINIC ACID DMQ6SJT Investigative ROSMARINIC ACID decreases the activity of Poly(ADP-ribose) glycohydrolase (PARG). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
15 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
16 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
18 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
19 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
20 The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010 Feb 1;192(2):119-25.