General Information of Disease (ID: DISAOTQ0)

Disease Name Nasopharyngeal carcinoma
Synonyms
malignant neoplasm of anterior wall of nasopharynx; nasopharyngeal throat cancer; malignant nasopharyngeal tumour; malignant neoplasm of superior wall of nasopharynx; primary malignant neoplasm of anterior wall of nasopharynx; nasopharyngeal cancer; malignant neoplasm of nasopharyngeal wall; malignant nasopharyngeal tumor; malignant tumor of lateral wall of nasopharynx; cancer of nasopharynx; malignant neoplasm of lateral wall of nasopharynx; malignant neoplasm of other specified sites of nasopharynx; malignant tumor of anterior wall of nasopharynx; malignant neoplasm of posterior wall of nasopharynx; malignant neoplasm of roof of nasopharynx; malignant tumour of anterior wall of nasopharynx; malignant tumor of posterior wall of nasopharynx; malignant tumour of posterior wall of nasopharynx; malignant neoplasm of nasopharynx (disorder) [ambiguous]; malignant neoplasm of nasopharynx; cancer of the nasopharynx; malignant tumour of lateral wall of nasopharynx; nasopharynx carcinoma; squamous cell carcinoma of the nasopharynx; carcinoma of the nasopharynx; nasopharyngeal carcinoma; carcinoma of nasopharynx; NPC
Disease Class 2B6B: Nasopharyngeal cancer
Definition
A carcinoma arising from the nasopharyngeal epithelium. It includes the following types: keratinizing squamous cell carcinoma, nonkeratinizing carcinoma (differentiated and undifferentiated), basaloid squamous cell carcinoma, and papillary adenocarcinoma.
Disease Hierarchy
DISABXHH: Epstein-Barr virus-associated carcinoma
DISTGIGF: Malignant tumor of nasopharynx
DISH9F1N: Carcinoma
DISOU1DS: Head and neck carcinoma
DISKPWNX: Carcinoma of pharynx
DISAOTQ0: Nasopharyngeal carcinoma
ICD Code
ICD-11
ICD-11: 2B6B
ICD-9
ICD-9: 147
Expand ICD-11
'2B6B.Y
Expand ICD-9
147
Disease Identifiers
MONDO ID
MONDO_0015459
UMLS CUI
C2931822
OMIM ID
607107
MedGen ID
419909
Orphanet ID
150
SNOMED CT ID
449248000

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Oxaliplatin DMQNWRD Approved Small molecular drug [1]
------------------------------------------------------------------------------------
This Disease is Treated as An Indication in 12 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
A167 DME00MM Phase 3 Monoclonal antibody [2]
Avastin+/-Tarceva DMA86FL Phase 3 Small molecular drug [3]
DE-766 DM0GUV2 Phase 3 NA [4]
MLN4924 DMP36KD Phase 3 Small molecular drug [5]
Tabelecleucel DM5Z8ID Phase 3 Cell therapy [6]
TT10 DMZ10KK Phase 3 NA [7]
Epstein-barr virus-specific immunotherapy DM0HYFU Phase 2 NA [8]
MK-2206 DMT1OZ6 Phase 2 Small molecular drug [9]
R-roscovitine DMSH108 Phase 2 Small molecular drug [10]
LMP1-CAR-T cells DMYGNDI Phase 1/2 CAR T Cell Therapy [11]
APG-1387 DMLEKUY Phase 1 NA [12]
GSK618334 DMJPXZ4 Phase 1 Small molecular drug [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
This Disease is Treated as An Indication in 6 Investigative Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Ad5f35-LMPd1-2-transduced autologous dendritic cells DMQW612 Investigative Vaccine [14]
HITOPK-032 DM7MUJ3 Investigative NA [15]
PD173074 DMP0N4U Investigative Small molecular drug [16]
Ro5203280 DM42UK5 Investigative NA [17]
SAIT301 DMLU6J0 Investigative Antibody [4]
THZ1 DMU10FE Investigative Small molecular drug [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 253 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AGK TTJETQC Limited Biomarker [19]
AGR2 TT9K86S Limited Biomarker [20]
ANTXR2 TTOD34I Limited Biomarker [21]
APLNR TTJ8E43 Limited Altered Expression [22]
ATAD2 TT9A0HI Limited Biomarker [23]
BST2 TT90BJT Limited Biomarker [24]
CA9 TT2LVK8 Limited Biomarker [25]
CCR7 TT2GIDQ Limited Biomarker [26]
CDH1 TTLAWO6 Limited Biomarker [27]
CDH6 TT9QHUK Limited Biomarker [28]
COL18A1 TT63DI9 Limited Biomarker [29]
CPE TTXPWO6 Limited Biomarker [30]
CUL3 TTPCU0Q Limited Biomarker [31]
CXCR4 TTBID49 Limited Biomarker [32]
CYP2E1 TTWVHQ5 Limited Genetic Variation [33]
DDX58 TTVB0O3 Limited Biomarker [34]
DEPDC1 TT8S9CM Limited Biomarker [35]
DFFB TT2SRE0 Limited Genetic Variation [36]
DHCR24 TTTK0NH Limited Biomarker [37]
DNASE1 TTYWGOJ Limited Biomarker [38]
E2F2 TT5FYX0 Limited Altered Expression [39]
EGFL6 TTXJGAR Limited Biomarker [40]
EIF4E TTZGCP6 Limited Biomarker [41]
EIF4EBP1 TTKGEBL Limited Biomarker [42]
EIF5A2 TTH53G9 Limited Biomarker [43]
ELANE TTPLTSQ Limited Biomarker [44]
EPCAM TTZ8WH4 Limited Biomarker [45]
ERBB2 TTR5TV4 Limited Biomarker [46]
ERBB3 TTSINU2 Limited Biomarker [47]
ETS1 TTTGPSD Limited Altered Expression [48]
EZR TTE47YC Limited Altered Expression [49]
F11R TT3C8EG Limited Altered Expression [50]
FBXO11 TT6G10V Limited Biomarker [51]
FOSL2 TT689IR Limited Biomarker [52]
FOXC1 TTNT3YA Limited Biomarker [53]
FOXQ1 TTEJZOL Limited Altered Expression [54]
FSCN1 TTTRS9B Limited Biomarker [55]
HDGF TTKGV26 Limited Altered Expression [56]
HLA-B TTGS10J Limited Genetic Variation [57]
HNRNPA2B1 TT8UPW6 Limited Biomarker [58]
HSPE1 TTWYMFE Limited Altered Expression [59]
IFNB1 TT4TZ8J Limited Biomarker [60]
IKZF3 TTCZVFZ Limited Biomarker [61]
IL3RA TTENHJ0 Limited Biomarker [62]
IMPDH2 TTTB4UP Limited Biomarker [63]
ITCH TT5SEWD Limited Biomarker [64]
ITGB1 TTBVIQC Limited Biomarker [65]
KDM4A TTZHPB8 Limited Altered Expression [66]
KRT6A TT2FX8W Limited Altered Expression [67]
LAMP1 TTC214J Limited Altered Expression [68]
LIFR TTID542 Limited Biomarker [69]
MAP3K3 TTJZNIG Limited Biomarker [70]
MAS1 TTOISYB Limited Biomarker [71]
MKNK1 TTEZAUX Limited Biomarker [72]
MTA1 TTO4HUS Limited Altered Expression [73]
MTDH TTH6SA5 Limited Biomarker [74]
MTTP TTUS1RD Limited Genetic Variation [75]
MVD TTE5J6X Limited Biomarker [76]
NCL TTK1V5Q Limited Biomarker [77]
NEDD4 TT1QU6G Limited Biomarker [78]
NR4A3 TTJQB49 Limited Posttranslational Modification [79]
PBK TTMY6BZ Limited Altered Expression [80]
PDK1 TTCZOF2 Limited Biomarker [81]
PFKFB3 TTTHMQJ Limited Biomarker [82]
PIK3CB TT9H4P3 Limited Biomarker [83]
PIM3 TTCGOIN Limited Biomarker [48]
PINX1 TT4FJ3A Limited Altered Expression [84]
PTAFR TTQL5VC Limited Biomarker [85]
RIPK4 TTB4S01 Limited Biomarker [86]
ROR1 TTDEJAU Limited Biomarker [87]
RSF1 TTMP86V Limited Biomarker [88]
RTN4 TT7GXMU Limited Genetic Variation [89]
RTN4R TTVRZUO Limited Altered Expression [90]
SERPINC1 TT4QPUL Limited Altered Expression [91]
SERPIND1 TT8XSKJ Limited Biomarker [92]
SERPINF1 TTR59S1 Limited Biomarker [93]
SSRP1 TTETDKQ Limited Altered Expression [48]
SSX2IP TTZXB07 Limited Altered Expression [94]
STC2 TT4EFTR Limited Altered Expression [95]
STYK1 TTRMCYJ Limited Biomarker [96]
TLR3 TTD24Y0 Limited Biomarker [34]
TNFAIP3 TT5W0IO Limited Biomarker [97]
TRIM24 TT9Q7AE Limited Biomarker [98]
TRIM28 TTQ2BKV Limited Biomarker [99]
TRIP10 TTKHTGE Limited Biomarker [100]
TSG101 TTHU7JA Limited Altered Expression [101]
TUSC2 TTJ8O14 Limited Altered Expression [102]
WDR5 TT7OFWB Limited Biomarker [103]
WNK1 TTJ9UMX Limited Altered Expression [104]
WNT5A TTKG7F8 Limited Biomarker [105]
ZEB2 TTT2WK4 Limited Biomarker [106]
ZFAND5 TTLFY3S Limited Altered Expression [107]
ATR TT8ZYBQ moderate Altered Expression [108]
BACE1 TTJUNZF moderate Biomarker [109]
BACH1 TT2ME4S moderate Altered Expression [110]
BRD3 TTHE657 moderate Biomarker [111]
BTG1 TTL7N2W moderate Altered Expression [112]
CACNA2D2 TTU8P3M moderate Biomarker [113]
CACNA2D3 TTN7T29 moderate Biomarker [114]
CCL3 TT8I4WB moderate Biomarker [115]
CD209 TTBXIM9 moderate Genetic Variation [116]
CD58 TT5KSBY moderate Biomarker [117]
CDC25C TTESBNC moderate Altered Expression [118]
CDK3 TTMYWL7 moderate Biomarker [119]
CEL TTTRNQW moderate Altered Expression [120]
CHRNA5 TTH2QRX moderate Genetic Variation [121]
CLEC4C TT7YT06 moderate Biomarker [122]
CR1 TTEA8OW moderate Biomarker [123]
CSE1L TTTRULD moderate Biomarker [124]
DAAM2 TTN0Z6H moderate Biomarker [125]
DDR2 TTU98HG moderate Altered Expression [126]
DEK TT1NMGV moderate Altered Expression [127]
DPP10 TTOVUPC moderate Altered Expression [128]
ELAVL1 TTPC9D0 moderate Biomarker [129]
FCER2 TTCH6MU moderate Altered Expression [130]
FMNL1 TTW20PQ moderate Biomarker [131]
GALC TT5IZRB moderate Biomarker [132]
GRIN2A TTKJEMQ moderate Altered Expression [133]
GUSB TTHS7CM moderate Altered Expression [134]
HNF1A TT01M3K moderate Biomarker [135]
KDM3A TTKXS4A moderate Altered Expression [110]
LASP1 TTZJA87 moderate Altered Expression [136]
LILRB1 TTC0QRJ moderate Altered Expression [137]
LIMK1 TTWL9TY moderate Biomarker [138]
LPAR5 TTABCJ6 moderate Biomarker [139]
LTBR TTFO0PM moderate Altered Expression [140]
MAP3K8 TTGECUM moderate Altered Expression [141]
MAPKAPK2 TTMUG9D moderate Genetic Variation [142]
NEDD9 TT1UREA moderate Altered Expression [143]
OPRD1 TT27RFC moderate Genetic Variation [144]
PHGDH TT8DRCK moderate Genetic Variation [145]
PLA2G7 TTDNFMT moderate Biomarker [146]
PPARD TT2JWF6 moderate Biomarker [147]
PTK2 TTON5IT moderate Altered Expression [148]
RGS6 TTJ96M8 moderate Biomarker [149]
RPS6KA5 TTYXEPL moderate Altered Expression [150]
S1PR3 TTDYP7I moderate Altered Expression [151]
SLC22A2 TT0XOJN moderate Altered Expression [152]
SLCO1B3 TTU86P0 moderate Genetic Variation [153]
SOX5 TTXHSZK moderate Biomarker [154]
SRC TT6PKBN moderate Altered Expression [155]
STAR TTEI40H moderate Biomarker [156]
TBL1XR1 TTYXT16 moderate Altered Expression [157]
TKT TT04R7I moderate Altered Expression [158]
TRPC1 TTA76X0 moderate Biomarker [159]
UBE2E2 TTXJEOF moderate Biomarker [160]
ULK1 TT4D7MJ moderate Biomarker [161]
USP7 TTXU3EQ moderate Altered Expression [162]
WNT7A TT8NARC moderate Altered Expression [163]
AKT2 TTH24WI Strong Biomarker [164]
ALDH2 TTFLN4T Strong Genetic Variation [165]
ALPI TTHYMUV Strong Biomarker [166]
AMACR TTLN1AP Strong Biomarker [167]
ANXA1 TTUCK4B Strong Altered Expression [168]
ANXA2 TT4YANI Strong Altered Expression [169]
APP TTE4KHA Strong Biomarker [170]
AQP3 TTLDNMQ Strong Genetic Variation [171]
BAK1 TTFM7V0 Strong Genetic Variation [165]
BAP1 TT47RXJ Strong Biomarker [47]
BCAT1 TTES57P Strong Genetic Variation [172]
BRD7 TT07ZS1 Strong Altered Expression [173]
CALCR TTLWS2O Strong Biomarker [174]
CALR TTUZ7OA Strong Biomarker [174]
CCK TT90CMU Strong Biomarker [175]
CCNB1 TT9P6OW Strong Biomarker [176]
CD44 TTWFBT7 Strong Altered Expression [177]
CDH2 TT1WS0T Strong Altered Expression [178]
CDK1 TTH6V3D Strong Altered Expression [179]
CDK4 TT0PG8F Strong Biomarker [180]
CDKN2A TTFTWQ8 Strong Altered Expression [181]
CHEK1 TTTU902 Strong Biomarker [182]
CHUK TT1F8OQ Strong Altered Expression [183]
CLCN3 TT8XNZ7 Strong Biomarker [184]
COPS5 TTSTNJR Strong Altered Expression [185]
CR2 TT0HUN7 Strong Biomarker [186]
CYP2A6 TTAQ6ZW Strong Genetic Variation [187]
DHFR TTYZVDJ Strong Altered Expression [188]
E2F3 TTWIJYH Strong Biomarker [189]
EEF2K TT1QFLA Strong Biomarker [190]
EGF TTED8JB Strong Posttranslational Modification [21]
EPHB2 TTKPV6O Strong Biomarker [41]
FASN TT7AOUD Strong Biomarker [191]
FGR TTPOGS1 Strong Altered Expression [192]
FHIT TTMS54D Strong Genetic Variation [122]
FOLR1 TTVC37M Strong Altered Expression [193]
FOSL1 TTY8LZG Strong Biomarker [21]
FOXC2 TTLBAP1 Strong Biomarker [194]
FOXM1 TTD3KOX Strong Altered Expression [195]
HBB TTM6HK1 Strong Biomarker [196]
HTR1B TTK8CXU Strong Biomarker [197]
IAPP TTHN8EM Strong Biomarker [166]
IGFBP6 TTLAYV8 Strong Altered Expression [198]
IL16 TTW4R0B Strong Genetic Variation [199]
IL18 TTRICUF Strong Genetic Variation [200]
ITGA6 TT165T3 Strong Biomarker [201]
JUN TTS7IR5 Strong Altered Expression [202]
KITLG TTDJ51N Strong Genetic Variation [165]
KRT19 TT3JF9E Strong Altered Expression [203]
LDHA TTW76JE Strong Biomarker [204]
LTF TTSZDQU Strong Biomarker [205]
MAD1L1 TTNE9U7 Strong Biomarker [206]
MLYCD TT9Z4YD Strong Genetic Variation [207]
MMP12 TTXZ0KQ Strong Altered Expression [208]
MMP13 TTHY57M Strong Altered Expression [209]
MMP7 TTMTWOS Strong Biomarker [210]
MSMB TTYH1ZK Strong Posttranslational Modification [211]
MST1R TTBQ3OC Strong Genetic Variation [212]
MTAP TTDBX7N Strong Altered Expression [213]
NEDD8 TTNDC4K Strong Biomarker [5]
NME1 TTDY8JH Strong Altered Expression [214]
NR0B2 TT25A9Q Strong Altered Expression [215]
NR5A2 TTAU3SY Strong Genetic Variation [165]
NUAK1 TT65FL0 Strong Altered Expression [216]
OGG1 TTRU01G Strong Genetic Variation [217]
PEBP1 TT1BGU8 Strong Biomarker [218]
PIGU TT2LHI6 Strong Genetic Variation [165]
PIN1 TTJNTSI Strong Genetic Variation [219]
PPIA TTL2ADK Strong Biomarker [220]
PPM1D TTENJAB Strong Biomarker [221]
PSCA TT9T4AV Strong Biomarker [222]
PSMB9 TTOUSTQ Strong Biomarker [223]
PTEN TTXJ3W7 Strong Biomarker [224]
PTP4A2 TT1MHKD Strong Biomarker [225]
PTPN6 TT369M5 Strong Altered Expression [215]
RACK1 TTJ10AL Strong Altered Expression [226]
ROCK1 TTZN7RP Strong Altered Expression [227]
RRM2 TT1S4LJ Strong Altered Expression [228]
SAA1 TTY0DN9 Strong Biomarker [229]
SATB1 TTLFRIC Strong Biomarker [230]
SLC22A3 TTG2UMS Strong Genetic Variation [165]
SLC6A8 TTYUHB5 Strong Biomarker [174]
SLIT2 TTDWK85 Strong Posttranslational Modification [231]
SMAD7 TT0J32Z Strong Biomarker [232]
SOX2 TTCNOT6 Strong Biomarker [233]
SRGN TTCHB06 Strong Biomarker [234]
STMN1 TT7W5OT Strong Biomarker [235]
SYK TT2HUPM Strong Altered Expression [236]
TACC3 TTQ4UFD Strong Biomarker [16]
TFAP2A TTDY4BS Strong Biomarker [237]
THRA TTTSEPU Strong Biomarker [238]
TIAM1 TTNU6I5 Strong Altered Expression [239]
TKTL1 TTNQ1J3 Strong Biomarker [240]
TLN1 TTQSMFG Strong Altered Expression [241]
TMBIM6 TT7QSMG Strong Biomarker [242]
TRPM7 TTFPVZO Strong Biomarker [243]
TYMP TTO0IB8 Strong Altered Expression [244]
TYR TTULVH8 Strong Genetic Variation [165]
UBE2T TT0A1R8 Strong Biomarker [9]
UCHL1 TTX9IFP Strong Biomarker [245]
XPA TTGT87E Strong Altered Expression [246]
CD70 TTNCIE0 Definitive Altered Expression [247]
