General Information of Drug Off-Target (DOT) (ID: OT2STDP4)

DOT Name Serine/arginine-rich splicing factor 9 (SRSF9)
Synonyms Pre-mRNA-splicing factor SRp30C; Splicing factor, arginine/serine-rich 9
Gene Name SRSF9
Related Disease
Bladder cancer ( )
Cervical cancer ( )
Cervical carcinoma ( )
Frontotemporal dementia ( )
Glucocorticoid resistance ( )
HIV infectious disease ( )
Pick disease ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
UniProt ID
SRSF9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00076
Sequence
MSGWADERGGEGDGRIYVGNLPTDVREKDLEDLFYKYGRIREIELKNRHGLVPFAFVRFE
DPRDAEDAIYGRNGYDYGQCRLRVEFPRTYGGRGGWPRGGRNGPPTRRSDFRVLVSGLPP
SGSWQDLKDHMREAGDVCYADVQKDGVGMVEYLRKEDMEYALRKLDDTKFRSHEGETSYI
RVYPERSTSYGYSRSRSGSRGRDSPYQSRGSPHYFSPFRPY
Function Plays a role in constitutive splicing and can modulate the selection of alternative splice sites. Represses the splicing of MAPT/Tau exon 10.
Tissue Specificity Expressed at high levels in the heart, kidney, pancreas and placenta, and at lower levels in the brain, liver, lung and skeletal muscle.
KEGG Pathway
Spliceosome (hsa03040 )
Herpes simplex virus 1 infection (hsa05168 )
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )
mRNA 3'-end processing (R-HSA-72187 )
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203 )
RNA Polymerase II Transcription Termination (R-HSA-73856 )
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bladder cancer DISUHNM0 Strong Altered Expression [1]
Cervical cancer DISFSHPF Strong Biomarker [2]
Cervical carcinoma DIST4S00 Strong Biomarker [2]
Frontotemporal dementia DISKYHXL Strong Genetic Variation [3]
Glucocorticoid resistance DIS3HNXT Strong Altered Expression [4]
HIV infectious disease DISO97HC Strong Biomarker [5]
Pick disease DISP6X50 Strong Genetic Variation [3]
Urinary bladder cancer DISDV4T7 Strong Altered Expression [1]
Urinary bladder neoplasm DIS7HACE Strong Altered Expression [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Serine/arginine-rich splicing factor 9 (SRSF9). [6]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Serine/arginine-rich splicing factor 9 (SRSF9). [15]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [10]
Selenium DM25CGV Approved Selenium increases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [14]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Serine/arginine-rich splicing factor 9 (SRSF9). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Serine/arginine-rich splicing factor 9 (SRSF9). [12]
------------------------------------------------------------------------------------

References

1 Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer.Biochem Biophys Res Commun. 2012 Jan 6;417(1):588-93. doi: 10.1016/j.bbrc.2011.12.011. Epub 2011 Dec 9.
2 microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9.J Cell Biochem. 2019 Jun;120(6):10370-10379. doi: 10.1002/jcb.28321. Epub 2018 Dec 19.
3 Tau exons 2 and 10, which are misregulated in neurodegenerative diseases, are partly regulated by silencers which bind a SRp30c.SRp55 complex that either recruits or antagonizes htra2beta1.J Biol Chem. 2005 Apr 8;280(14):14230-9. doi: 10.1074/jbc.M413846200. Epub 2005 Feb 3.
4 Bombesin attenuates pre-mRNA splicing of glucocorticoid receptor by regulating the expression of serine-arginine protein p30c (SRp30c) in prostate cancer cells.Biochim Biophys Acta. 2007 Jul;1773(7):1087-94. doi: 10.1016/j.bbamcr.2007.04.016. Epub 2007 May 3.
5 Host cell gene expression during human immunodeficiency virus type 1 latency and reactivation and effects of targeting genes that are differentially expressed in viral latency.J Virol. 2004 Sep;78(17):9458-73. doi: 10.1128/JVI.78.17.9458-9473.2004.
6 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
7 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform. 2014 Jul;7(7):166-178.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
13 Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology. 2021 Jan 30;448:152652. doi: 10.1016/j.tox.2020.152652. Epub 2020 Dec 2.
14 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.