General Information of Drug Off-Target (DOT) (ID: OT84YKPM)

DOT Name Myosin light polypeptide 6 (MYL6)
Synonyms 17 kDa myosin light chain; LC17; Myosin light chain 3; MLC-3; Myosin light chain alkali 3; Myosin light chain A3; Smooth muscle and nonmuscle myosin light chain alkali 6
Gene Name MYL6
UniProt ID
MYL6_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MCDFTEDQTAEFKEAFQLFDRTGDGKILYSQCGDVMRALGQNPTNAEVLKVLGNPKSDEM
NVKVLDFEHFLPMLQTVAKNKDQGTYEDYVEGLRVFDKEGNGTVMGAEIRHVLVTLGEKM
TEEEVEMLVAGHEDSNGCINYEAFVRHILSG
Function Regulatory light chain of myosin. Does not bind calcium.
KEGG Pathway
Vascular smooth muscle contraction (hsa04270 )
Tight junction (hsa04530 )
Motor proteins (hsa04814 )
Oxytocin sig.ling pathway (hsa04921 )
Reactome Pathway
Sema4D induced cell migration and growth-cone collapse (R-HSA-416572 )
Smooth Muscle Contraction (R-HSA-445355 )
RHO GTPases activate PKNs (R-HSA-5625740 )
RHO GTPases activate CIT (R-HSA-5625900 )
RHO GTPases Activate ROCKs (R-HSA-5627117 )
RHO GTPases activate PAKs (R-HSA-5627123 )
EPHA-mediated growth cone collapse (R-HSA-3928663 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Myosin light polypeptide 6 (MYL6) affects the binding of PEITC. [17]
------------------------------------------------------------------------------------
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Myosin light polypeptide 6 (MYL6). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Myosin light polypeptide 6 (MYL6). [2]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Myosin light polypeptide 6 (MYL6). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Myosin light polypeptide 6 (MYL6). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Myosin light polypeptide 6 (MYL6). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Myosin light polypeptide 6 (MYL6). [6]
Selenium DM25CGV Approved Selenium increases the expression of Myosin light polypeptide 6 (MYL6). [7]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Myosin light polypeptide 6 (MYL6). [8]
Menadione DMSJDTY Approved Menadione affects the expression of Myosin light polypeptide 6 (MYL6). [9]
Nicotine DMWX5CO Approved Nicotine decreases the expression of Myosin light polypeptide 6 (MYL6). [10]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Myosin light polypeptide 6 (MYL6). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Myosin light polypeptide 6 (MYL6). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Myosin light polypeptide 6 (MYL6). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Myosin light polypeptide 6 (MYL6). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Myosin light polypeptide 6 (MYL6). [15]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Myosin light polypeptide 6 (MYL6). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Myosin light polypeptide 6 (MYL6). [13]
------------------------------------------------------------------------------------

References

1 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
2 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
8 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res. 2006 Oct 20;1116(1):39-49.
11 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
12 Proteomic analysis of MCF-7 cells treated with benzo[a]pyrene, dibenzo[a,l]pyrene, coal tar extract, and diesel exhaust extract. Toxicology. 2008 Jul 10;249(1):1-10.
13 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
16 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
17 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.