NFKBIA TTSHAEB Definitive SomaticCausalMutation [248]
SOD2 TT9O4C5 Definitive Altered Expression [249]
------------------------------------------------------------------------------------
⏷ Show the Full List of 253 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ABCC5 DTYVM24 Limited Biomarker [250]
SLC39A4 DTEZCUM Limited Biomarker [251]
------------------------------------------------------------------------------------
This Disease Is Related to 11 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
AKR1B10 DEP6GT1 Limited Biomarker [252]
CES3 DEMI4VE Limited Biomarker [253]
GSTT1 DE3PKUG Limited Genetic Variation [254]
NT5C2 DE1DOKJ Limited Biomarker [255]
ASNS DEXISVQ moderate Biomarker [256]
LARS2 DEP7BTH moderate Posttranslational Modification [257]
NNMT DECVGJ3 moderate Altered Expression [258]
UGT2B17 DEAZDL8 moderate Genetic Variation [259]
ADH1B DEEN9RD Strong Genetic Variation [165]
GSTM1 DEYZEJA Strong Genetic Variation [254]
MT1A DE5ME8A Strong Genetic Variation [207]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 DME(s)
This Disease Is Related to 459 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ACKR4 OTZPWT2N Limited Altered Expression [260]
ADAMTSL4 OTBILJMW Limited Biomarker [261]
AGFG1 OTI8ZKC4 Limited Biomarker [262]
ANTKMT OTDV54V6 Limited Biomarker [92]
ARHGEF7 OT9BPJCL Limited Biomarker [263]
ART1 OT7FBG5W Limited Biomarker [264]
ATG14 OTPZDKI0 Limited Biomarker [265]
ATG16L2 OTJYU0W8 Limited Genetic Variation [266]
ATOX1 OT05LF59 Limited Altered Expression [267]
ATP6V1E1 OT76J5R9 Limited Altered Expression [268]
AZIN2 OT8OB7CG Limited Biomarker [269]
BCL3 OT1M5B95 Limited Biomarker [270]
BDH2 OTDD7G8S Limited Altered Expression [271]
BEX3 OTW1V1L5 Limited Altered Expression [272]
BTF3 OT5ZZFJL Limited Altered Expression [273]
CARD16 OT4NUHWB Limited Biomarker [274]
CASP12 OTY2W6FG Limited Altered Expression [275]
CAST OTBXZZGF Limited Altered Expression [276]
CCL4L2 OTDBSXOU Limited Genetic Variation [277]
CCNL1 OTAJSS3D Limited Biomarker [278]
CD1C OT4XINUJ Limited Biomarker [62]
CD207 OTI9RUDN Limited Biomarker [62]
CD79A OTOJC8DV Limited Biomarker [279]
CD93 OT6HZT6H Limited Biomarker [280]
CDC6 OTX93FE7 Limited Biomarker [281]
CFAP45 OT8I8ZHH Limited Biomarker [282]
CFL2 OTE2W0DH Limited Biomarker [283]
CIITA OTRJNZFO Limited Altered Expression [284]
CIRBP OTXWTPBL Limited Altered Expression [285]
CKMT1A OTCINHH5 Limited Biomarker [286]
CLC OTYMYR85 Limited Biomarker [287]
CLDN1 OT27KV99 Limited Biomarker [288]
CLDN11 OTNN6UTL Limited Posttranslational Modification [289]
CLDN2 OTRF3D6Y Limited Altered Expression [290]
CLDN7 OTNE0XHQ Limited Biomarker [288]
COLQ OT4BHUGQ Limited Biomarker [291]
CPEB2 OTKES4YR Limited Biomarker [292]
CYFIP1 OTOBEH24 Limited Altered Expression [293]
DAB2IP OTF456VC Limited Biomarker [210]
DACH1 OTMKNAGG Limited Biomarker [294]
DACT1 OT19Z704 Limited Genetic Variation [295]
DAPK1 OTNCNUCO Limited Posttranslational Modification [296]
DCAF1 OT3ZDVOE Limited Biomarker [262]
DCTN6 OTI8PIN9 Limited Altered Expression [297]
DHRS2 OTFHWIY8 Limited Altered Expression [298]
EBF1 OTZ61YYH Limited Altered Expression [299]
EFNA2 OTEAUKRX Limited Biomarker [300]
EIF2B5 OTV3R4RB Limited Biomarker [301]
EIF2S1 OTM0GDTP Limited Biomarker [302]
ELF1 OTV5LKIA Limited Biomarker [300]
ELF3 OTUTLEQO Limited Biomarker [303]
ELOF1 OT8BXS5U Limited Biomarker [300]
FGF11 OT6513W2 Limited Biomarker [304]
FGF3 OT9PK2SI Limited Biomarker [305]
FH OTEQWU6Q Limited Altered Expression [306]
FMNL3 OTRP8R4W Limited Altered Expression [307]
FOXO4 OT90X9LN Limited Biomarker [308]
GADL1 OTJM4A0R Limited Biomarker [269]
GALNT7 OTUJSCAO Limited Biomarker [309]
GDE1 OTU6FSBF Limited Biomarker [310]
GFPT1 OTQBDO45 Limited Altered Expression [311]
GGTLC1 OTWJKUHQ Limited Biomarker [312]
GORASP1 OTQS91S7 Limited Altered Expression [104]
GPC4 OTUJ14DW Limited Genetic Variation [313]
GPX2 OTXI2NTI Limited Altered Expression [314]
GRHL1 OTZ4MNEW Limited Genetic Variation [315]
GSTM2 OTG4WT05 Limited Genetic Variation [316]
H2AX OT18UX57 Limited Altered Expression [317]
HAT1 OT307KEN Limited Altered Expression [318]
HBP1 OTDPGGDV Limited Altered Expression [319]
HLA-DRB4 OTNXIHQU Limited Genetic Variation [320]
HNRNPK OTNPRM8U Limited Biomarker [208]
HOPX OTBSR6C9 Limited Posttranslational Modification [321]
HOXC8 OTJUYU8J Limited Altered Expression [322]
ICMT OT8CNKBO Limited Biomarker [323]
IFI27 OTI2XGIT Limited Altered Expression [297]
IGF2BP1 OT9G360P Limited Altered Expression [324]
ILF2 OTWWVM9X Limited Biomarker [325]
ILF3 OTKMZ5K5 Limited Biomarker [325]
ING4 OT0VVG4V Limited Biomarker [326]
INSM1 OTG8RV8E Limited Biomarker [327]
INTS2 OT2N5TCK Limited Biomarker [305]
IRF2 OTAZRUW3 Limited Biomarker [328]
IRF6 OTKJ44EV Limited Altered Expression [329]
ITGA3 OTBCH21D Limited Biomarker [330]
KAT2A OTN0W2SW Limited Altered Expression [99]
KAT5 OTL7257A Limited Biomarker [331]
KIF20A OTXOQHE0 Limited Altered Expression [332]
KLHDC4 OTJ4UL5S Limited Biomarker [333]
KRT5 OTVGI9HT Limited Biomarker [334]
LARP4 OTB10IJH Limited Altered Expression [227]
LHX2 OTK61NP8 Limited Biomarker [335]
LMLN OTQF0JPY Limited Posttranslational Modification [211]
LYPD5 OTGP7UKA Limited Biomarker [336]
LZTS2 OTQFSQEE Limited Biomarker [263]
MAPK15 OT8SW0L7 Limited Altered Expression [337]
MIIP OT79EXZ7 Limited Biomarker [338]
MLLT3 OTXH4DDG Limited Genetic Variation [339]
MMP19 OTLSTT2B Limited Biomarker [256]
MORC3 OT81NKVT Limited Biomarker [340]
MORF4L1 OTEA6FYJ Limited Altered Expression [341]
MRAS OTNCVCQW Limited Biomarker [302]
MRE11 OTGU8TZM Limited Biomarker [342]
MRGPRF OT74OZ2Z Limited Altered Expression [343]
MTFMT OT1OIVJL Limited Biomarker [344]
MYO5B OTCKL3W3 Limited Altered Expression [345]
NBDY OTV8WY4S Limited Biomarker [346]
NCOA1 OTLIUJQD Limited Biomarker [155]
NETO2 OT0YAMC0 Limited Biomarker [347]
NFKBIB OTY1ZJXH Limited Biomarker [348]
NIPAL1 OTRYI60X Limited Biomarker [349]
NKIRAS2 OTNJXCJ0 Limited Biomarker [350]
NPAS2 OTMRT2TS Limited Biomarker [351]
NRIP1 OTIZOJQV Limited Biomarker [352]
NUMB OTMB586Q Limited Altered Expression [353]
OIP5 OTI5C2DE Limited Altered Expression [354]
OVOL1 OTFJ62UI Limited Biomarker [355]
PCBP4 OTDLL4NB Limited Biomarker [356]
PCDH17 OTRK0M05 Limited Biomarker [357]
PDPN OTBUV19I Limited Altered Expression [358]
PKP3 OTPL1HRB Limited Biomarker [359]
PLAC8 OT3SYRUJ Limited Altered Expression [360]
PLCD3 OTB22A4J Limited Biomarker [361]
PLSCR1 OTGY9B5T Limited Altered Expression [362]
PNPLA2 OTR3ERMR Limited Biomarker [93]
POU3F3 OT6BBXPD Limited Biomarker [363]
PPP1R10 OT7GE3BN Limited Biomarker [364]
PPP2R2B OTSFVC82 Limited Altered Expression [365]
PPP2R2C OTXK0SDM Limited Altered Expression [366]
PRDX3 OTLB2WEU Limited Biomarker [367]
PRR13 OTXPP37T Limited Altered Expression [368]
PSMD8 OTY6X27P Limited Altered Expression [268]
PSMD9 OT6Y5CC3 Limited Altered Expression [297]
QSOX1 OT4ZPK4P Limited Altered Expression [369]
RAB11A OTC4FW0J Limited Altered Expression [345]
RAB11FIP2 OTTX9RWE Limited Biomarker [345]
RAB27B OTPF9D0K Limited Biomarker [370]
RAD50 OTYMU9G1 Limited Altered Expression [342]
RAET1E OTLR3CEC Limited Altered Expression [371]
RAN OT2TER5M Limited Biomarker [372]
RBFOX2 OTXY1WVH Limited Altered Expression [343]
RBM24 OTQI1AR1 Limited Altered Expression [373]
RBM45 OTWTHD77 Limited Biomarker [374]
REG1A OTMHUH1D Limited Genetic Variation [375]
RGCC OTYJMLWM Limited Biomarker [376]
RGS17 OT5RVUDS Limited Biomarker [377]
RMDN1 OTE1NB6U Limited Biomarker [378]
RMDN2 OTK5WSFI Limited Biomarker [378]
RMDN3 OTKO7AUM Limited Biomarker [378]
ROBO3 OTPVG40S Limited Biomarker [34]
RPA1 OT76POLP Limited Altered Expression [379]
RPA3 OT8JAQGL Limited Altered Expression [380]
RPAIN OTBMXAYK Limited Biomarker [262]
RPN2 OTJ1SKOA Limited Altered Expression [381]
RPS27A OTIIGGZ2 Limited Biomarker [253]
RRM2B OTE8GBUR Limited Altered Expression [382]
RTN4RL1 OTDKKOE7 Limited Altered Expression [90]
RTRAF OTJ6NVMW Limited Biomarker [301]
S100P OTJCXNJG Limited Genetic Variation [383]
SAPCD2 OTXS0EXM Limited Biomarker [384]
SETDB1 OTWVUA1B Limited Altered Expression [385]
SFRP2 OT8GZ0CA Limited Biomarker [386]
SGSM1 OTS2PWT4 Limited Biomarker [387]
SHISA3 OTE8TPCP Limited Biomarker [387]
SHROOM2 OTZ2FJ7Q Limited Biomarker [388]
SLITRK5 OTTSUSB8 Limited Altered Expression [389]
SMG1 OTTS3SXE Limited Biomarker [390]
SMIM10L2B OT04IG2N Limited Altered Expression [391]
SOX7 OTOZOFAG Limited Altered Expression [392]
SPINK6 OTYKZANJ Limited Biomarker [393]
SSX2 OT2Z6RLL Limited Biomarker [394]
STIL OT9799VN Limited Biomarker [395]
SUN1 OTIU8V4U Limited Biomarker [396]
SUV39H2 OTU0F4LL Limited Biomarker [352]
SYBU OT3FQV7N Limited Biomarker [378]
SYNE1 OTSBSLUH Limited Biomarker [47]
SYT1 OTVTPOI6 Limited Altered Expression [104]
TAT OT2CJ91O Limited Biomarker [397]
TBX2 OTTOT7A9 Limited Altered Expression [398]
TES OTL8PP6V Limited Altered Expression [399]
TEX11 OTJDBGSS Limited Biomarker [251]
TICAM2 OTK7GIJ5 Limited Altered Expression [297]
TIGAR OTR7NMRJ Limited Altered Expression [378]
TIMELESS OTD8DCBJ Limited Biomarker [400]
TMBIM4 OT8712PP Limited Biomarker [401]
TMC1 OTHYH8MU Limited Biomarker [402]
TMED7 OTONO8E6 Limited Altered Expression [297]
TMPRSS13 OTMAOAP3 Limited Posttranslational Modification [211]
TMPRSS3 OT0GTO1Z Limited Biomarker [403]
TNFAIP8L3 OTHSBS1B Limited Altered Expression [404]
TNFSF9 OTV9L89D Limited Biomarker [405]
TPD52 OTPKSK43 Limited Altered Expression [406]
TRAF3 OT5TQBGV Limited Biomarker [407]
TRIAP1 OTEAUJXN Limited Altered Expression [408]
TRIM26 OTS0DJIP Limited Altered Expression [409]
TSGA10 OTIF1O1T Limited Biomarker [410]
TSPAN8 OT1F68WQ Limited Altered Expression [411]
ADAMTS18 OTRMFI04 moderate Biomarker [412]
ANLN OTXJY54C moderate Altered Expression [413]
ANXA7 OTLMD0TK moderate Biomarker [414]
APOBEC3A OTYO6F5P moderate Biomarker [415]
ARF6 OTVV7KJO moderate Biomarker [416]
ARHGAP42 OTIDSJMK moderate Altered Expression [417]
ASCC1 OTH4VAP9 moderate Biomarker [418]
ATF1 OT251CI0 moderate Genetic Variation [419]
ATF2 OTNIZPEA moderate Biomarker [420]
BLM OTEJOAJX moderate Genetic Variation [421]
BRCC3 OTK0ZN7Y moderate Altered Expression [422]
BTRC OT2EZDGR moderate Altered Expression [423]
CCDC170 OTNQOJ6S moderate Genetic Variation [421]
CCL25 OTLWJ8CJ moderate Altered Expression [424]
CCNG1 OT17IA9L moderate Altered Expression [425]
CCNG2 OTII38K2 moderate Altered Expression [425]
CDC37L1 OTGKTFAC moderate Biomarker [426]
CDH4 OT8LH3HN moderate Posttranslational Modification [427]
CDK2AP1 OTNFOHDJ moderate Biomarker [428]
CDKN2D OT2TTZPZ moderate Altered Expression [429]
CEBPD OTNBIPMY moderate Biomarker [129]
CELF2 OTLJJ4VT moderate Genetic Variation [430]
CENPH OTPOO9LK moderate Biomarker [431]
CFAP46 OTRZZHB9 moderate Posttranslational Modification [432]
CHL1 OT6E6E8P moderate Biomarker [433]
CIB2 OT9ZJX1I moderate Biomarker [138]
COL17A1 OTID5AH2 moderate Biomarker [434]
COX7B OT67PIDP moderate Biomarker [128]
CPT1A OTI862QH moderate Biomarker [435]
CSAD OT3I2G0A moderate Biomarker [436]
CYB5R2 OTTLM7XN moderate Altered Expression [437]
DROSHA OTCE68KZ moderate Altered Expression [438]
EIF3D OTDOMP80 moderate Biomarker [439]
EIF4G1 OT2CF1E6 moderate Altered Expression [440]
ERP29 OTNKANMH moderate Biomarker [441]
FAIM OTR67PGU moderate Altered Expression [442]
FAM72A OTBZYSR3 moderate Altered Expression [443]
FBLN2 OTEHR7N7 moderate Biomarker [444]
FEZF2 OTU4TXIW moderate Posttranslational Modification [445]
FGD4 OTYXJQCW moderate Biomarker [446]
GADD45G OT8V1J4M moderate Biomarker [447]
GNA12 OT3IRZH3 moderate Altered Expression [448]
GOLIM4 OTB5NV8A moderate Biomarker [449]
GPHA2 OT3HY17B moderate Altered Expression [450]
HCP5 OTV0YRI8 moderate Genetic Variation [451]
HLA-F OT76CM19 moderate Genetic Variation [452]
HOXA2 OT6G6ZIK moderate Altered Expression [453]
HSPA4L OT181WZB moderate Altered Expression [413]
IL27RA OTSQBAKI moderate Biomarker [454]
IMMT OTBDSLE7 moderate Genetic Variation [455]
INPP4B OTLROA7G moderate Altered Expression [456]
INTS6 OT6GDV46 moderate Biomarker [457]
KANK1 OT2E7A6W moderate Biomarker [458]
KIF1A OT3JVEGV moderate Genetic Variation [122]
KMT2C OTC59BCO moderate Biomarker [233]
KRT1 OTIOJWA4 moderate Altered Expression [459]
KRT14 OTUVZ1DW moderate Altered Expression [460]
LEF1 OTWS5I5H moderate Biomarker [135]
LRIG1 OTY5HZN5 moderate Biomarker [461]
LRRC4 OT7XJ70N moderate Altered Expression [462]
LTBP2 OTS88GSD moderate Biomarker [463]
LTBP3 OTME98V7 moderate Biomarker [463]
LUC7L3 OTKDED8A moderate Biomarker [464]
MACC1 OTV3DLX0 moderate Altered Expression [465]
MAD2L2 OT24ZO59 moderate Altered Expression [466]
MAFB OTH2N3T8 moderate Biomarker [467]
MAML2 OT1TSVAR moderate Genetic Variation [468]
MCM4 OT19PNNG moderate Biomarker [469]
MMUT OTBBBV70 moderate Biomarker [470]
MOK OTQK7M9V moderate Altered Expression [471]
MYCL OT1MFQ5U moderate Biomarker [472]
MYOCD OTSJNHTH moderate Biomarker [473]
N4BP2 OTFFPPQ5 moderate Genetic Variation [474]
NBEAL2 OTMCAXWR moderate Biomarker [475]
NEUROG2 OTAEMIGT moderate Biomarker [476]
NICN1 OTAMQ4EI moderate Altered Expression [477]
NID2 OTHC33FF moderate Altered Expression [478]
NIN OTVH3M4Z moderate Altered Expression [442]
NLK OT2LETFS moderate Altered Expression [479]
NOX1 OTZPJQCC moderate Altered Expression [480]
OPCML OT93PQ6Y moderate Biomarker [481]
OR10A4 OTYYB8SY moderate Genetic Variation [482]
OTUD4 OT7U62SW moderate Posttranslational Modification [483]
PCDH8 OTDDOQM2 moderate Biomarker [484]
PFDN1 OT9837QM moderate Biomarker [439]
PHF20 OTCBVH5P moderate Biomarker [455]
PLAAT1 OTM3M6P4 moderate Biomarker [485]
PLAAT3 OTVXXJ5K moderate Biomarker [485]
POU2F2 OTPV0J0C moderate Altered Expression [152]
PRDM13 OTUNAFQW moderate Biomarker [455]
PTMA OT2W4T1M moderate Biomarker [486]
PTOV1 OT94WT5X moderate Altered Expression [487]
PTPRG OT9N2WOF moderate Altered Expression [488]
