General Information of Drug Off-Target (DOT) (ID: OT5KLL35)

DOT Name Prostasin (PRSS8)
Synonyms EC 3.4.21.-; Channel-activating protease 1; CAP1; Serine protease 8
Gene Name PRSS8
UniProt ID
PRSS8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3DFJ; 3DFL; 3E0N; 3E0P; 3E16; 3E1X; 3FVF; 3GYL; 3GYM
EC Number
3.4.21.-
Pfam ID
PF00089
Sequence
MAQKGVLGPGQLGAVAILLYLGLLRSGTGAEGAEAPCGVAPQARITGGSSAVAGQWPWQV
SITYEGVHVCGGSLVSEQWVLSAAHCFPSEHHKEAYEVKLGAHQLDSYSEDAKVSTLKDI
IPHPSYLQEGSQGDIALLQLSRPITFSRYIRPICLPAANASFPNGLHCTVTGWGHVAPSV
SLLTPKPLQQLEVPLISRETCNCLYNIDAKPEEPHFVQEDMVCAGYVEGGKDACQGDSGG
PLSCPVEGLWYLTGIVSWGDACGARNRPGVYTLASSYASWIQSKVTELQPRVVPQTQESQ
PDSNLCGSHLAFSSAPAQGLLRPILFLPLGLALGLLSPWLSEH
Function
Possesses a trypsin-like cleavage specificity with a preference for poly-basic substrates. Stimulates epithelial sodium channel (ENaC) activity through activating cleavage of the gamma subunits (SCNN1G).
Tissue Specificity
Found in prostate, liver, salivary gland, kidney, lung, pancreas, colon, bronchus and renal proximal tubular cells. In the prostate gland it may be synthesized in epithelial cells, secreted into the ducts, and excreted into the seminal fluid.
Reactome Pathway
Formation of the cornified envelope (R-HSA-6809371 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Prostasin (PRSS8). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Prostasin (PRSS8). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Prostasin (PRSS8). [14]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin affects the expression of Prostasin (PRSS8). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Prostasin (PRSS8). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Prostasin (PRSS8). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Prostasin (PRSS8). [5]
Selenium DM25CGV Approved Selenium increases the expression of Prostasin (PRSS8). [7]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Prostasin (PRSS8). [8]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Prostasin (PRSS8). [9]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Prostasin (PRSS8). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Prostasin (PRSS8). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Prostasin (PRSS8). [8]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Prostasin (PRSS8). [12]
GSK2110183 DMZHB37 Phase 2 GSK2110183 increases the expression of Prostasin (PRSS8). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Prostasin (PRSS8). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Prostasin (PRSS8). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Prostasin (PRSS8). [17]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Prostasin (PRSS8). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
10 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
13 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.