1 |
Novel Common Genetic Susceptibility Loci for Colorectal Cancer.J Natl Cancer Inst. 2019 Feb 1;111(2):146-157. doi: 10.1093/jnci/djy099.
|
2 |
Identification of genes expressed by immune cells of the colon that are regulated by colorectal cancer-associated variants.Int J Cancer. 2014 May 15;134(10):2330-41. doi: 10.1002/ijc.28557. Epub 2013 Nov 13.
|
3 |
A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci.Nat Genet. 2010 Jul;42(7):599-603. doi: 10.1038/ng.601. Epub 2010 May 30.
|
4 |
In silico pathway analysis and tissue specific cis-eQTL for colorectal cancer GWAS risk variants.BMC Genomics. 2017 May 15;18(1):381. doi: 10.1186/s12864-017-3750-2.
|
5 |
Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
|
6 |
Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
|
7 |
Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
|
8 |
DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
|
9 |
Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
|
10 |
Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
|
|
|
|
|
|
|