RAB18 OTNMAQLS moderate Biomarker [455]
RASSF4 OT7YLOFH moderate Altered Expression [489]
RASSF5 OT6Q41I2 moderate Biomarker [489]
RASSF6 OT25GVWY moderate Biomarker [490]
RBM3 OTAJ7R31 moderate Altered Expression [491]
RBP1 OTRP1MFC moderate Biomarker [492]
RBP7 OT0J3CPT moderate Biomarker [492]
RFC2 OTJ9N6BD moderate Biomarker [128]
RPL41 OTFW5IFO moderate Altered Expression [493]
RRAS OTBBF28C moderate Posttranslational Modification [494]
RSRC1 OTFCJ4S0 moderate Altered Expression [468]
SCGB3A1 OTIR98RB moderate Posttranslational Modification [483]
SCYL1 OTQ0IN7P moderate Altered Expression [442]
SIAH1 OT29A838 moderate Altered Expression [495]
SIVA1 OTDT0XZK moderate Biomarker [496]
SLPI OTUNFUU8 moderate Altered Expression [497]
SOCS6 OT2O5ZBK moderate Altered Expression [498]
SOX1 OTVI1RAR moderate Posttranslational Modification [499]
SRI OT4R3EAC moderate Biomarker [500]
SRRM2 OTSIMMC9 moderate Altered Expression [501]
STARD13 OTB4U1HY moderate Biomarker [149]
STPG4 OT5K4UFL moderate Altered Expression [195]
TBP OT6C0S52 moderate Altered Expression [453]
TICRR OT2HKWOC moderate Biomarker [502]
TLR10 OTQ1KVJO moderate Genetic Variation [503]
TM2D2 OTB51WEY moderate Genetic Variation [504]
TRAF1 OTTLM5RU moderate Altered Expression [505]
TRAF2 OT1MEZZN moderate Altered Expression [270]
TRIM21 OTA4UJCF moderate Altered Expression [506]
TRIP6 OTIPA4ZR moderate Biomarker [507]
TSPAN1 OTZQPIYK moderate Altered Expression [128]
ACOXL OTW680HT Strong Genetic Variation [165]
ACTA2 OTEDLG8E Strong Genetic Variation [165]
ADAMTS9 OTV3Q0DS Strong Altered Expression [508]
AFAP1 OTR473H8 Strong Biomarker [52]
ALPP OTZU4G9W Strong Biomarker [166]
APOM OTI3FQQC Strong Genetic Variation [165]
ARID5B OTUQ4CQY Strong Genetic Variation [165]
ARL2BP OT7REEDA Strong Altered Expression [350]
ASS1 OT4ZMG0Q Strong Biomarker [509]
BARD1 OTTC0Z9Y Strong Genetic Variation [165]
BCL2L12 OTS6IFZY Strong Biomarker [318]
BPIFA1 OTQFD2J5 Strong Biomarker [233]
BPIFB1 OTOZYJMO Strong Biomarker [506]
BRMS1 OTV5A6LL Strong Biomarker [510]
BSND OTYWZWPD Strong Altered Expression [350]
CADM1 OTRWG9QS Strong Biomarker [511]
CAPNS1 OT95EBBD Strong Biomarker [512]
CBFA2T2 OTNOIB23 Strong Biomarker [263]
CD5L OTPY4WQR Strong Genetic Variation [513]
CD63 OT2UGZA9 Strong Biomarker [514]
CD82 OTH8MC64 Strong Altered Expression [515]
CDC42 OT5QBC5M Strong Altered Expression [345]
CDK10 OTKP7TTR Strong Biomarker [516]
CHFR OTRAD2TT Strong Biomarker [517]
CHRNA3 OTCZQY1U Strong Genetic Variation [518]
CKS1B OTNUPLUJ Strong Altered Expression [519]
CLPTM1L OTDJWQXI Strong Genetic Variation [520]
COL1A1 OTI31178 Strong Altered Expression [521]
COLCA1 OT8BP6UD Strong Genetic Variation [165]
COX2 OTTMVBJJ Strong Genetic Variation [522]
COX5A OTP0961M Strong Biomarker [226]
CPOX OTIAY121 Strong Biomarker [226]
CRISP2 OT8HLTV5 Strong Altered Expression [523]
CSTA OT1K68KE Strong Biomarker [524]
CTBP2 OTGZGT87 Strong Genetic Variation [165]
DAB2 OTRMQTMZ Strong Biomarker [525]
DACT2 OTNLCC0K Strong Biomarker [211]
DAP OT5YLL7E Strong Biomarker [526]
DST OTHZBM4X Strong Biomarker [124]
DUSP6 OT4H6RKW Strong Altered Expression [527]
ECRG4 OTHZYUXX Strong Altered Expression [528]
EEFSEC OTJ4KKOO Strong Genetic Variation [165]
EHBP1 OTMNUJ15 Strong Genetic Variation [165]
EIF3A OTFABY9G Strong Biomarker [256]
ELAVL2 OT6EJ8MQ Strong Biomarker [23]
EMP2 OTPS2H0L Strong Altered Expression [529]
ERCC1 OTNPYQHI Strong Biomarker [530]
ETV7 OTIAADPA Strong Altered Expression [531]
FARP2 OTNRQIMK Strong Genetic Variation [165]
FBLN5 OTLVNZ8U Strong Altered Expression [532]
FJX1 OT8SVTSS Strong Altered Expression [533]
FKRP OTMUZ7GH Strong Genetic Variation [165]
FLOT1 OT0JPPJZ Strong Biomarker [534]
FLOT2 OTZ0QR5L Strong Altered Expression [534]
FSD1 OT8P6PT3 Strong Biomarker [535]
FSD1L OTBQ48RF Strong Biomarker [535]
FSTL1 OT6KEZUD Strong Altered Expression [536]
GABBR1 OTU5A52J Strong Genetic Variation [537]
GPRC5A OTPOCWR7 Strong Posttranslational Modification [538]
GRAMD1B OTCG1GX2 Strong Genetic Variation [165]
HLA-C OTV38BUJ Strong Genetic Variation [539]
HLA-E OTX1CTFB Strong Genetic Variation [540]
HNF1B OTSYIC3T Strong Genetic Variation [165]
HOXC6 OTBCRAZV Strong Biomarker [541]
HSPA1A OTKGIE76 Strong Altered Expression [542]
HSPA2 OTSDET7B Strong Altered Expression [542]
HYKK OTBK1QPN Strong Genetic Variation [165]
IFNA17 OTHXRYG3 Strong Biomarker [543]
IKZF1 OTCW1FKL Strong Genetic Variation [165]
IQGAP1 OTZRWTGA Strong Altered Expression [73]
IRF4 OT1DHQ1P Strong Genetic Variation [165]
IRF7 OTC1A2PQ Strong Altered Expression [544]
JRK OTO8E77P Strong Genetic Variation [165]
KIF2A OT2WQ6QD Strong Altered Expression [545]
KLF6 OTQY9S7F Strong Biomarker [546]
LMTK2 OT93MVIC Strong Genetic Variation [165]
LSP1 OTSPSIFO Strong Genetic Variation [165]
MAD2L1 OTXNGZCG Strong Biomarker [547]
MAGT1 OTQSAV5C Strong Biomarker [166]
MAP1LC3B2 OTFQ44V2 Strong Genetic Variation [165]
MAP2K4 OTZPZX11 Strong Altered Expression [548]
MAP2K6 OTK13JKC Strong Biomarker [69]
MARCKSL1 OT13J2FM Strong Altered Expression [549]
MDC1 OTEUQH4J Strong Biomarker [550]
MECOM OTP983W8 Strong Biomarker [26]
MED15 OT0D0JVD Strong Posttranslational Modification [538]
MXI1 OTUQ9E0D Strong Biomarker [547]
MYH9 OT94Z706 Strong Biomarker [551]
NLRP2 OTJA81JU Strong Altered Expression [195]
NOL3 OT1K0L0D Strong Biomarker [552]
NOLC1 OTKDZU0D Strong Biomarker [553]
NPC2 OTE9UEJC Strong Biomarker [554]
NRF1 OTOXWNV8 Strong Altered Expression [555]
OSCP1 OTZ4IFGJ Strong Posttranslational Modification [79]
OSGIN1 OT9KIVZW Strong Genetic Variation [207]
OVOL2 OTFM1GKF Strong Biomarker [556]
PADI6 OTS42I3K Strong Genetic Variation [165]
PCDH10 OT2GIT0E Strong Biomarker [557]
PDCD4 OTZ6NXUX Strong Altered Expression [558]
PDLIM5 OTLQVV22 Strong Biomarker [335]
PHLDB1 OTIRCB6I Strong Genetic Variation [165]
PIGR OT6GLSUL Strong Altered Expression [559]
PIK3R2 OTZSUQK5 Strong Biomarker [263]
PLA2G6 OT5FL0WU Strong Genetic Variation [165]
PLAAT4 OTI66SAJ Strong Biomarker [34]
POU5F1B OT0FKQ51 Strong Genetic Variation [165]
PPP1R12C OT9Q86JO Strong Biomarker [263]
PPP1R13B OTC88VQO Strong Biomarker [263]
PRKD2 OTIFSVI8 Strong Genetic Variation [165]
PRSS55 OTXXWI5Y Strong Altered Expression [523]
RAD51B OTCJVRMY Strong Genetic Variation [560]
RARRES1 OTETUPP5 Strong Posttranslational Modification [538]
RARS1 OTHPZ6JN Strong Biomarker [206]
RBL2 OTBQSOE6 Strong Genetic Variation [561]
RBMS3 OTFSC9MR Strong Biomarker [562]
RERG OTF6MMLV Strong Biomarker [563]
RHPN2 OTTYWMF6 Strong Genetic Variation [165]
RNF146 OTE4CO7E Strong Genetic Variation [165]
RPL37A OTAMQLY7 Strong Biomarker [253]
RRAD OTW2O4GD Strong Biomarker [564]
RTEL1 OTI3PJCT Strong Genetic Variation [165]
SCO2 OTJQQDRS Strong Altered Expression [244]
SMUG1 OT2YIOCQ Strong Biomarker [565]
SP140 OTQZHFMT Strong Genetic Variation [165]
SPINT2 OTQV7BKQ Strong Genetic Variation [165]
SPZ1 OTQH8HJ5 Strong Altered Expression [523]
STAMBPL1 OTI4CYTF Strong Genetic Variation [165]
STAT2 OTO9G2RZ Strong Biomarker [566]
TELO2 OT2YQ9L8 Strong Altered Expression [531]
TFPI2 OTZCRWOR Strong Biomarker [567]
TGFBI OTR443C5 Strong Biomarker [568]
THADA OTYZQX0F Strong Genetic Variation [165]
TIMM8A OTDX9687 Strong Biomarker [569]
TMEM8B OTJZWPS6 Strong Biomarker [570]
TNFAIP2 OTRZH80H Strong Altered Expression [571]
TNFRSF19 OTTVT4MB Strong Biomarker [572]
TNRC6B OTGVT0SH Strong Genetic Variation [165]
TRIM29 OT2DNESG Strong Altered Expression [573]
------------------------------------------------------------------------------------
⏷ Show the Full List of 459 DOT(s)

References

1 Oxaliplatin FDA Label
2 ClinicalTrials.gov (NCT05294172) KL-A167 Injection Combined With Cisplatin and Gemcitabine vs Placebo Combined With Cisplatin and Gemcitabine in the Treatment of Recurrent or Metastatic Nasopharyngeal Carcinoma: A Randomized, Double-blind, Placebo-controlled, Multicenter Phase III Clinical Trial. U.S.National Institutes of Health.
3 Overexpression of PIN1 Enhances Cancer Growth and Aggressiveness with Cyclin D1 Induction in EBV-Associated Nasopharyngeal Carcinoma.PLoS One. 2016 Jun 3;11(6):e0156833.
4 Nasopharyngeal carcinoma: Current treatment options and future directions. J Nasopharyng Carcinoma, 2014, 1(16): e16.
5 Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target.Cell Death Dis. 2017 Jun 1;8(6):e2834.
6 ClinicalTrials.gov (NCT00953420) Carboplatin and Docetaxel Followed by Epstein-Barr Virus Cytotoxic T Lymphocytes (CADEN). U.S. National Institutes of Health.
7 Clinical pipeline report, company report or official report of the Pharmaceutical Research and Manufacturers of America (PhRMA)
8 ClinicalTrials.gov (NCT00834093) A Phase II Study of Epstein-Barr Virus-Specific Immunotherapy for Nasopharyngeal Carcinoma. U.S. National Institutes of Health.
9 UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3/-catenin pathway.Oncotarget. 2016 Mar 22;7(12):15161-72.
10 Therapeutic efficacy of seliciclib in combination with ionizing radiation for human nasopharyngeal carcinoma.Clin Cancer Res. 2009 Jun 1;15(11):3716-24.
11 ClinicalTrials.gov (NCT02980315) A New EBV Related Technologies of T Cells in Treating Malignant Tumors and Clinical Application
12 XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells.Theranostics. 2018 Feb 5;8(6):1494-1510.
13 Sphingosine kinase 1 is a potential therapeutic target for nasopharyngeal carcinoma.Oncotarget. 2016 Dec 6;7(49):80586-80598.
14 CA patent application no. 876139, Nanotherapeutics for drug targeting.
15 PDZ binding kinase (PBK) is a theranostic target for nasopharyngeal carcinoma: driving tumor growth via ROS signaling and correlating with patient survival.Oncotarget. 2016 May 3;7(18):26604-16.
16 Recurrent FGFR3-TACC3 fusion gene in nasopharyngeal carcinoma.Cancer Biol Ther. 2014;15(12):1613-21.
17 Polo-like kinase inhibitor Ro5203280 has potent antitumor activity in nasopharyngeal carcinoma.Mol Cancer Ther. 2013 Aug;12(8):1393-401.
18 Super-Enhancers Promote Transcriptional Dysregulation in Nasopharyngeal Carcinoma.Cancer Res. 2017 Dec 1;77(23):6614-6626.
19 Overexpression of acylglycerol kinase is associated with poorer prognosis and lymph node metastasis in nasopharyngeal carcinoma.Tumour Biol. 2016 Mar;37(3):3349-57. doi: 10.1007/s13277-015-4148-x. Epub 2015 Oct 7.
20 AGR2 diagnostic value in nasopharyngeal carcinoma prognosis.Clin Chim Acta. 2018 Sep;484:323-327. doi: 10.1016/j.cca.2017.12.023. Epub 2017 Dec 18.
21 EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2.Carcinogenesis. 2020 Jul 10;41(6):723-733. doi: 10.1093/carcin/bgz180.
22 APLNR is involved in ATRA-induced growth inhibition of nasopharyngeal carcinoma and may suppress EMT through PI3K-Akt-mTOR signaling.FASEB J. 2019 Nov;33(11):11959-11972. doi: 10.1096/fj.201802416RR. Epub 2019 Aug 13.
23 Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma.Oncol Lett. 2019 Oct;18(4):3637-3645. doi: 10.3892/ol.2019.10707. Epub 2019 Aug 2.
24 BST2 confers cisplatin resistance via NF-B signaling in nasopharyngeal cancer.Cell Death Dis. 2017 Jun 15;8(6):e2874. doi: 10.1038/cddis.2017.271.
25 RNAi-mediated knockdown of CAIX enhances the radiosensitivity of nasopharyngeal carcinoma cell line, CNE-2.Onco Targets Ther. 2017 Sep 25;10:4701-4709. doi: 10.2147/OTT.S144756. eCollection 2017.
26 EVI1 promotes epithelial-to-mesenchymal transition, cancer stem cell features and chemo-/radioresistance in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2019 Feb 15;38(1):82. doi: 10.1186/s13046-019-1077-3.
27 Inhibition of Anaphase-Promoting Complex by Silence APC/C(Cdh1) to Enhance Radiosensitivity of Nasopharyngeal Carcinoma Cells.J Cell Biochem. 2017 Oct;118(10):3150-3157. doi: 10.1002/jcb.25854. Epub 2017 Jun 20.
28 Cadherin 6 is activated by Epstein-Barr virus LMP1 to mediate EMT and metastasis as an interplay node of multiple pathways in nasopharyngeal carcinoma.Oncogenesis. 2017 Dec 22;6(12):402. doi: 10.1038/s41389-017-0005-7.
29 Clinical evaluation of vascular normalization induced by recombinant human endostatin in nasopharyngeal carcinoma via dynamic contrast-enhanced ultrasonography.Onco Targets Ther. 2018 Nov 8;11:7909-7917. doi: 10.2147/OTT.S181842. eCollection 2018.
30 A deep survival analysis method based on ranking.Artif Intell Med. 2019 Jul;98:1-9. doi: 10.1016/j.artmed.2019.06.001. Epub 2019 Jun 6.
31 Increased Expression of Cullin 3 in Nasopharyngeal Carcinoma and Knockdown Inhibits Proliferation and Invasion.Oncol Res. 2018 Jan 19;26(1):111-122. doi: 10.3727/096504017X14924753593574. Epub 2017 Apr 18.
32 Role of SDF-1/CXCR4 signaling pathway in clinicopathological features and prognosis of patients with nasopharyngeal carcinoma.Biosci Rep. 2017 Jul 12;37(4):BSR20170144. doi: 10.1042/BSR20170144. Print 2017 Aug 31.
33 CYP2E1 polymorphisms and nasopharyngeal carcinoma risk: a meta-analysis.Eur Arch Otorhinolaryngol. 2017 Jan;274(1):253-259. doi: 10.1007/s00405-016-4236-6. Epub 2016 Aug 4.
34 Epstein-Barr virus noncoding RNAs from the extracellular vesicles of nasopharyngeal carcinoma (NPC) cells promote angiogenesis via TLR3/RIG-I-mediated VCAM-1 expression.Biochim Biophys Acta Mol Basis Dis. 2019 Jun 1;1865(6):1201-1213. doi: 10.1016/j.bbadis.2019.01.015. Epub 2019 Jan 16.
35 DEPDC1 is required for cell cycle progression and motility in nasopharyngeal carcinoma.Oncotarget. 2017 Jun 29;8(38):63605-63619. doi: 10.18632/oncotarget.18868. eCollection 2017 Sep 8.
36 Bile acids at neutral and acidic pH induce apoptosis and gene cleavages in nasopharyngeal epithelial cells: implications in chromosome rearrangement.BMC Cancer. 2018 Apr 12;18(1):409. doi: 10.1186/s12885-018-4327-4.
37 Differential diagnosis of nasopharyngeal carcinoma and nasopharyngeal lymphoma based on DCE-MRI and RESOLVE-DWI.Eur Radiol. 2020 Jan;30(1):110-118. doi: 10.1007/s00330-019-06343-0. Epub 2019 Aug 1.
38 c-myc gene inactivation during induction of nasopharyngeal carcinoma cells with retinoic acid.Chin Med J (Engl). 2000 Sep;113(9):823-6.
39 PPAR- Ligand Inhibits Nasopharyngeal Carcinoma Cell Proliferation and Metastasis by Regulating E2F2.PPAR Res. 2019 Aug 1;2019:8679271. doi: 10.1155/2019/8679271. eCollection 2019.
40 Elevated EGFL6 modulates cell metastasis and growth via AKT pathway in nasopharyngeal carcinoma.Cancer Med. 2018 Dec;7(12):6281-6289. doi: 10.1002/cam4.1883. Epub 2018 Nov 15.
41 Ribavirin sensitizes nasopharyngeal carcinoma to 5-fluorouracil through suppressing 5-fluorouracil-induced ERK-dependent-eIF4E activation.Biochem Biophys Res Commun. 2019 Jun 11;513(4):862-868. doi: 10.1016/j.bbrc.2019.04.053. Epub 2019 Apr 16.
42 Garcinone C exerts antitumor activity by modulating the expression of ATR/Stat3/4EBP1 in nasopharyngeal carcinoma cells.Oncol Rep. 2018 Mar;39(3):1485-1493. doi: 10.3892/or.2018.6218. Epub 2018 Jan 16.
43 Expression of EIF5A2 associates with poor survival of nasopharyngeal carcinoma patients treated with induction chemotherapy.BMC Cancer. 2016 Aug 22;16(1):669. doi: 10.1186/s12885-016-2714-2.
44 The efficacy of cisplatin on nasopharyngeal carcinoma cells may be increased via the downregulation of fibroblast growth factor receptor 2.Int J Mol Med. 2019 Jul;44(1):57-66. doi: 10.3892/ijmm.2019.4193. Epub 2019 May 10.
45 Prognostic impact of immunohistopathologic features in definitive radiation therapy for nasopharyngeal cancer patients.J Radiat Res. 2020 Jan 23;61(1):161-168. doi: 10.1093/jrr/rrz071.
46 Simultaneous Inhibition of EGFR and HER2 via Afatinib Augments the Radiosensitivity of Nasopharyngeal Carcinoma Cells.J Cancer. 2019 May 12;10(9):2063-2073. doi: 10.7150/jca.29327. eCollection 2019.
47 The genomic landscape of nasopharyngeal carcinoma.Nat Genet. 2014 Aug;46(8):866-71.
48 Blockage of SSRP1/Ets-1/Pim-3 signalling enhances chemosensitivity of nasopharyngeal carcinoma to docetaxel in vitro.Biomed Pharmacother. 2016 Oct;83:1022-1031. doi: 10.1016/j.biopha.2016.08.022. Epub 2016 Aug 12.
49 Inhibition of Ezrin suppresses cell migration and invasion in human nasopharyngeal carcinoma.Oncol Lett. 2019 Jul;18(1):553-560. doi: 10.3892/ol.2019.10370. Epub 2019 May 17.
50 miR-543 promoted the cell proliferation and invasion of nasopharyngeal carcinoma by targeting the JAM-A.Hum Cell. 2019 Oct;32(4):477-486. doi: 10.1007/s13577-019-00274-0. Epub 2019 Aug 19.
51 Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing.Carcinogenesis. 2018 Dec 31;39(12):1517-1528. doi: 10.1093/carcin/bgy108.
52 Long noncoding RNA AFAP1-AS1 acts as a competing endogenous RNA of miR-423-5p to facilitate nasopharyngeal carcinoma metastasis through regulating the Rho/Rac pathway.J Exp Clin Cancer Res. 2018 Oct 16;37(1):253. doi: 10.1186/s13046-018-0918-9.
53 The long noncoding RNA FOXCUT promotes proliferation and migration by targeting FOXC1 in nasopharyngeal carcinoma.Tumour Biol. 2017 Jun;39(6):1010428317706054. doi: 10.1177/1010428317706054.
54 microRNA-342-3p targets FOXQ1 to suppress the aggressive phenotype of nasopharyngeal carcinoma cells.BMC Cancer. 2019 Jan 24;19(1):104. doi: 10.1186/s12885-018-5225-5.
55 MiR-145 inhibits metastasis by targeting fascin actin-bundling protein 1 in nasopharyngeal carcinoma.PLoS One. 2015 Mar 27;10(3):e0122228. doi: 10.1371/journal.pone.0122228. eCollection 2015.
56 MicroRNA-425 is downregulated in nasopharyngeal carcinoma and regulates tumor cell viability and invasion by targeting hepatoma-derived growth factor.Oncol Lett. 2018 May;15(5):6345-6351. doi: 10.3892/ol.2018.8128. Epub 2018 Feb 27.
57 Characterization of a novel allelic variant in HLA-B*40 lineage, HLA-B*40:298:02, by cloning and sequencing.Int J Immunogenet. 2018 Jun;45(3):143-145. doi: 10.1111/iji.12372. Epub 2018 Apr 20.
58 LncRNA SOX2-OT regulates proliferation and metastasis of nasopharyngeal carcinoma cells through miR-146b-5p/HNRNPA2B1 pathway.J Cell Biochem. 2019 Oct;120(10):16575-16588. doi: 10.1002/jcb.28917. Epub 2019 May 17.
59 Increased expression of heat shock protein (HSP) 10 and HSP70 correlates with poor prognosis of nasopharyngeal carcinoma.Cancer Manag Res. 2019 Sep 6;11:8219-8227. doi: 10.2147/CMAR.S218427. eCollection 2019.
60 Interferon beta increases NK cell cytotoxicity against tumor cells in patients with nasopharyngeal carcinoma via tumor necrosis factor apoptosis-inducing ligand.Cancer Immunol Immunother. 2019 Aug;68(8):1317-1329. doi: 10.1007/s00262-019-02368-y. Epub 2019 Jul 16.
61 Epstein-Barr Virus BART Long Non-coding RNAs Function as Epigenetic Modulators in Nasopharyngeal Carcinoma.Front Oncol. 2019 Oct 22;9:1120. doi: 10.3389/fonc.2019.01120. eCollection 2019.
62 Dendritic cell subpopulations in nasopharyngeal cancer.Oncol Lett. 2019 Feb;17(2):2557-2561. doi: 10.3892/ol.2018.9835. Epub 2018 Dec 14.
63 High expression of IMPDH2 is associated with aggressive features and poor prognosis of primary nasopharyngeal carcinoma.Sci Rep. 2017 Apr 7;7(1):745. doi: 10.1038/s41598-017-00887-1.
64 Degradation of cofilin is regulated by Cbl, AIP4 and Syk resulting in increased migration of LMP2A positive nasopharyngeal carcinoma cells.Sci Rep. 2017 Aug 21;7(1):9012. doi: 10.1038/s41598-017-09540-3.
65 miR-29c regulates resistance to paclitaxel in nasopharyngeal cancer by targeting ITGB1.Exp Cell Res. 2019 May 1;378(1):1-10. doi: 10.1016/j.yexcr.2019.02.012. Epub 2019 Feb 16.
66 JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression.BMC Cancer. 2017 Jul 11;17(1):477. doi: 10.1186/s12885-017-3473-4.
67 Keratin 6A gene silencing suppresses cell invasion and metastasis of nasopharyngeal carcinoma via the catenin cascade.Mol Med Rep. 2019 May;19(5):3477-3484. doi: 10.3892/mmr.2019.10055. Epub 2019 Mar 18.
68 Hydroxypropyl-beta and -gamma cyclodextrins rescue cholesterol accumulation in Niemann-Pick C1 mutant cell via lysosome-associated membrane protein 1.Cell Death Dis. 2018 Oct 3;9(10):1019. doi: 10.1038/s41419-018-1056-1.
69 Quantitative proteome analysis identifies MAP2K6 as potential regulator of LIFR-induced radioresistance in nasopharyngeal carcinoma cells.Biochem Biophys Res Commun. 2018 Oct 20;505(1):274-281. doi: 10.1016/j.bbrc.2018.09.020. Epub 2018 Sep 21.
70 MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression.FEBS Open Bio. 2018 Nov 26;9(1):43-52. doi: 10.1002/2211-5463.12545. eCollection 2019 Jan.
71 Pre-treatment with angiotensin-(1-7) inhibits tumor growth via autophagy by downregulating PI3K/Akt/mTOR signaling in human nasopharyngeal carcinoma xenografts.J Mol Med (Berl). 2018 Dec;96(12):1407-1418. doi: 10.1007/s00109-018-1704-z. Epub 2018 Oct 29.
72 Design, synthesis and biological evaluation of 4-aniline-thieno[2,3-d]pyrimidine derivatives as MNK1 inhibitors against renal cell carcinoma and nasopharyngeal carcinoma.Bioorg Med Chem. 2019 Jun 1;27(11):2268-2279. doi: 10.1016/j.bmc.2019.04.022. Epub 2019 Apr 17.
73 MTA1 promotes viability and motility in nasopharyngeal carcinoma by modulating IQGAP1 expression.J Cell Biochem. 2018 May;119(5):3864-3872. doi: 10.1002/jcb.26494. Epub 2018 Jan 22.
74 Metadherin contributes to epithelial-mesenchymal transition and paclitaxel resistance induced by acidic extracellular pH in nasopharyngeal carcinoma.Oncol Lett. 2018 Mar;15(3):3858-3863. doi: 10.3892/ol.2018.7760. Epub 2018 Jan 10.
75 Oxidative stress-induced chromosome breaks within the ABL gene: a model for chromosome rearrangement in nasopharyngeal carcinoma.Hum Genomics. 2018 Jun 18;12(1):29. doi: 10.1186/s40246-018-0160-8.
76 microRNA-613 exerts anti-angiogenic effect on nasopharyngeal carcinoma cells through inactivating the AKT signaling pathway by down-regulating FN1.Biosci Rep. 2019 Jul 10;39(7):BSR20182196. doi: 10.1042/BSR20182196. Print 2019 Jul 31.
77 Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells.J Proteomics. 2018 Jun 30;182:1-11. doi: 10.1016/j.jprot.2018.04.025. Epub 2018 Apr 22.
78 NEDD4 is involved in acquisition of epithelial-mesenchymal transition in cisplatin-resistant nasopharyngeal carcinoma cells.Cell Cycle. 2017 May 3;16(9):869-878. doi: 10.1080/15384101.2017.1308617. Epub 2017 Apr 5.
79 The NOR1/OSCP1 proteins in cancer: from epigenetic silencing to functional characterization of a novel tumor suppressor.J Cancer. 2017 Feb 25;8(4):626-635. doi: 10.7150/jca.17579. eCollection 2017.
80 MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway.Cancer Med. 2019 Feb;8(2):712-728. doi: 10.1002/cam4.1924. Epub 2019 Jan 18.
81 Chibby suppresses aerobic glycolysis and proliferation of nasopharyngeal carcinoma via the Wnt/-catenin-Lin28/let7-PDK1 cascade.J Exp Clin Cancer Res. 2018 May 15;37(1):104. doi: 10.1186/s13046-018-0769-4.
82 PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma.J Cancer. 2017 Oct 23;8(18):3887-3896. doi: 10.7150/jca.19112. eCollection 2017.
83 Translational genomics of nasopharyngeal cancer.Semin Cancer Biol. 2020 Apr;61:84-100. doi: 10.1016/j.semcancer.2019.09.006. Epub 2019 Sep 12.
84 Insufficient PINX1 expression stimulates telomerase activation by direct inhibition of EBV LMP1-NF-B axis during nasopharyngeal carcinoma development.Biochem Biophys Res Commun. 2019 Jun 18;514(1):127-133. doi: 10.1016/j.bbrc.2019.04.104. Epub 2019 Apr 23.
85 Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-R-independent signaling pathway.Oncotarget. 2017 Jul 25;8(30):49959-49972. doi: 10.18632/oncotarget.18326.
86 RIPK4 promoted the tumorigenicity of nasopharyngeal carcinoma cells.Biomed Pharmacother. 2018 Dec;108:1-6. doi: 10.1016/j.biopha.2018.08.147. Epub 2018 Sep 10.
87 5T4-specific chimeric antigen receptor modification promotes the immune efficacy of cytokine-induced killer cells against nasopharyngeal carcinoma stem cell-like cells.Sci Rep. 2017 Jul 7;7(1):4859. doi: 10.1038/s41598-017-04756-9.
88 LncRNA NEAT1/let-7a-5p axis regulates the cisplatin resistance in nasopharyngeal carcinoma by targeting Rsf-1 and modulating the Ras-MAPK pathway.Cancer Biol Ther. 2018 Jun 3;19(6):534-542. doi: 10.1080/15384047.2018.1450119. Epub 2018 Apr 9.
89 Impact of RTN4 gene polymorphism and its plasma level on susceptibility to nasopharyngeal carcinoma: A case-control study.Medicine (Baltimore). 2019 Nov;98(47):e17831. doi: 10.1097/MD.0000000000017831.
90 Overexpression of Nogo receptor 3 (NgR3) correlates with poor prognosis and contributes to the migration of epithelial cells of nasopharyngeal carcinoma patients.J Mol Med (Berl). 2018 Apr;96(3-4):265-279. doi: 10.1007/s00109-017-1618-1. Epub 2018 Jan 11.
91 Knockdown of serpin peptidase inhibitor clade C member1 inhibits the growth of nasopharyngeal carcinoma cells.Mol Med Rep. 2019 May;19(5):3658-3666. doi: 10.3892/mmr.2019.10021. Epub 2019 Mar 14.
92 Serum proteomics identify potential biomarkers for nasopharyngeal carcinoma sensitivity to radiotherapy.Biosci Rep. 2019 May 14;39(5):BSR20190027. doi: 10.1042/BSR20190027. Print 2019 May 31.
93 Correction: Deficiency of pigment epithelium-derived factor in nasopharyngeal carcinoma cells triggers the epithelial-mesenchymal transition and metastasis.Cell Death Dis. 2018 Jul 16;9(8):784. doi: 10.1038/s41419-018-0829-x.
94 Expression and prognostic utility of SSX2IP in patients with nasopharyngeal carcinoma.APMIS. 2020 Apr;128(4):287-297. doi: 10.1111/apm.13023. Epub 2020 Jan 29.
95 Stanniocalcin 2 (STC2) expression promotes post-radiation survival, migration and invasion of nasopharyngeal carcinoma cells.Cancer Manag Res. 2019 Jul 11;11:6411-6424. doi: 10.2147/CMAR.S197607. eCollection 2019.
96 STYK1 promotes Warburg effect through PI3K/AKT signaling and predicts a poor prognosis in nasopharyngeal carcinoma.Tumour Biol. 2017 Jul;39(7):1010428317711644. doi: 10.1177/1010428317711644.
97 TNFAIP3 inhibits migration and invasion in nasopharyngeal carcinoma by suppressing epithelial mesenchymal transition.Neoplasma. 2017;64(3):389-394. doi: 10.4149/neo_2017_309.
98 TRIM24 siRNA induced cell apoptosis and reduced cell viability in human nasopharyngeal carcinoma cells.Mol Med Rep. 2018 Jul;18(1):369-376. doi: 10.3892/mmr.2018.8946. Epub 2018 May 2.
99 The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1.Cell Death Differ. 2020 Feb;27(2):695-710. doi: 10.1038/s41418-019-0381-y. Epub 2019 Jul 18.
100 CDC42-interacting protein 4 promotes metastasis of nasopharyngeal carcinoma by mediating invadopodia formation and activating EGFR signaling.J Exp Clin Cancer Res. 2017 Jan 28;36(1):21. doi: 10.1186/s13046-016-0483-z.
101 Cancer-Specifically Re-Spliced TSG101 mRNA Promotes Invasion and Metastasis of Nasopharyngeal Carcinoma.Int J Mol Sci. 2019 Feb 12;20(3):773. doi: 10.3390/ijms20030773.
102 miR-663b promotes tumor cell proliferation, migration and invasion in nasopharyngeal carcinoma through targeting TUSC2.Exp Ther Med. 2017 Aug;14(2):1095-1103. doi: 10.3892/etm.2017.4608. Epub 2017 Jun 14.
103 Minicircle-oriP-miR-31 as a Novel EBNA1-Specific miRNA Therapy Approach for Nasopharyngeal Carcinoma.Hum Gene Ther. 2017 May;28(5):415-427. doi: 10.1089/hum.2016.136. Epub 2016 Dec 29.
104 The anti-tumor function of the IKK inhibitor PS1145 and high levels of p65 and KLF4 are associated with the drug resistance in nasopharyngeal carcinoma cells.Sci Rep. 2019 Aug 19;9(1):12064. doi: 10.1038/s41598-019-48590-7.
105 Identification of candidate genes of nasopharyngeal carcinoma by bioinformatical analysis.Arch Oral Biol. 2019 Oct;106:104478. doi: 10.1016/j.archoralbio.2019.07.003. Epub 2019 Jul 5.
106 EZH2-DNMT1-mediated epigenetic silencing of miR-142-3p promotes metastasis through targeting ZEB2 in nasopharyngeal carcinoma.Cell Death Differ. 2019 Jun;26(6):1089-1106. doi: 10.1038/s41418-018-0208-2. Epub 2018 Oct 23.
107 Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity.Oncotarget. 2016 Nov 15;7(46):74947-74965. doi: 10.18632/oncotarget.12509.
108 VE-822 mediated inhibition of ATR signaling sensitizes chondrosarcoma to cisplatin via reversion of the DNA damage response.Onco Targets Ther. 2019 Jul 30;12:6083-6092. doi: 10.2147/OTT.S211560. eCollection 2019.
109 BACE1-cleavage of Sez6 and Sez6L is elevated in Niemann-Pick type C disease mouse brains.PLoS One. 2018 Jul 6;13(7):e0200344. doi: 10.1371/journal.pone.0200344. eCollection 2018.
110 Upregulation of MiR-155 in nasopharyngeal carcinoma is partly driven by LMP1 and LMP2A and downregulates a negative prognostic marker JMJD1A.PLoS One. 2011 Apr 26;6(4):e19137. doi: 10.1371/journal.pone.0019137.
111 microRNA-141 is involved in a nasopharyngeal carcinoma-related genes network.Carcinogenesis. 2010 Apr;31(4):559-66. doi: 10.1093/carcin/bgp335. Epub 2010 Jan 6.
112 The expression of BTG1 is downregulated in nasopharyngeal carcinoma and possibly associated with tumour metastasis.Mol Biol Rep. 2014 Sep;41(9):5979-88. doi: 10.1007/s11033-014-3475-0. Epub 2014 Jul 2.
113 RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma.Int J Cancer. 2004 May 10;109(6):839-47. doi: 10.1002/ijc.20079.
114 Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma.Int J Cancer. 2013 Nov 15;133(10):2284-95. doi: 10.1002/ijc.28252. Epub 2013 Jul 13.
115 Plasma Macrophage Migration Inhibitory Factor and CCL3 as Potential Biomarkers for Distinguishing Patients with Nasopharyngeal Carcinoma from High-Risk Individuals Who Have Positive Epstein-Barr Virus Capsid Antigen-Specific IgA.Cancer Res Treat. 2019 Jan;51(1):378-390. doi: 10.4143/crt.2018.070. Epub 2018 May 29.
116 Sequencing of DC-SIGN promoter indicates an association between promoter variation and risk of nasopharyngeal carcinoma in cantonese.BMC Med Genet. 2010 Nov 11;11:161. doi: 10.1186/1471-2350-11-161.
117 Elevated expression of ICAM1 (CD54) and minimal expression of LFA3 (CD58) in Epstein-Barr-virus-positive nasopharyngeal carcinoma cells.Int J Cancer. 1992 Apr 1;50(6):863-7. doi: 10.1002/ijc.2910500605.
118 Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer.Int J Cancer. 2010 May 1;126(9):2036-48. doi: 10.1002/ijc.24880.
119 CDK3 expression and its clinical significance in human nasopharyngeal carcinoma.Mol Med Rep. 2014 Jun;9(6):2582-6. doi: 10.3892/mmr.2014.2095. Epub 2014 Mar 31.
120 Identification of genes related to nasopharyngeal carcinoma with the help of pathway-based networks.Acta Biochim Biophys Sin (Shanghai). 2006 Dec;38(12):900-10. doi: 10.1111/j.1745-7270.2006.00235.x.
121 Role of a genetic variant on the 15q25.1 lung cancer susceptibility locus in smoking-associated nasopharyngeal carcinoma.PLoS One. 2014 Oct 20;9(10):e109036. doi: 10.1371/journal.pone.0109036. eCollection 2014.
122 A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma.Int J Cancer. 2011 Mar 15;128(6):1393-403. doi: 10.1002/ijc.25443.
123 Complement receptor 1 expression in peripheral blood mononuclear cells and the association with clinicopathological features and prognosis of nasopharyngeal carcinoma.Asian Pac J Cancer Prev. 2012;13(12):6527-31. doi: 10.7314/apjcp.2012.13.12.6527.
124 Reexploring the possible roles of some genes associated with nasopharyngeal carcinoma using microarray-based detection.Acta Biochim Biophys Sin (Shanghai). 2005 Aug;37(8):541-6. doi: 10.1111/j.1745-7270.2005.00074.x.
125 Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway.Hum Pathol. 2007 Jan;38(1):120-33. doi: 10.1016/j.humpath.2006.06.023. Epub 2006 Sep 25.
126 Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma.Head Neck. 2008 Apr;30(4):427-36. doi: 10.1002/hed.20724.
127 Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation.BMC Genomics. 2008 Jul 7;9:322. doi: 10.1186/1471-2164-9-322.
128 Identification of candidate molecular markers of nasopharyngeal carcinoma by tissue microarray and in situ hybridization.Med Oncol. 2011 Dec;28 Suppl 1:S341-8. doi: 10.1007/s12032-010-9727-5. Epub 2010 Nov 5.
129 CCAAT/enhancer binding protein in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma.Sci Signal. 2013 Jul 16;6(284):ra59. doi: 10.1126/scisignal.2003648.
130 Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas.Am J Pathol. 1992 Apr;140(4):879-87.
131 miR-143 inhibits proliferation and metastasis of nasopharyngeal carcinoma cells via targeting FMNL1 based on clinical and radiologic findings.J Cell Biochem. 2019 Oct;120(10):16427-16434. doi: 10.1002/jcb.28709. Epub 2019 Apr 18.
132 GALC gene is downregulated by promoter hypermethylation in Epstein-Barr virus-associated nasopharyngeal carcinoma.Oncol Rep. 2015 Sep;34(3):1369-78. doi: 10.3892/or.2015.4134. Epub 2015 Jul 14.
133 Expression of GRIN2A in benign and malignant nasopharyngeal diseases and its clinical significance.Genet Mol Res. 2015 Dec 17;14(4):17289-95. doi: 10.4238/2015.December.16.29.
134 Heparanase is involved in the proliferation and invasion of nasopharyngeal carcinoma cells.Oncol Rep. 2013 May;29(5):1888-94. doi: 10.3892/or.2013.2325. Epub 2013 Mar 5.
135 Expression of LEF1 and TCF1 (TCF7) proteins associates with clinical progression of nasopharyngeal carcinoma.J Clin Pathol. 2019 Jun;72(6):425-430. doi: 10.1136/jclinpath-2019-205698. Epub 2019 Mar 27.
136 LASP1 promotes nasopharyngeal carcinoma progression through negatively regulation of the tumor suppressor PTEN.Cell Death Dis. 2018 Mar 12;9(3):393. doi: 10.1038/s41419-018-0443-y.
137 The regulation and interaction of colon cancer-associated transcript-1 and miR7-5p contribute to the inhibition of SP1 expression by solamargine in human nasopharyngeal carcinoma cells.Phytother Res. 2020 Jan;34(1):201-213. doi: 10.1002/ptr.6555. Epub 2019 Dec 10.
138 Downregulation of p57kip promotes cell invasion via LIMK/cofilin pathway in human nasopharyngeal carcinoma cells.J Cell Biochem. 2011 Nov;112(11):3459-68. doi: 10.1002/jcb.23277.
139 Down-regulation of LPA receptor 5 contributes to aberrant LPA signalling in EBV-associated nasopharyngeal carcinoma.J Pathol. 2015 Feb;235(3):456-65. doi: 10.1002/path.4460. Epub 2014 Dec 18.
140 Identification of a novel 12p13.3 amplicon in nasopharyngeal carcinoma.J Pathol. 2010 Jan;220(1):97-107. doi: 10.1002/path.2609.
141 The oncogenic protein kinase Tpl-2/Cot contributes to Epstein-Barr virus-encoded latent infection membrane protein 1-induced NF-kappaB signaling downstream of TRAF2.J Virol. 2002 May;76(9):4567-79. doi: 10.1128/jvi.76.9.4567-4579.2002.
142 The effect of functional MAPKAPK2 copy number variation CNV-30450 on elevating nasopharyngeal carcinoma risk is modulated by EBV infection.Carcinogenesis. 2014 Jan;35(1):46-52. doi: 10.1093/carcin/bgt314. Epub 2013 Sep 20.
143 Identification of genes with allelic imbalance on 6p associated with nasopharyngeal carcinoma in southern Chinese.PLoS One. 2011 Jan 20;6(1):e14562. doi: 10.1371/journal.pone.0014562.
144 Chromosomal abnormalities associated with neck nodal metastasis in nasopharyngeal carcinoma.Tumour Biol. 2005 Nov-Dec;26(6):306-12. doi: 10.1159/000089289. Epub 2005 Oct 26.
145 Sequence analysis of Epstein-Barr virus EBNA-2 gene coding amino acid 148-487 in nasopharyngeal and gastric carcinomas.Virol J. 2012 Feb 21;9:49. doi: 10.1186/1743-422X-9-49.
146 Monocyte-derived factors including PLA2G7 induced by macrophage-nasopharyngeal carcinoma cell interaction promote tumor cell invasiveness.Oncotarget. 2016 Aug 23;7(34):55473-55490. doi: 10.18632/oncotarget.10980.
147 PPAR/ Agonist GW501516 Inhibits Tumorigenesis and Promotes Apoptosis of the Undifferentiated Nasopharyngeal Carcinoma C666-1 Cells by Regulating miR-206.Oncol Res. 2019 Aug 8;27(8):923-933. doi: 10.3727/096504019X15518706875814. Epub 2019 Apr 8.
148 Ovatodiolide suppresses nasopharyngeal cancer by targeting stem cell-like population, inducing apoptosis, inhibiting EMT and dysregulating JAK/STAT signaling pathway.Phytomedicine. 2019 Mar 15;56:269-278. doi: 10.1016/j.phymed.2018.05.007. Epub 2018 May 8.
149 The DLC-1 -29A/T polymorphism is not associated with nasopharyngeal carcinoma risk in Chinese population.Genet Test. 2008 Sep;12(3):345-9. doi: 10.1089/gte.2007.0121.
150 Mitogen- and stress-activated Kinase 1 mediates Epstein-Barr virus latent membrane protein 1-promoted cell transformation in nasopharyngeal carcinoma through its induction of Fra-1 and c-Jun genes.BMC Cancer. 2015 May 10;15:390. doi: 10.1186/s12885-015-1398-3.
151 Oncogenic S1P signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through S1P receptor 3.J Pathol. 2017 May;242(1):62-72. doi: 10.1002/path.4879. Epub 2017 Mar 15.
152 The B-cell specific transcription factor, Oct-2, promotes Epstein-Barr virus latency by inhibiting the viral immediate-early protein, BZLF1.PLoS Pathog. 2012 Feb;8(2):e1002516. doi: 10.1371/journal.ppat.1002516. Epub 2012 Feb 9.
153 Influence of SLCO1B3 haplotype-tag SNPs on docetaxel disposition in Chinese nasopharyngeal cancer patients.Br J Clin Pharmacol. 2012 Apr;73(4):606-18. doi: 10.1111/j.1365-2125.2011.04123.x.
154 Transcription factor SOX-5 enhances nasopharyngeal carcinoma progression by down-regulating SPARC gene expression.J Pathol. 2008 Mar;214(4):445-55. doi: 10.1002/path.2299.
155 High SRC-1 and Twist1 expression predicts poor prognosis and promotes migration and invasion by inducing epithelial-mesenchymal transition in human nasopharyngeal carcinoma.PLoS One. 2019 Apr 11;14(4):e0215299. doi: 10.1371/journal.pone.0215299. eCollection 2019.
156 Mitochondrial Cholesterol in Alzheimer's Disease and Niemann-Pick Type C Disease.Front Neurol. 2019 Nov 7;10:1168. doi: 10.3389/fneur.2019.01168. eCollection 2019.
157 Transducin -like 1 X-linked receptor 1 suppresses cisplatin sensitivity in nasopharyngeal carcinoma via activation of NF-B pathway.Mol Cancer. 2014 Aug 22;13:195. doi: 10.1186/1476-4598-13-195.
158 Overexpression of transketolase protein TKTL1 is associated with occurrence and progression in nasopharyngeal carcinoma: a potential therapeutic target in nasopharyngeal carcinoma.Cancer Biol Ther. 2008 Apr;7(4):517-22. doi: 10.4161/cbt.7.4.5479. Epub 2008 Jan 2.
159 Silencing TRPC1 expression inhibits invasion of CNE2 nasopharyngeal tumor cells.Oncol Rep. 2012 May;27(5):1548-54. doi: 10.3892/or.2012.1695. Epub 2012 Feb 22.
160 Epigenetic downregulation of the ISG15-conjugating enzyme UbcH8 impairs lipolysis and correlates with poor prognosis in nasopharyngeal carcinoma.Oncotarget. 2015 Dec 1;6(38):41077-91. doi: 10.18632/oncotarget.6218.
161 Downregulation of G2/mitotic-specific cyclinB1 triggers autophagy via AMPK-ULK1-dependent signal pathway in nasopharyngeal carcinoma cells.Cell Death Dis. 2019 Jan 30;10(2):94. doi: 10.1038/s41419-019-1369-8.
162 The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies.PLoS One. 2011 Jan 31;6(1):e16598. doi: 10.1371/journal.pone.0016598.
163 Integrin 9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma.Oncotarget. 2015 Oct 13;6(31):31493-507. doi: 10.18632/oncotarget.5154.
164 PI3K-PKB-mTOR hyperactivation in relation to nasopharyngeal carcinoma progression and prognosis.J Cell Biochem. 2019 Jun;120(6):10186-10194. doi: 10.1002/jcb.28303. Epub 2018 Dec 23.
165 A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci.Nat Genet. 2010 Jul;42(7):599-603. doi: 10.1038/ng.601. Epub 2010 May 30.
166 Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells.BMC Cancer. 2010 Jun 24;10:327. doi: 10.1186/1471-2407-10-327.
167 AMACR overexpression as a poor prognostic factor in patients with nasopharyngeal carcinoma.Tumour Biol. 2014 Aug;35(8):7983-91. doi: 10.1007/s13277-014-2065-z. Epub 2014 May 16.
168 Knockdown of Annexin A1 Enhances Radioresistance and Inhibits Apoptosis in Nasopharyngeal Carcinoma.Technol Cancer Res Treat. 2018 Jan 1;17:1533034617750309. doi: 10.1177/1533034617750309.
169 Annexin A2-mediated cancer progression and therapeutic resistance in nasopharyngeal carcinoma.J Biomed Sci. 2018 Mar 29;25(1):30. doi: 10.1186/s12929-018-0430-8.
170 Amyloid precursor protein silencing attenuates epithelialmesenchymal transition of nasopharyngeal carcinoma cells via inhibition of the MAPK pathway.Mol Med Rep. 2019 Jul;20(1):409-416. doi: 10.3892/mmr.2019.10293. Epub 2019 May 24.
171 Association of the Aquaporin 3 Gene Polymorphism (rs2231231) with Epstein-Barr Virus-Associated Cancers in China.Intervirology. 2018;61(2):72-78. doi: 10.1159/000491601. Epub 2018 Aug 15.
172 Over-expression of BCAT1, a c-Myc target gene, induces cell proliferation, migration and invasion in nasopharyngeal carcinoma.Mol Cancer. 2013 Jun 8;12:53. doi: 10.1186/1476-4598-12-53.
173 BRD7 expression and c-Myc activation forms a double-negative feedback loop that controls the cell proliferation and tumor growth of nasopharyngeal carcinoma by targeting oncogenic miR-141.J Exp Clin Cancer Res. 2018 Mar 20;37(1):64. doi: 10.1186/s13046-018-0734-2.
174 Baseline hemoglobin <11.0 g/dL has stronger prognostic value than anemia status in nasopharynx cancers treated with chemoradiotherapy.Int J Biol Markers. 2019 Jun;34(2):139-147. doi: 10.1177/1724600818821688. Epub 2019 Mar 13.
175 Parkin enhances sensitivity of paclitaxel to NPC by arresting cell cycle.Pathol Res Pract. 2020 Mar;216(3):152755. doi: 10.1016/j.prp.2019.152755. Epub 2019 Nov 18.
176 Tetrandrine enhances radiosensitivity through the CDC25C/CDK1/cyclin B1 pathway in nasopharyngeal carcinoma cells.Cell Cycle. 2018;17(6):671-680. doi: 10.1080/15384101.2017.1415679.
177 The Wnt modulator ICG?01 mediates the inhibition of nasopharyngeal carcinoma cell migration in vitro via the miR?50/CD44 axis.Int J Oncol. 2019 Mar;54(3):1010-1020. doi: 10.3892/ijo.2018.4664. Epub 2018 Dec 12.
178 Overexpression of N-cadherin and -catenin correlates with poor prognosis in patients with nasopharyngeal carcinoma.Oncol Lett. 2017 Mar;13(3):1725-1730. doi: 10.3892/ol.2017.5645. Epub 2017 Jan 25.
179 Down-regulation of MMP-2 through the p38 MAPK-NF-kappaB-dependent pathway by aloe-emodin leads to inhibition of nasopharyngeal carcinoma cell invasion.Mol Carcinog. 2010 Sep;49(9):783-97. doi: 10.1002/mc.20652.
180 Integrated genomic analyses in PDX model reveal a cyclin-dependent kinase inhibitor Palbociclib as a novel candidate drug for nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2018 Sep 20;37(1):233. doi: 10.1186/s13046-018-0873-5.
181 Is human papillomavirus and p16 expression associated with survival outcomes in nasopharyngeal cancer?: A systematic review and meta-analysis.Am J Otolaryngol. 2018 Nov-Dec;39(6):764-770. doi: 10.1016/j.amjoto.2018.07.005. Epub 2018 Jul 11.
182 BPIFB1 (LPLUNC1) inhibits radioresistance in nasopharyngeal carcinoma by inhibiting VTN expression.Cell Death Dis. 2018 Apr 1;9(4):432. doi: 10.1038/s41419-018-0409-0.
183 Opposed expression of IKK: loss in keratinizing carcinomas and gain in non-keratinizing carcinomas.Oncotarget. 2015 Sep 22;6(28):25499-505. doi: 10.18632/oncotarget.4548.
184 Starvation-induced autophagy is up-regulated via ROS-mediated ClC-3 chloride channel activation in the nasopharyngeal carcinoma cell line CNE-2Z.Biochem J. 2019 May 7;476(9):1323-1333. doi: 10.1042/BCJ20180979.
185 Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression.Oncogene. 2017 Feb 23;36(8):1069-1079. doi: 10.1038/onc.2016.271. Epub 2016 Aug 15.
186 Functional polymorphism in the 5'-UTR of CR2 is associated with susceptibility to nasopharyngeal carcinoma.Oncol Rep. 2013 Jul;30(1):11-6. doi: 10.3892/or.2013.2421. Epub 2013 Apr 23.
187 Evaluation of Risk Factors for Nasopharyngeal Carcinoma in a High-risk Area of India, the Northeastern Region.Asian Pac J Cancer Prev. 2015;16(12):4927-35. doi: 10.7314/apjcp.2015.16.12.4927.
188 Overexpression of thymidylate synthetase confers an independent prognostic indicator in nasopharyngeal carcinoma.Exp Mol Pathol. 2013 Aug;95(1):83-90. doi: 10.1016/j.yexmp.2013.05.006. Epub 2013 May 28.
189 Circular RNA CDR1as sponges miR-7-5p to enhance E2F3 stability and promote the growth of nasopharyngeal carcinoma.Cancer Cell Int. 2019 Oct 1;19:252. doi: 10.1186/s12935-019-0959-y. eCollection 2019.
190 Inhibiting eEF-2 kinase-mediated autophagy enhanced the cytocidal effect of AKT inhibitor on human nasopharyngeal carcinoma.Drug Des Devel Ther. 2018 Aug 29;12:2655-2663. doi: 10.2147/DDDT.S169952. eCollection 2018.
191 Long Noncoding RNAs and Messenger RNAs Expression Profiles Potentially Regulated by ZBTB7A in Nasopharyngeal Carcinoma.Biomed Res Int. 2019 Jun 11;2019:7246491. doi: 10.1155/2019/7246491. eCollection 2019.
192 Expression of the c-fgr related transcripts in Epstein-Barr virus-associated malignancies.Int J Cancer. 1988 Jul 15;42(1):29-35. doi: 10.1002/ijc.2910420107.
193 Gene expression profiling of taxol-resistant nasopharyngeal carcinoma cells with siRNA-mediated FOLR1 downregulation.Int J Clin Exp Pathol. 2015 Sep 1;8(9):11314-22. eCollection 2015.
194 FOXC2 positively regulates YAP signaling and promotes the glycolysis of nasopharyngeal carcinoma.Exp Cell Res. 2017 Aug 1;357(1):17-24. doi: 10.1016/j.yexcr.2017.04.019. Epub 2017 Apr 19.
195 Downregulation of FoxM1 sensitizes nasopharyngeal carcinoma cells to cisplatin via inhibition of MRN-ATM-mediated DNA repair.BMB Rep. 2019 Mar;52(3):208-213. doi: 10.5483/BMBRep.2019.52.3.249.
196 Adeno-associated virus 2-mediated transduction and erythroid cell-specific expression of a human beta-globin gene.Gene Ther. 1996 Mar;3(3):223-9.
197 Serotonin and Dopamine Receptor Expression in Solid Tumours Including Rare Cancers.Pathol Oncol Res. 2020 Jul;26(3):1539-1547. doi: 10.1007/s12253-019-00734-w. Epub 2019 Sep 2.
198 IGFBP6 is a novel nasopharyngeal carcinoma prognostic biomarker.Oncotarget. 2016 Oct 18;7(42):68140-68150. doi: 10.18632/oncotarget.11886.
199 The association of interleukin-16 gene polymorphisms with IL-16 serum levels and risk of nasopharyngeal carcinoma in a Chinese population.Tumour Biol. 2014 Mar;35(3):1917-24. doi: 10.1007/s13277-013-1257-2. Epub 2013 Oct 8.
200 Significant association of the cytokine variants with head and neck cancer risk: evidence from meta-analysis.Eur Arch Otorhinolaryngol. 2018 Feb;275(2):483-496. doi: 10.1007/s00405-017-4820-4. Epub 2017 Nov 28.
201 Integrin 6-Targeted Positron Emission Tomography Imaging of Colorectal Cancer.ACS Omega. 2019 Sep 11;4(13):15560-15566. doi: 10.1021/acsomega.9b01920. eCollection 2019 Sep 24.
202 Role of the TGF/PDCD4/AP-1 Signaling Pathway in Nasopharyngeal Carcinoma and Its Relationship to Prognosis.Cell Physiol Biochem. 2017;43(4):1392-1401. doi: 10.1159/000481871. Epub 2017 Oct 11.
203 Clinical and biological significances of heat shock protein 90 (Hsp90) in human nasopharyngeal carcinoma cells and anti-cancer effects of Hsp90 inhibitor.Biomed Pharmacother. 2019 Dec;120:109533. doi: 10.1016/j.biopha.2019.109533. Epub 2019 Oct 18.
204 MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A.Oncotarget. 2016 Aug 23;7(34):54838-54851. doi: 10.18632/oncotarget.10761.
205 Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma.Tumour Biol. 2015 Feb;36(2):675-83. doi: 10.1007/s13277-014-2650-1. Epub 2014 Oct 7.
206 The RARS-MAD1L1 Fusion Gene Induces Cancer Stem Cell-like Properties and Therapeutic Resistance in Nasopharyngeal Carcinoma. Clin Cancer Res. 2018 Feb 1;24(3):659-673.
207 The principal genetic determinants for nasopharyngeal carcinoma in China involve the HLA class I antigen recognition groove.PLoS Genet. 2012;8(11):e1003103. doi: 10.1371/journal.pgen.1003103. Epub 2012 Nov 29.
208 Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma.BMC Cancer. 2014 May 20;14:348. doi: 10.1186/1471-2407-14-348.
209 Hypoxia-Induced Matrix Metalloproteinase-13 Expression in Exosomes from Nasopharyngeal Carcinoma Enhances Metastases.Cell Death Dis. 2018 Mar 7;9(3):382. doi: 10.1038/s41419-018-0425-0.
210 DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway.Oncol Rep. 2017 Jul;38(1):317-324. doi: 10.3892/or.2017.5704. Epub 2017 Jun 6.
211 The new 6q27 tumor suppressor DACT2, frequently silenced by CpG methylation, sensitizes nasopharyngeal cancer cells to paclitaxel and 5-FU toxicity via -catenin/Cdc25c signaling and G2/M arrest.Clin Epigenetics. 2018 Feb 27;10(1):26. doi: 10.1186/s13148-018-0459-2.
212 Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma.Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3317-22. doi: 10.1073/pnas.1523436113. Epub 2016 Mar 7.
213 Characterization and Prognostic Significance of Methylthioadenosine Phosphorylase Deficiency in Nasopharyngeal Carcinoma.Medicine (Baltimore). 2015 Dec;94(49):e2271. doi: 10.1097/MD.0000000000002271.
214 Prognostic value and clinicopathologic significance of nm23 in various cancers: A systematic review and meta-analysis.Int J Surg. 2018 Dec;60:257-265. doi: 10.1016/j.ijsu.2018.10.035. Epub 2018 Oct 31.
215 MicroRNA-378g enhanced radiosensitivity of NPC cells partially by targeting protein tyrosine phosphatase SHP-1.Int J Radiat Biol. 2015;91(11):859-66. doi: 10.3109/09553002.2015.1096028. Epub 2015 Oct 16.
216 LncRNA SNHG1 functions as a ceRNA to antagonize the effect of miR-145a-5p on the down-regulation of NUAK1 in nasopharyngeal carcinoma cell.J Cell Mol Med. 2019 Apr;23(4):2351-2361. doi: 10.1111/jcmm.13497. Epub 2018 Mar 25.
217 Haplotype CGC from XPD, hOGG1 and ITGA2 polymorphisms increases the risk of nasopharyngeal carcinoma in Malaysia.PLoS One. 2017 Nov 9;12(11):e0187200. doi: 10.1371/journal.pone.0187200. eCollection 2017.
218 miR-181a Upregulation Promotes Radioresistance of Nasopharyngeal Carcinoma by Targeting RKIP.Onco Targets Ther. 2019 Dec 11;12:10873-10884. doi: 10.2147/OTT.S228800. eCollection 2019.
219 Functional PIN1 promoter polymorphisms associated with risk of nasopharyngeal carcinoma in Southern Chinese populations.Sci Rep. 2017 Jul 4;7(1):4593. doi: 10.1038/s41598-017-04156-z.
220 Exosomal cyclophilin A as a novel noninvasive biomarker for Epstein-Barr virus associated nasopharyngeal carcinoma.Cancer Med. 2019 Jun;8(6):3142-3151. doi: 10.1002/cam4.2185. Epub 2019 May 7.
221 Overexpression of Wild-Type p53-Induced Phosphatase 1 Confers Poor Prognosis of Patients with Nasopharyngeal Carcinoma.Pathol Oncol Res. 2015 Apr;21(2):283-91. doi: 10.1007/s12253-014-9819-1. Epub 2014 Jul 25.
222 Down-regulation of prostate stem cell antigen (PSCA) by Slug promotes metastasis in nasopharyngeal carcinoma.J Pathol. 2015 Dec;237(4):411-22. doi: 10.1002/path.4582. Epub 2015 Aug 18.
223 In vitro evaluation of the therapeutic effectiveness of EBV-LMP2 recombinant adenovirus vaccine in nasopharyngeal carcinoma.Biomed Pharmacother. 2020 Jan;121:109626. doi: 10.1016/j.biopha.2019.109626. Epub 2019 Nov 16.
224 miR-144-3p facilitates nasopharyngeal carcinoma via crosstalk with PTEN.J Cell Physiol. 2019 Aug;234(10):17912-17924. doi: 10.1002/jcp.28424. Epub 2019 Mar 4.
225 Over-expression of protein tyrosine phosphatase 4A2 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2017 Aug 24;8(44):77527-77539.
226 Correlation of the expressions of IGF1R-RACK1-STAT3 and Bcl-xl in nasopharyngeal carcinoma with the clinicopathological features and prognosis of nasopharyngeal carcinoma.J Cell Biochem. 2018 Feb;119(2):1931-1941. doi: 10.1002/jcb.26354. Epub 2017 Sep 18.
227 Circular RNA_LARP4 inhibits cell proliferation and invasion of nasopharyngeal carcinoma by repressing ROCK1.Eur Rev Med Pharmacol Sci. 2019 Nov;23(22):9915-9922. doi: 10.26355/eurrev_201911_19557.
228 Novel chimeric transcript RRM2-c2orf48 promotes metastasis in nasopharyngeal carcinoma.Cell Death Dis. 2017 Sep 14;8(9):e3047. doi: 10.1038/cddis.2017.402.
229 SAA1 polymorphisms are associated with variation in antiangiogenic and tumor-suppressive activities in nasopharyngeal carcinoma.Oncogene. 2015 Feb 12;34(7):878-89. doi: 10.1038/onc.2014.12. Epub 2014 Mar 10.
230 MiR-122-5p suppresses cell proliferation, migration and invasion by targeting SATB1 in nasopharyngeal carcinoma.Eur Rev Med Pharmacol Sci. 2019 Jan;23(2):622-629. doi: 10.26355/eurrev_201901_16876.
231 Promoter hypermethylation of SLIT2 is a risk factor and potential diagnostic biomarker for nasopharyngeal carcinoma.Gene. 2018 Feb 20;644:74-79. doi: 10.1016/j.gene.2017.10.059. Epub 2017 Nov 8.
232 MicroRNA-663b promotes cell proliferation and epithelial mesenchymal transition by directly targeting SMAD7 in nasopharyngeal carcinoma.Exp Ther Med. 2018 Oct;16(4):3129-3134. doi: 10.3892/etm.2018.6576. Epub 2018 Aug 7.
233 SPLUNC1 and MLL3 regulate cancer stem cells in nasopharyngeal carcinoma.J BUON. 2019 Jul-Aug;24(4):1700-1705.
234 Serglycin expression: An independent marker of distant metastases in nasopharyngeal carcinoma.Head Neck. 2016 Jan;38(1):21-8. doi: 10.1002/hed.23841. Epub 2015 Jan 27.
235 Silencing Op18/stathmin by RNA Interference Promotes the Sensitivity of Nasopharyngeal Carcinoma Cells to Taxol and High-Grade Differentiation of Xenografted Tumours in Nude Mice.Basic Clin Pharmacol Toxicol. 2016 Dec;119(6):611-620. doi: 10.1111/bcpt.12633. Epub 2016 Jul 12.
236 Clinical significance of elevated spleen tyrosine kinase expression in nasopharyngeal carcinoma.Head Neck. 2012 Oct;34(10):1456-64. doi: 10.1002/hed.21953. Epub 2012 Jan 27.
237 Activating enhancer-binding protein-2 induces cyclooxygenase-2 expression and promotes nasopharyngeal carcinoma growth.Oncotarget. 2015 Mar 10;6(7):5005-21. doi: 10.18632/oncotarget.3215.
238 Thyroid hormone receptor alpha 1 (c-erb A alpha 1) suppressed transforming phenotype of nasopharyngeal carcinoma cell line.Cancer Lett. 2002 Oct 28;184(2):149-56. doi: 10.1016/s0304-3835(02)00206-9.
239 Overexpression of Tiam1 is associated with malignant phenotypes of nasopharyngeal carcinoma.Oncol Rep. 2014 Aug;32(2):607-18. doi: 10.3892/or.2014.3241. Epub 2014 Jun 6.
240 Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells by regulating the levels of NADPH and ribose-5-phosphate.Biomed Pharmacother. 2017 Jan;85:672-678. doi: 10.1016/j.biopha.2016.11.078. Epub 2016 Dec 6.
241 miR-429 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by downregulation of TLN1.Cancer Cell Int. 2019 Apr 30;19:115. doi: 10.1186/s12935-019-0831-0. eCollection 2019.
242 Lentivirus-mediated RNA interference targeting Bax inhibitor-1 suppresses ex vivo cell proliferation and in vivo tumor growth of nasopharyngeal carcinoma.Hum Gene Ther. 2011 Oct;22(10):1201-8. doi: 10.1089/hum.2010.178. Epub 2011 May 5.
243 Functional characterization of TRPM7 in nasopharyngeal carcinoma and its knockdown effects on tumorigenesis.Tumour Biol. 2016 Jul;37(7):9273-83. doi: 10.1007/s13277-015-4636-z. Epub 2016 Jan 15.
244 Thymidine phosphorylase mRNA stability and protein levels are increased through ERK-mediated cytoplasmic accumulation of hnRNP K in nasopharyngeal carcinoma cells.Oncogene. 2009 Apr 30;28(17):1904-15. doi: 10.1038/onc.2009.55. Epub 2009 Mar 30.
245 Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma.Cancer Epidemiol. 2013 Oct;37(5):708-13. doi: 10.1016/j.canep.2013.05.012. Epub 2013 Jun 20.
246 EZH2 suppresses the nucleotide excision repair in nasopharyngeal carcinoma by silencing XPA gene.Mol Carcinog. 2017 Feb;56(2):447-463. doi: 10.1002/mc.22507. Epub 2016 Jun 10.
247 CD70 expression in thymic carcinoma.Am J Surg Pathol. 2000 May;24(5):742-6. doi: 10.1097/00000478-200005000-00014.
248 Whole-exome sequencing identifies multiple loss-of-function mutations of NF-B pathway regulators in nasopharyngeal carcinoma.Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11283-11288. doi: 10.1073/pnas.1607606113. Epub 2016 Sep 19.
249 The effect on radioresistance of manganese superoxide dismutase in nasopharyngeal carcinoma.Oncol Rep. 2010 Apr;23(4):1005-11. doi: 10.3892/or_00000726.
250 The FOXM1-ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells.Cell Death Dis. 2017 Mar 9;8(3):e2659. doi: 10.1038/cddis.2017.53.
251 Inhibition of ZIP4 reverses epithelial-to-mesenchymal transition and enhances the radiosensitivity in human nasopharyngeal carcinoma cells.Cell Death Dis. 2019 Aug 5;10(8):588. doi: 10.1038/s41419-019-1807-7.
252 Overexpression of AKR1B10 in nasopharyngeal carcinoma as a potential biomarker.Cancer Biomark. 2016;16(1):127-35. doi: 10.3233/CBM-150548.
253 The uS8, uS4, eS31, and uL14 Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines.Biomed Res Int. 2017;2017:4876954. doi: 10.1155/2017/4876954. Epub 2017 Jul 16.
254 Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India.Pathol Oncol Res. 2019 Jan;25(1):33-44. doi: 10.1007/s12253-017-0309-0. Epub 2017 Sep 26.
255 Oncorine, the World First Oncolytic Virus Medicine and its Update in China.Curr Cancer Drug Targets. 2018;18(2):171-176. doi: 10.2174/1568009618666171129221503.
256 Overexpression of asparagine synthetase and matrix metalloproteinase 19 confers cisplatin sensitivity in nasopharyngeal carcinoma cells.Mol Cancer Ther. 2013 Oct;12(10):2157-66. doi: 10.1158/1535-7163.MCT-12-1190. Epub 2013 Aug 16.
257 Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma.Acta Biochim Biophys Sin (Shanghai). 2009 Jan;41(1):54-62. doi: 10.1093/abbs/gmn006.
258 Nicotinamide N-methyltransferase overexpression is associated with Akt phosphorylation and indicates worse prognosis in patients with nasopharyngeal carcinoma.Tumour Biol. 2013 Dec;34(6):3923-31. doi: 10.1007/s13277-013-0980-z. Epub 2013 Jul 11.
259 Evaluation of UDP-glucuronosyltransferase 2B17 (UGT2B17) and dihydrofolate reductase (DHFR) genes deletion and the expression level of NGX6 mRNA in breast cancer.Mol Biol Rep. 2012 Dec;39(12):10531-9. doi: 10.1007/s11033-012-1938-8. Epub 2012 Oct 7.
260 Loss of atypical chemokine receptor 4 facilitates C-C motif chemokine ligand 21-mediated tumor growth and invasion in nasopharyngeal carcinoma.Exp Ther Med. 2019 Jan;17(1):613-620. doi: 10.3892/etm.2018.7007. Epub 2018 Nov 23.
261 Correlation of five secretory proteins with the nasopharyngeal carcinoma metastasis and the clinical applications.Oncotarget. 2017 Apr 25;8(17):29383-29394. doi: 10.18632/oncotarget.14725.
262 Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1.Am J Cancer Res. 2019 Apr 1;9(4):779-790. eCollection 2019.
263 LZTS2 inhibits PI3K/AKT activation and radioresistance in nasopharyngeal carcinoma by interacting with p85.Cancer Lett. 2018 Apr 28;420:38-48. doi: 10.1016/j.canlet.2018.01.067. Epub 2018 Jan 31.
264 Discrepant lesion size estimated on T1- and fat-suppressed T2-weighted MRI: diagnostic value for differentiation between inflammatory pseudotumor and carcinoma of the nasopharynx.Diagn Interv Radiol. 2017 May-Jun;23(3):199-205. doi: 10.5152/dir.2017.16241.
265 Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3043-3052. doi: 10.1080/21691401.2019.1640233.
266 Potentially functional variants of autophagy-related genes are associated with the efficacy and toxicity of radiotherapy in patients with nasopharyngeal carcinoma.Mol Genet Genomic Med. 2019 Dec;7(12):e1030. doi: 10.1002/mgg3.1030. Epub 2019 Nov 6.
267 In vitro cytotoxicity evaluation of thiourea derivatives bearing Salix sp. constituent against HK-1 cell lines.Nat Prod Res. 2020 Jun;34(11):1505-1514. doi: 10.1080/14786419.2018.1517120. Epub 2018 Dec 3.
268 Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies.Cancer Res. 2000 Oct 1;60(19):5584-8.
269 Treatment Response Prediction of Nasopharyngeal Carcinoma Based on Histogram Analysis of Diffusional Kurtosis Imaging.AJNR Am J Neuroradiol. 2019 Feb;40(2):326-333. doi: 10.3174/ajnr.A5925. Epub 2019 Jan 10.
270 Constitutive activation of distinct NF-B signals in EBV-associated nasopharyngeal carcinoma.J Pathol. 2013 Nov;231(3):311-22. doi: 10.1002/path.4239. Epub 2013 Sep 3.
271 Inactivation of 3-hydroxybutyrate dehydrogenase type 2 promotes proliferation and metastasis of nasopharyngeal carcinoma by iron retention.Br J Cancer. 2020 Jan;122(1):102-110. doi: 10.1038/s41416-019-0638-8. Epub 2019 Dec 10.
272 BEX3 contributes to cisplatin chemoresistance in nasopharyngeal carcinoma.Cancer Med. 2017 Feb;6(2):439-451. doi: 10.1002/cam4.982. Epub 2017 Jan 13.
273 Expression and clinical significance of basic transcription factor 3 in nasopharyngeal carcinoma.Oncol Lett. 2019 Jan;17(1):789-796. doi: 10.3892/ol.2018.9699. Epub 2018 Nov 14.
274 Pretreatment combination of platelet counts and neutrophil-lymphocyte ratio predicts survival of nasopharyngeal cancer patients receiving intensity-modulated radiotherapy.Onco Targets Ther. 2017 May 26;10:2751-2760. doi: 10.2147/OTT.S137000. eCollection 2017.
275 Caspase 12 degrades IB protein and enhances MMP-9 expression in human nasopharyngeal carcinoma cell invasion.Oncotarget. 2017 May 16;8(20):33515-33526. doi: 10.18632/oncotarget.16535.
276 Epstein-Barr virus-encoded LMP2A stimulates migration of nasopharyngeal carcinoma cells via the EGFR/Ca(2+)/calpain/ITG4 axis.Biol Open. 2017 Jun 15;6(6):914-922. doi: 10.1242/bio.024646.
277 Decreased macrophage inflammatory protein (MIP)-1 and MIP-1 increase the risk of developing nasopharyngeal carcinoma.Cancer Commun (Lond). 2018 Apr 3;38(1):7. doi: 10.1186/s40880-018-0279-y.
278 Differences in cancer gene copy number alterations between Epstein-Barr virus-positive and Epstein-Barr virus-negative nasopharyngeal carcinoma.Head Neck. 2018 Sep;40(9):1986-1998. doi: 10.1002/hed.25195. Epub 2018 Jun 21.
279 Identification of a Novel, EBV-Based Antibody Risk Stratification Signature for Early Detection of Nasopharyngeal Carcinoma in Taiwan.Clin Cancer Res. 2018 Mar 15;24(6):1305-1314. doi: 10.1158/1078-0432.CCR-17-1929. Epub 2018 Jan 4.
280 Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma.Biochem Biophys Res Commun. 2016 Aug 5;476(4):467-474. doi: 10.1016/j.bbrc.2016.05.146. Epub 2016 May 30.
281 Identification of miRNA/mRNA-Negative Regulation Pairs in Nasopharyngeal Carcinoma.Med Sci Monit. 2016 Jun 28;22:2215-34. doi: 10.12659/msm.896047.
282 VPS33B interacts with NESG1 to modulate EGFR/PI3K/AKT/c-Myc/P53/miR-133a-3p signaling and induce 5-fluorouracil sensitivity in nasopharyngeal carcinoma.Cell Death Dis. 2019 Apr 3;10(4):305. doi: 10.1038/s41419-019-1457-9.
283 Cofilin-2 Acts as a Marker for Predicting Radiotherapy Response and Is a Potential Therapeutic Target in Nasopharyngeal Carcinoma.Med Sci Monit. 2018 Apr 17;24:2317-2329. doi: 10.12659/msm.909832.
284 An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma.Hum Mol Genet. 2016 Aug 15;25(16):3626-3634. doi: 10.1093/hmg/ddw200. Epub 2016 Jul 19.
285 Loss of Cirbp expression is correlated with the malignant progression and poor prognosis in nasopharyngeal carcinoma.Cancer Manag Res. 2019 Jul 24;11:6959-6969. doi: 10.2147/CMAR.S211389. eCollection 2019.
286 Effects of CKMT1 on radiosensitivity of nasopharyngeal carcinoma cells.Int J Radiat Biol. 2019 May;95(5):597-606. doi: 10.1080/09553002.2019.1554919. Epub 2019 Jan 4.
287 Impact of adaptive intensity-modulated radiotherapy on the neutrophil-to-lymphocyte ratio in patients with nasopharyngeal carcinoma.Radiat Oncol. 2019 Aug 22;14(1):151. doi: 10.1186/s13014-019-1350-9.
288 Pinostilbene Hydrate Inhibits the Migration and Invasion of Human Nasopharyngeal Carcinoma Cells by Downregulating MMP-2 Expression and Suppressing Epithelial-Mesenchymal Transition Through the Mitogen-Activated Protein Kinase Signaling Pathways.Front Oncol. 2019 Dec 3;9:1364. doi: 10.3389/fonc.2019.01364. eCollection 2019.
289 Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2018 May 10;37(1):102. doi: 10.1186/s13046-018-0754-y.
290 Differences in the expression profiles of claudin proteins in human nasopharyngeal carcinoma compared with non-neoplastic mucosa.Diagn Pathol. 2018 Feb 5;13(1):11. doi: 10.1186/s13000-018-0685-0.
291 Anti-Epstein-Barr virus antibodies in Beijing during 2013-2017: What we have found in the different patients.PLoS One. 2018 Mar 1;13(3):e0193171. doi: 10.1371/journal.pone.0193171. eCollection 2018.
292 LncRNA CCAT1 modulates the sensitivity of paclitaxel in nasopharynx cancers cells via miR-181a/CPEB2 axis.Cell Cycle. 2017 Apr 18;16(8):795-801. doi: 10.1080/15384101.2017.1301334. Epub 2017 Mar 30.
293 Low expression of Cyfip1 may be a potential biomarker in nasopharyngeal carcinoma.Neoplasma. 2018;65(2):292-295. doi: 10.4149/neo_2018_170318N194.
294 MicroRNA-200c promotes tumor cell proliferation and migration by directly targeting dachshund family transcription factor 1 by the Wnt/-catenin signaling pathway in nasopharyngeal carcinoma.Anticancer Drugs. 2019 Mar;30(3):218-224. doi: 10.1097/CAD.0000000000000713.
295 Effects of DACT1 methylation status on invasion and metastasis of nasopharyngeal carcinoma.Biol Res. 2019 Jun 10;52(1):31. doi: 10.1186/s40659-019-0238-3.
296 Molecular profile of nasopharyngeal carcinoma: analysing tumour suppressor gene promoter hypermethylation by multiplex ligation-dependent probe amplification.J Clin Pathol. 2018 Apr;71(4):351-359. doi: 10.1136/jclinpath-2017-204661. Epub 2017 Sep 11.
297 Cyclin-Dependent Kinase Inhibitor 3 Promotes Cancer Cell Proliferation and Tumorigenesis in Nasopharyngeal Carcinoma by Targeting p27.Oncol Res. 2017 Nov 2;25(9):1431-1440. doi: 10.3727/096504017X14835311718295. Epub 2017 Jan 20.
298 DHRS2 mediates cell growth inhibition induced by Trichothecin in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2019 Jul 10;38(1):300. doi: 10.1186/s13046-019-1301-1.
299 Natural Variations in BRLF1 Promoter Contribute to the Elevated Reactivation Level of Epstein-Barr Virus in Endemic Areas of Nasopharyngeal Carcinoma.EBioMedicine. 2018 Nov;37:101-109. doi: 10.1016/j.ebiom.2018.10.065. Epub 2018 Nov 9.
300 ELF-1 expression in nasopharyngeal carcinoma facilitates proliferation and metastasis of cancer cells via modulation of CCL2/CCR2 signaling.Cancer Manag Res. 2019 Jun 6;11:5243-5254. doi: 10.2147/CMAR.S196355. eCollection 2019.
301 Probe-based confocal laser endomicroscopy for diagnosis of nasopharyngeal carcinoma in vivo.Laryngoscope. 2019 Apr;129(4):897-902. doi: 10.1002/lary.27450. Epub 2018 Aug 27.
302 Human Ribosomal Proteins RPeL27, RPeL43, and RPeL41 Are Upregulated in Nasopharyngeal Carcinoma Cell Lines.Dis Markers. 2016;2016:5179594. doi: 10.1155/2016/5179594. Epub 2016 Nov 28.
303 CircHIPK3 promotes proliferation and invasion in nasopharyngeal carcinoma by abrogating miR-4288-induced ELF3 inhibition.J Cell Physiol. 2019 Feb;234(2):1699-1706. doi: 10.1002/jcp.27041. Epub 2018 Aug 2.
304 Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma.J Pathol. 2016 Nov;240(3):329-340. doi: 10.1002/path.4781.
305 Frequent c-myc and Int-2 overrepresentations in nasopharyngeal carcinoma.Hum Pathol. 2000 Feb;31(2):169-78. doi: 10.1016/s0046-8177(00)80216-6.
306 Chromatin remodeling factor LSH affects fumarate hydratase as a cancer driver.Chin J Cancer. 2016 Jul 30;35(1):72. doi: 10.1186/s40880-016-0138-7.
307 High FMNL3 expression promotes nasopharyngeal carcinoma cell metastasis: role in TGF-1-induced epithelia-to-mesenchymal transition.Sci Rep. 2017 Feb 15;7:42507. doi: 10.1038/srep42507.
308 Correlation between the expression of miR150 and FOXO4 and the local recurrence and metastasis of nasopharyngeal carcinoma after intensive radiotherapy.J BUON. 2018 Nov-Dec;23(6):1671-1678.
309 GALNT7, a target of miR-494, participates in the oncogenesis of nasopharyngeal carcinoma.Tumour Biol. 2016 Apr;37(4):4559-67. doi: 10.1007/s13277-015-4281-6. Epub 2015 Oct 27.
310 FMNL1 mediates nasopharyngeal carcinoma cell aggressiveness by epigenetically upregulating MTA1.Oncogene. 2018 Nov;37(48):6243-6258. doi: 10.1038/s41388-018-0351-8. Epub 2018 Jul 16.
311 Epstein-Barr virus encoded microRNA BART7 regulates radiation sensitivity of nasopharyngeal carcinoma.Oncotarget. 2017 Mar 21;8(12):20297-20308. doi: 10.18632/oncotarget.15526.
312 High pretreatment serum gamma-glutamyl transpeptidase predicts an inferior outcome in nasopharyngeal carcinoma.Oncotarget. 2017 Jun 28;8(40):67651-67662. doi: 10.18632/oncotarget.18798. eCollection 2017 Sep 15.
313 The Glypican-4 Gene Polymorphism rs1048369 and Susceptibility to Epstein-Barr Virus-Positive and -Negative Nasopharyngeal Carcinoma in Northern China.Oncol Res Treat. 2019;42(11):572-579. doi: 10.1159/000502753. Epub 2019 Sep 13.
314 Clinicopathological and prognostic significance of GPx2 protein expression in nasopharyngeal carcinoma.Cancer Biomark. 2017 Jul 4;19(3):335-340. doi: 10.3233/CBM-160542.
315 Retrospective dosimetry study of intensity-modulated radiation therapy for nasopharyngeal carcinoma: measurement-guided dose reconstruction and analysis.Radiat Oncol. 2018 Mar 15;13(1):42. doi: 10.1186/s13014-018-0993-2.
316 Real-time PCR assay for rapid detection of GSTM1 polymorphism in nasopharyngeal carcinoma patients.Asian Pac J Cancer Prev. 2008 Apr-Jun;9(2):233-7.
317 ATR activated by EB virus facilitates chemotherapy resistance to cisplatin or 5-fluorouracil in human nasopharyngeal carcinoma.Cancer Manag Res. 2019 Jan 9;11:573-585. doi: 10.2147/CMAR.S187099. eCollection 2019.
318 Histone acetyltransferase 1 up regulates Bcl2L12 expression in nasopharyngeal cancer cells.Arch Biochem Biophys. 2018 May 15;646:72-79. doi: 10.1016/j.abb.2018.03.040. Epub 2018 Apr 3.
319 HMG-box transcription factor 1: a positive regulator of the G1/S transition through the Cyclin-CDK-CDKI molecular network in nasopharyngeal carcinoma.Cell Death Dis. 2018 Jan 24;9(2):100. doi: 10.1038/s41419-017-0175-4.
320 Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance.Int J Oncol. 2000 May;16(5):917-25. doi: 10.3892/ijo.16.5.917.
321 HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma.Nat Commun. 2017 Feb 1;8:14053. doi: 10.1038/ncomms14053.
322 Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8.Oncogene. 2015 Dec 10;34(50):6079-91. doi: 10.1038/onc.2015.53. Epub 2015 Mar 9.
323 Isoprenylcysteine carboxylmethyltransferase is associated with nasopharyngeal carcinoma chemoresistance and Ras activation.Biochem Biophys Res Commun. 2019 Aug 27;516(3):784-789. doi: 10.1016/j.bbrc.2019.06.074. Epub 2019 Jun 26.
324 Triptonide inhibits human nasopharyngeal carcinoma cell growth via disrupting Lnc-RNA THOR-IGF2BP1 signaling.Cancer Lett. 2019 Feb 28;443:13-24. doi: 10.1016/j.canlet.2018.11.028. Epub 2018 Nov 29.
325 Long non-coding RNA DANCR stabilizes HIF-1 and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma.Theranostics. 2018 Nov 10;8(20):5676-5689. doi: 10.7150/thno.28538. eCollection 2018.
326 Adenovirus-mediated co-expression of ING4 and PTEN cooperatively enhances their antitumor activity in human hepatocellular carcinoma cells.Acta Biochim Biophys Sin (Shanghai). 2016 Aug;48(8):704-13. doi: 10.1093/abbs/gmw062. Epub 2016 Jul 14.
327 Insulinoma-associated protein 1 controls nasopharyngeal carcinoma to radiotherapy by modulating cyclin D1-dependent DNA repair machinery.Carcinogenesis. 2020 May 14;41(3):326-333. doi: 10.1093/carcin/bgz101.
328 Nasopharyngeal carcinoma super-enhancer-driven ETV6 correlates with prognosis.Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9683-9688. doi: 10.1073/pnas.1705236114. Epub 2017 Aug 22.
329 The developmental transcription factor IRF6 attenuates ABCG2 gene expression and distinctively reverses stemness phenotype in nasopharyngeal carcinoma.Cancer Lett. 2018 Sep 1;431:230-243. doi: 10.1016/j.canlet.2017.10.016. Epub 2017 Oct 27.
330 MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma.Cell Death Dis. 2017 Jan 19;8(1):e2566. doi: 10.1038/cddis.2016.486.
331 Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma.J Biol Chem. 2019 Jun 21;294(25):9734-9745. doi: 10.1074/jbc.RA119.008793. Epub 2019 May 9.
332 Overexpression of Kinesin Family Member 20A Correlates with Disease Progression and Poor Prognosis in Human Nasopharyngeal Cancer: A Retrospective Analysis of 105 Patients.PLoS One. 2017 Jan 12;12(1):e0169280. doi: 10.1371/journal.pone.0169280. eCollection 2017.
333 Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma.PLoS One. 2016 Mar 31;11(3):e0152820. doi: 10.1371/journal.pone.0152820. eCollection 2016.
334 Proteomic Characterization Reveals a Molecular Portrait of Nasopharyngeal Carcinoma Differentiation.J Cancer. 2017 Feb 11;8(4):570-577. doi: 10.7150/jca.17414. eCollection 2017.
335 MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/-catenin signaling pathway by down-regulating LHX2.J Exp Clin Cancer Res. 2019 Feb 21;38(1):97. doi: 10.1186/s13046-019-1023-4.
336 MiR-183 overexpression inhibits tumorigenesis and enhances DDP-induced cytotoxicity by targeting MTA1 in nasopharyngeal carcinoma.Tumour Biol. 2017 Jun;39(6):1010428317703825. doi: 10.1177/1010428317703825.
337 Quantitative Proteomic Analysis Identifies MAPK15 as a Potential Regulator of Radioresistance in Nasopharyngeal Carcinoma Cells.Front Oncol. 2018 Nov 22;8:548. doi: 10.3389/fonc.2018.00548. eCollection 2018.
338 MIIP gene expression is associated with radiosensitivity in human nasopharyngeal carcinoma cells.Oncol Lett. 2018 Jun;15(6):9471-9479. doi: 10.3892/ol.2018.8524. Epub 2018 Apr 18.
339 Matrix association region/scaffold attachment region: the crucial player in defining the positions of chromosome breaks mediated by bile acid-induced apoptosis in nasopharyngeal epithelial cells.BMC Med Genomics. 2019 Jan 15;12(1):9. doi: 10.1186/s12920-018-0465-4.
340 Calcinosis and malignancy are rare in Chinese adult patients with myositis and nuclear matrix protein 2 antibodies identified by an unlabeled immunoprecipitation assay.Clin Rheumatol. 2018 Oct;37(10):2731-2739. doi: 10.1007/s10067-018-4216-x. Epub 2018 Jul 23.
341 MORF4L1 suppresses cell proliferation, migration and invasion by increasing p21 and E-cadherin expression in nasopharyngeal carcinoma.Oncol Lett. 2019 Jan;17(1):294-302. doi: 10.3892/ol.2018.9588. Epub 2018 Oct 16.
342 Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy.BMC Cancer. 2016 Mar 7;16:190. doi: 10.1186/s12885-016-2190-8.
343 Rta-IgG as a biomarker for diagnosis and post treatment prognostic of nasopharyngeal carcinoma.Cancer Biomark. 2016;16(3):467-76. doi: 10.3233/CBM-160586.
344 In vivo three-dimensional evaluation of tumour hypoxia in nasopharyngeal carcinomas using FMT-CT and MSOT.Eur J Nucl Med Mol Imaging. 2020 May;47(5):1027-1038. doi: 10.1007/s00259-019-04526-x. Epub 2019 Nov 8.
345 Knockdown Rab11-FIP2 inhibits migration and invasion of nasopharyngeal carcinoma via suppressing Rho GTPase signaling.J Cell Biochem. 2020 Feb;121(2):1072-1086. doi: 10.1002/jcb.29344. Epub 2019 Aug 26.
346 High Expression of LINC01420 indicates an unfavorable prognosis and modulates cell migration and invasion in nasopharyngeal carcinoma.J Cancer. 2017 Jan 1;8(1):97-103. doi: 10.7150/jca.16819. eCollection 2017.
347 Reducing NETO2 expression prevents human nasopharyngeal carcinoma (NPC) progression by suppressing metastasis and inducingapoptosis.Biochem Biophys Res Commun. 2019 May 28;513(2):494-501. doi: 10.1016/j.bbrc.2019.03.061. Epub 2019 Apr 8.
348 IKBB tumor suppressive role in nasopharyngeal carcinoma via NF-B-mediated signalling.Int J Cancer. 2016 Jan 1;138(1):160-70. doi: 10.1002/ijc.29702. Epub 2015 Aug 10.
349 Whole-Exome Sequencing of Nasopharyngeal Carcinoma Families Reveals Novel Variants Potentially Involved in Nasopharyngeal Carcinoma.Sci Rep. 2019 Jul 9;9(1):9916. doi: 10.1038/s41598-019-46137-4.
350 Epstein-Barr virus-coded miR-BART13 promotes nasopharyngeal carcinoma cell growth and metastasis via targeting of the NKIRAS2/NF-B pathway.Cancer Lett. 2019 Apr 10;447:33-40. doi: 10.1016/j.canlet.2019.01.022. Epub 2019 Jan 23.
351 MiR-20a-5p promotes radio-resistance by targeting NPAS2 in nasopharyngeal cancer cells.Oncotarget. 2017 Nov 11;8(62):105873-105881. doi: 10.18632/oncotarget.22411. eCollection 2017 Dec 1.
352 Elevated SUV39H2 attributes to the progression of nasopharyngeal carcinoma via regulation of NRIP1.Biochem Biophys Res Commun. 2019 Mar 5;510(2):290-295. doi: 10.1016/j.bbrc.2019.01.092. Epub 2019 Jan 30.
353 Inhibition of the Numb/Notch signaling pathway increases radiation sensitivity in human nasopharyngeal carcinoma cells.Kaohsiung J Med Sci. 2019 Aug;35(8):474-485. doi: 10.1002/kjm2.12087. Epub 2019 Jul 4.
354 Opa interacting protein 5 promotes metastasis of nasopharyngeal carcinoma cells by promoting EMT via modulation of JAK2/STAT3 signal.Eur Rev Med Pharmacol Sci. 2019 Jan;23(2):613-621. doi: 10.26355/eurrev_201901_16875.
355 Identification of key genes involved in nasopharyngeal carcinoma.Braz J Otorhinolaryngol. 2017 Nov-Dec;83(6):670-676. doi: 10.1016/j.bjorl.2016.09.003. Epub 2016 Sep 26.
356 Therapeutic targeting of CBP/-catenin signaling reduces cancer stem-like population and synergistically suppresses growth of EBV-positive nasopharyngeal carcinoma cells with cisplatin.Sci Rep. 2015 Apr 21;5:9979. doi: 10.1038/srep09979.
357 Aberrant promoter methylation reduced the expression of protocadherin 17 in nasopharyngeal cancer.Biochem Cell Biol. 2019 Aug;97(4):364-368. doi: 10.1139/bcb-2017-0343. Epub 2018 Aug 30.
358 Blocking podoplanin suppresses growth and pulmonary metastasis of human malignant melanoma.BMC Cancer. 2019 Jun 17;19(1):599. doi: 10.1186/s12885-019-5808-9.
359 Dinitrosopiperazine-decreased PKP3 through upregulating miR-149 participates in nasopharyngeal carcinoma metastasis.Mol Carcinog. 2018 Dec;57(12):1763-1779. doi: 10.1002/mc.22895. Epub 2018 Sep 19.
360 Placenta specific 8 gene induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via the TGF-/Smad pathway.Exp Cell Res. 2019 Jan 1;374(1):172-180. doi: 10.1016/j.yexcr.2018.11.021. Epub 2018 Nov 26.
361 PLCD3, a flotillin2-interacting protein, is involved in proliferation, migration and invasion of nasopharyngeal carcinoma cells.Oncol Rep. 2018 Jan;39(1):45-52. doi: 10.3892/or.2017.6080. Epub 2017 Nov 6.
362 Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription.J Biol Chem. 2019 Oct 11;294(41):15104-15116. doi: 10.1074/jbc.RA119.008193. Epub 2019 Aug 21.
363 LncRNA POU3F3 promotes cancer cell migration and invasion in nasopharyngeal carcinoma by up-regulating TGF-1.Biosci Rep. 2019 Jan 25;39(1):BSR20181632. doi: 10.1042/BSR20181632. Print 2019 Jan 31.
364 PNUTS mediates ionizing radiation-induced CNE-2 nasopharyngeal carcinoma cell migration, invasion, and epithelial-mesenchymal transition via the PI3K/AKT signaling pathway.Onco Targets Ther. 2019 Feb 15;12:1205-1214. doi: 10.2147/OTT.S188571. eCollection 2019.
365 Inhibition of DNA methyltransferase as a novel therapeutic strategy to overcome acquired resistance to dual PI3K/mTOR inhibitors.Oncotarget. 2015 Mar 10;6(7):5134-46. doi: 10.18632/oncotarget.3016.
366 Interaction between miR-572 and PPP2R2C, and their effects on the proliferation, migration, and invasion of nasopharyngeal carcinoma (NPC) cells.Biochem Cell Biol. 2017 Oct;95(5):578-584. doi: 10.1139/bcb-2016-0237. Epub 2017 May 19.
367 Serum proteomic-based analysis identifying autoantibodies against PRDX2 and PRDX3 as potential diagnostic biomarkers in nasopharyngeal carcinoma.Clin Proteomics. 2017 Feb 1;14:6. doi: 10.1186/s12014-017-9141-5. eCollection 2017.
368 Taxol-Resistant Gene 1 (Txr1) Mediates Oxaliplatin Resistance by Inducing Autophagy in Human Nasopharyngeal Carcinoma Cells.Med Sci Monit. 2019 Jan 16;25:475-483. doi: 10.12659/MSM.913180.
369 Reduced QSOX1 enhances radioresistance in nasopharyngeal carcinoma.Oncotarget. 2017 Dec 14;9(3):3230-3241. doi: 10.18632/oncotarget.23227. eCollection 2018 Jan 9.
370 MiR-20a-5p promotes radio-resistance by targeting Rab27B in nasopharyngeal cancer cells.Cancer Cell Int. 2017 Mar 1;17:32. doi: 10.1186/s12935-017-0389-7. eCollection 2017.
371 Decreased expression of the NKG2D ligand ULBP4 may be an indicator of poor prognosis in patients with nasopharyngeal carcinoma.Oncotarget. 2017 Jun 27;8(26):42007-42019. doi: 10.18632/oncotarget.14917.
372 Identification of nasopharyngeal carcinoma metastasis-related biomarkers by iTRAQ combined with 2D-LC-MS/MS.Oncotarget. 2016 Jun 7;7(23):34022-37. doi: 10.18632/oncotarget.9067.
373 RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma.Cell Death Dis. 2016 Sep 1;7(9):e2352. doi: 10.1038/cddis.2016.252.
374 The HLA-DRB1 allele polymorphisms and nasopharyngeal carcinoma.Tumour Biol. 2016 Jun;37(6):7119-28. doi: 10.1007/s13277-016-5051-9. Epub 2016 Apr 8.
375 Association of regenerating gene 1A single-nucleotide polymorphisms and nasopharyngeal carcinoma susceptibility in southern Chinese population.Eur Arch Otorhinolaryngol. 2020 Jan;277(1):221-226. doi: 10.1007/s00405-019-05645-9. Epub 2019 Sep 20.
376 FEZF1-AS1 is a key regulator of cell cycle, epithelial-mesenchymal transition and Wnt/-catenin signaling in nasopharyngeal carcinoma cells.Biosci Rep. 2019 Jan 8;39(1):BSR20180906. doi: 10.1042/BSR20180906. Print 2019 Jan 31.
377 RGS17 inhibits tumorigenesis and improves 5-fluorouracil sensitivity in nasopharyngeal carcinoma.Onco Targets Ther. 2018 Nov 2;11:7591-7600. doi: 10.2147/OTT.S176002. eCollection 2018.
378 Prognostic value of TIGAR and LC3B protein expression in nasopharyngeal carcinoma.Cancer Manag Res. 2018 Nov 12;10:5605-5616. doi: 10.2147/CMAR.S175501. eCollection 2018.
379 RPA1 downregulation enhances nasopharyngeal cancer radiosensitivity via blocking RAD51 to the DNA damage site.Exp Cell Res. 2018 Oct 15;371(2):330-341. doi: 10.1016/j.yexcr.2018.08.025. Epub 2018 Aug 23.
380 RPA3 is a potential marker of prognosis and radioresistance for nasopharyngeal carcinoma.J Cell Mol Med. 2017 Nov;21(11):2872-2883. doi: 10.1111/jcmm.13200. Epub 2017 May 30.
381 Downregulation of ribophorin II suppresses tumor growth, migration, and invasion of nasopharyngeal carcinoma.Onco Targets Ther. 2018 Jun 15;11:3485-3494. doi: 10.2147/OTT.S158355. eCollection 2018.
382 p53R2 as a novel prognostic biomarker in nasopharyngeal carcinoma.BMC Cancer. 2017 Dec 13;17(1):846. doi: 10.1186/s12885-017-3858-4.
383 S100P is associated with proliferation and migration in nasopharyngeal carcinoma.Oncol Lett. 2017 Jul;14(1):525-532. doi: 10.3892/ol.2017.6198. Epub 2017 May 17.
384 Long noncoding RNA PXN-AS1-L promotes the malignancy of nasopharyngeal carcinoma cells via upregulation of SAPCD2.Cancer Med. 2019 Aug;8(9):4278-4291. doi: 10.1002/cam4.2227. Epub 2019 Jun 7.
385 Enhanced expression of SETDB1 possesses prognostic value and promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma.Oncol Rep. 2018 Aug;40(2):1017-1025. doi: 10.3892/or.2018.6490. Epub 2018 Jun 14.
386 TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/-catenin signaling pathway in nasopharyngeal carcinoma cells.Clin Epigenetics. 2018 Aug 3;10(1):103. doi: 10.1186/s13148-018-0535-7.
387 Hypermethylation of SHISA3 Promotes Nasopharyngeal Carcinoma Metastasis by Reducing SGSM1 Stability.Cancer Res. 2019 Feb 15;79(4):747-759. doi: 10.1158/0008-5472.CAN-18-1754. Epub 2018 Dec 20.
388 SHROOM2 inhibits tumor metastasis through RhoA-ROCK pathway-dependent and -independent mechanisms in nasopharyngeal carcinoma.Cell Death Dis. 2019 Jan 25;10(2):58. doi: 10.1038/s41419-019-1325-7.
389 Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing.BMC Cancer. 2016 Sep 6;16(1):719. doi: 10.1186/s12885-016-2755-6.
390 MicroRNA-18a promotes cancer progression through SMG1 suppression and mTOR pathway activation in nasopharyngeal carcinoma.Cell Death Dis. 2019 Oct 28;10(11):819. doi: 10.1038/s41419-019-2060-9.
391 Long Noncoding RNA LINC0086 Functions as a Tumor Suppressor in Nasopharyngeal Carcinoma by Targeting miR-214.Oncol Res. 2017 Aug 7;25(7):1189-1197. doi: 10.3727/096504017X14865126670075. Epub 2017 Feb 13.
392 MicroRNA-494-3p Promotes Cell Growth, Migration, and Invasion of Nasopharyngeal Carcinoma by Targeting Sox7.Technol Cancer Res Treat. 2018 Jan 1;17:1533033818809993. doi: 10.1177/1533033818809993.
393 SPINK6 Promotes Metastasis of Nasopharyngeal Carcinoma via Binding and Activation of Epithelial Growth Factor Receptor.Cancer Res. 2017 Jan 15;77(2):579-589. doi: 10.1158/0008-5472.CAN-16-1281. Epub 2016 Sep 26.
394 Human Leukocyte Antigen-A Allele Distribution in Nasopharyngeal Carcinoma Patients Showing Anti-Melanoma-Associated Antigen A or Synovial Sarcoma X-2 T Cell Response in Blood.Chin Med J (Engl). 2018 Jun 5;131(11):1289-1295. doi: 10.4103/0366-6999.232791.
395 STIL is upregulated in nasopharyngeal carcinoma tissues and promotes nasopharyngeal carcinoma proliferation, migration and invasion.Neoplasma. 2020 Jan;67(1):37-45. doi: 10.4149/neo_2019_190306N192. Epub 2019 Oct 8.
396 Sulforaphane promotes apoptosis, and inhibits proliferation and self-renewal of nasopharyngeal cancer cells by targeting STAT signal through miRNA-124-3p.Biomed Pharmacother. 2018 Jul;103:473-481. doi: 10.1016/j.biopha.2018.03.121. Epub 2018 Apr 24.
397 TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma.Biochem Biophys Res Commun. 2019 Apr 9;511(3):597-603. doi: 10.1016/j.bbrc.2019.02.117. Epub 2019 Feb 28.
398 TBX2 over-expression promotes nasopharyngeal cancer cell proliferation and invasion.Oncotarget. 2017 Apr 13;8(32):52699-52707. doi: 10.18632/oncotarget.17084. eCollection 2017 Aug 8.
399 Effects of TESTIN gene expression on proliferation and migration of the 5-8F nasopharyngeal carcinoma cell line.Asian Pac J Cancer Prev. 2015;16(6):2555-9. doi: 10.7314/apjcp.2015.16.6.2555.
400 TIMELESS confers cisplatin resistance in nasopharyngeal carcinoma by activating the Wnt/-catenin signaling pathway and promoting the epithelial mesenchymal transition.Cancer Lett. 2017 Aug 28;402:117-130. doi: 10.1016/j.canlet.2017.05.022. Epub 2017 Jun 3.
401 Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator.Clin Exp Metastasis. 1999 Jul;17(5):431-6. doi: 10.1023/a:1006699003525.
402 Epstein-Barr virus LMP1 modulates the malignant potential of gastric carcinoma cells involving apoptosis.Am J Pathol. 1998 Jan;152(1):63-74.
403 Knockdown of TMPRSS3, a Transmembrane Serine Protease, Inhibits Proliferation, Migration, and Invasion in Human Nasopharyngeal Carcinoma Cells.Oncol Res. 2018 Jan 19;26(1):95-101. doi: 10.3727/096504017X14920318811695. Epub 2017 Apr 12.
404 TIPE3 hypermethylation correlates with worse prognosis and promotes tumor progression in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2018 Sep 14;37(1):227. doi: 10.1186/s13046-018-0881-5.
405 CD137L-DCs, Potent Immune-Stimulators-History, Characteristics, and Perspectives.Front Immunol. 2019 Oct 2;10:2216. doi: 10.3389/fimmu.2019.02216. eCollection 2019.
406 MicroRNA-449b-5p suppresses cell proliferation, migration and invasion by targeting TPD52 in nasopharyngeal carcinoma.J Biochem. 2019 Nov 1;166(5):433-440. doi: 10.1093/jb/mvz057.
407 Evidence of LMP1-TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells.Int J Cancer. 1999 May 17;81(4):645-9. doi: 10.1002/(sici)1097-0215(19990517)81:4<645::aid-ijc22>3.0.co;2-0.
408 Overexpression of Mitochondria Mediator Gene TRIAP1 by miR-320b Loss Is Associated with Progression in Nasopharyngeal Carcinoma.PLoS Genet. 2016 Jul 18;12(7):e1006183. doi: 10.1371/journal.pgen.1006183. eCollection 2016 Jul.
409 A regulatory mutant on TRIM26 conferring the risk of nasopharyngeal carcinoma by inducing low immune response.Cancer Med. 2018 Aug;7(8):3848-3861. doi: 10.1002/cam4.1537. Epub 2018 Jun 28.
410 Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10.Oncogene. 2018 May;37(21):2873-2889. doi: 10.1038/s41388-018-0183-6. Epub 2018 Mar 9.
411 TSPAN8 serves as a prognostic marker involving Akt/MAPK pathway in nasopharyngeal carcinoma.Ann Transl Med. 2019 Sep;7(18):470. doi: 10.21037/atm.2019.08.02.
412 High-resolution melting analysis of ADAMTS18 methylation levels in gastric, colorectal and pancreatic cancers.Med Oncol. 2010 Sep;27(3):998-1004. doi: 10.1007/s12032-009-9323-8. Epub 2009 Oct 6.
413 The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L.Oncotarget. 2015 Nov 3;6(34):35893-907. doi: 10.18632/oncotarget.5651.
414 Potential role of annexin A7 in cancers.Clin Chim Acta. 2013 Aug 23;423:83-9. doi: 10.1016/j.cca.2013.04.018. Epub 2013 Apr 29.
415 Prevalent somatic BRCA1 mutations shape clinically relevant genomic patterns of nasopharyngeal carcinoma in Southeast Europe.Int J Cancer. 2018 Jan 1;142(1):66-80. doi: 10.1002/ijc.31023. Epub 2017 Sep 30.
416 ARF6-mediated endosome recycling reverses lipid accumulation defects in Niemann-Pick Type C disease.PLoS One. 2009;4(4):e5193. doi: 10.1371/journal.pone.0005193. Epub 2009 Apr 14.
417 ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma.Cancer Med. 2018 Aug;7(8):3862-3874. doi: 10.1002/cam4.1552. Epub 2018 Jun 24.
418 Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma.Cancer Res. 2003 Dec 1;63(23):8293-301.
419 The human ATF1 rs11169571 polymorphism associated with risk of nasopharyngeal carcinoma in Southern Chinese populations.Cancer Med. 2019 Apr;8(4):1893-1898. doi: 10.1002/cam4.2022. Epub 2019 Mar 23.
420 Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro.J Gen Virol. 2008 Nov;89(Pt 11):2833-2842. doi: 10.1099/vir.0.2008/003392-0.
421 Multigene pathway-based analyses identify nasopharyngeal carcinoma risk associations for cumulative adverse effects of TERT-CLPTM1L and DNA double-strand breaks repair.Int J Cancer. 2014 Oct 1;135(7):1634-45. doi: 10.1002/ijc.28802. Epub 2014 Mar 4.
422 BRCC3 acts as a prognostic marker in nasopharyngeal carcinoma patients treated with radiotherapy and mediates radiation resistance in vitro.Radiat Oncol. 2015 May 30;10:123. doi: 10.1186/s13014-015-0427-3.
423 EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC.Oncotarget. 2015 Dec 8;6(39):41766-82. doi: 10.18632/oncotarget.6155.
424 Intracellular expression profile and clinical significance of the CCR9-CCL25 chemokine receptor complex in nasopharyngeal carcinoma.J Laryngol Otol. 2015 Oct;129(10):1013-9. doi: 10.1017/S0022215115002108. Epub 2015 Aug 17.
425 The expression of cyclin G in nasopharyngeal carcinoma and its significance.Clin Exp Med. 2012 Mar;12(1):21-4. doi: 10.1007/s10238-011-0142-9. Epub 2011 Jun 19.
426 Identification of candidate molecular markers of nasopharyngeal carcinoma by microarray analysis of subtracted cDNA libraries constructed by suppression subtractive hybridization.Eur J Cancer Prev. 2008 Nov;17(6):561-71. doi: 10.1097/CEJ.0b013e328305a0e8.
427 CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma.Cancer Lett. 2011 Oct 1;309(1):54-61. doi: 10.1016/j.canlet.2011.05.016. Epub 2011 Jun 12.
428 Expression of cyclin-dependent kinase 2-associated protein 1 confers an independent prognosticator in nasopharyngeal carcinoma: a cohort study.J Clin Pathol. 2012 Sep;65(9):795-801. doi: 10.1136/jclinpath-2012-200893. Epub 2012 Jul 12.
429 Identification of aberrant cell cycle regulation in Epstein-Barr virus-associated nasopharyngeal carcinoma by cDNA microarray and gene set enrichment analysis.Acta Biochim Biophys Sin (Shanghai). 2009 May;41(5):414-28. doi: 10.1093/abbs/gmp025.
430 Association of CELF2 polymorphism and the prognosis of nasopharyngeal carcinoma in southern Chinese population.Oncotarget. 2015 Sep 29;6(29):27176-86. doi: 10.18632/oncotarget.4870.
431 Sp1 and Sp3 are involved in the full transcriptional activity of centromere protein H in human nasopharyngeal carcinoma cells.FEBS J. 2012 Aug;279(15):2714-26. doi: 10.1111/j.1742-4658.2012.08654.x. Epub 2012 Jun 25.
432 Identification of a novel methylated gene in nasopharyngeal carcinoma: TTC40.Biomed Res Int. 2014;2014:691742. doi: 10.1155/2014/691742. Epub 2014 Jun 30.
433 Tumor suppressor genes on frequently deleted chromosome 3p in nasopharyngeal carcinoma.Chin J Cancer. 2012 May;31(5):215-22. doi: 10.5732/cjc.011.10364. Epub 2012 Feb 24.
434 Downregulation of hemidesmosomal proteins in nasopharyngeal carcinoma cells.Cancer Lett. 2001 Feb 10;163(1):117-23. doi: 10.1016/s0304-3835(00)00683-2.
435 PGC1/CEBPB/CPT1A axis promotes radiation resistance of nasopharyngeal carcinoma through activating fatty acid oxidation.Cancer Sci. 2019 Jun;110(6):2050-2062. doi: 10.1111/cas.14011. Epub 2019 May 3.
436 Integrated analysis of multiple gene expression profiling datasets revealed novel gene signatures and molecular markers in nasopharyngeal carcinoma.Cancer Epidemiol Biomarkers Prev. 2012 Jan;21(1):166-75. doi: 10.1158/1055-9965.EPI-11-0593. Epub 2011 Nov 8.
437 Cytochrome b5 reductase 2 is a novel candidate tumor suppressor gene frequently inactivated by promoter hypermethylation in human nasopharyngeal carcinoma.Tumour Biol. 2014 Apr;35(4):3755-63. doi: 10.1007/s13277-013-1497-1. Epub 2013 Dec 12.
438 The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma.J Cancer Res Clin Oncol. 2012 Jan;138(1):49-56. doi: 10.1007/s00432-011-1058-1. