General Information of Drug Off-Target (DOT) (ID: OT80RRQJ)

DOT Name CDKN2A-interacting protein (CDKN2AIP)
Synonyms Collaborator of ARF
Gene Name CDKN2AIP
Related Disease
Advanced cancer ( )
Neoplasm ( )
UniProt ID
CARF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF11952
Sequence
MAQEVSEYLSQNPRVAAWVEALRCDGETDKHWRHRRDFLLRNAGDLAPAGGAASASTDEA
ADAESGTRNRQLQQLISFSMAWANHVFLGCRYPQKVMDKILSMAEGIKVTDAPTYTTRDE
LVAKVKKRGISSSNEGVEEPSKKRVIEGKNSSAVEQDHAKTSAKTERASAQQENSSTCIG
SAIKSESGNSARSSGISSQNSSTSDGDRSVSSQSSSSVSSQVTTAGSGKASEAEAPDKHG
SASFVSLLKSSVNSHMTQSTDSRQQSGSPKKSALEGSSASASQSSSEIEVPLLGSSGSSE
VELPLLSSKPSSETASSGLTSKTSSEASVSSSVAKNSSSSGTSLLTPKSSSSTNTSLLTS
KSTSQVAASLLASKSSSQTSGSLVSKSTSLASVSQLASKSSSQTSTSQLPSKSTSQSSES
SVKFSCKLTNEDVKQKQPFFNRLYKTVAWKLVAVGGFSPNVNHGELLNAAIEALKATLDV
FFVPLKELADLPQNKSSQESIVCELRCKSVYLGTGCGKSKENAKAVASREALKLFLKKKV
VVKICKRKYRGSEIEDLVLLDEESRPVNLPPALKHPQELL
Function Regulates DNA damage response in a dose-dependent manner through a number of signaling pathways involved in cell proliferation, apoptosis and senescence.
Tissue Specificity Ubiquitously expressed.

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Strong Biomarker [1]
Neoplasm DISZKGEW Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved CDKN2A-interacting protein (CDKN2AIP) affects the response to substance of Fluorouracil. [18]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of CDKN2A-interacting protein (CDKN2AIP). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of CDKN2A-interacting protein (CDKN2AIP). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of CDKN2A-interacting protein (CDKN2AIP). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [8]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [9]
Progesterone DMUY35B Approved Progesterone increases the expression of CDKN2A-interacting protein (CDKN2AIP). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of CDKN2A-interacting protein (CDKN2AIP). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of CDKN2A-interacting protein (CDKN2AIP). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of CDKN2A-interacting protein (CDKN2AIP). [14]
Milchsaure DM462BT Investigative Milchsaure increases the expression of CDKN2A-interacting protein (CDKN2AIP). [15]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of CDKN2A-interacting protein (CDKN2AIP). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of CDKN2A-interacting protein (CDKN2AIP). [13]
------------------------------------------------------------------------------------

References

1 Molecular characterization of apoptosis induced by CARF silencing in human cancer cells.Cell Death Differ. 2011 Apr;18(4):589-601. doi: 10.1038/cdd.2010.129. Epub 2010 Nov 5.
2 Tumor suppressor activity of miR-451: Identification of CARF as a new target.Sci Rep. 2018 Jan 10;8(1):375. doi: 10.1038/s41598-017-18559-5.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Coordinate up-regulation of TMEM97 and cholesterol biosynthesis genes in normal ovarian surface epithelial cells treated with progesterone: implications for pathogenesis of ovarian cancer. BMC Cancer. 2007 Dec 11;7:223.
11 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
16 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
18 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.