General Information of Drug Off-Target (DOT) (ID: OT1K2TTF)

DOT Name Protein Aster-C (GRAMD1C)
Synonyms GRAM domain-containing protein 1C
Gene Name GRAMD1C
UniProt ID
ASTRC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6GN5
Pfam ID
PF02893 ; PF16016
Sequence
MEGAPTVRQVMNEGDSSLATDLQEDVEENPSPTVEENNVVVKKQGPNLHNWSGDWSFWIS
SSTYKDRNEEYRRQFTHLPDTERLIADYACALQRDILLQGRLYLSENWLCFYSNIFRWET
TISIALKNITFMTKEKTARLIPNAIQIVTESEKFFFTSFGARDRSYLSIFRLWQNVLLDK
SLTRQEFWQLLQQNYGTELGLNAEEMENLSLSIEDVQPRSPGRSSLDDSGERDEKLSKSI
SFTSESISRVSETESFDGNSSKGGLGKEESQNEKQTKKSLLPTLEKKLTRVPSKSLDLNK
NEYLSLDKSSTSDSVDEENVPEKDLHGRLFINRIFHISADRMFELLFTSSRFMQKFASSR
NIIDVVSTPWTAELGGDQLRTMTYTIVLNSPLTGKCTAATEKQTLYKESREARFYLVDSE
VLTHDVPYHDYFYTVNRYCIIRSSKQKCRLRVSTDLKYRKQPWGLVKSLIEKNSWSSLED
YFKQLESDLLIEESVLNQAIEDPGKLTGLRRRRRTFNRTAETVPKLSSQHSSGDVGLGAK
GDITGKKKEMENYNVTLIVVMSIFVLLLVLLNVTLFLKLSKIEHAAQSFYRLRLQEEKSL
NLASDMVSRAETIQKNKDQAHRLKGVLRDSIVMLEQLKSSLIMLQKTFDLLNKNKTGMAV
ES
Function
Cholesterol transporter that mediates non-vesicular transport of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER). Contains unique domains for binding cholesterol and the PM, thereby serving as a molecular bridge for the transfer of cholesterol from the PM to the ER. Plays a crucial role in cholesterol homeostasis and has the unique ability to localize to the PM based on the level of membrane cholesterol. In lipid-poor conditions localizes to the ER membrane and in response to excess cholesterol in the PM is recruited to the endoplasmic reticulum-plasma membrane contact sites (EPCS) which is mediated by the GRAM domain. At the EPCS, the sterol-binding VASt/ASTER domain binds to the cholesterol in the PM and facilitates its transfer from the PM to ER.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Protein Aster-C (GRAMD1C). [1]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Protein Aster-C (GRAMD1C). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Protein Aster-C (GRAMD1C). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Protein Aster-C (GRAMD1C). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Protein Aster-C (GRAMD1C). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Protein Aster-C (GRAMD1C). [6]
Ivermectin DMDBX5F Approved Ivermectin increases the expression of Protein Aster-C (GRAMD1C). [7]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Protein Aster-C (GRAMD1C). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Protein Aster-C (GRAMD1C). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Protein Aster-C (GRAMD1C). [9]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protein Aster-C (GRAMD1C). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Protein Aster-C (GRAMD1C). [11]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Protein Aster-C (GRAMD1C). [12]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Protein Aster-C (GRAMD1C). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
10 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
12 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
13 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.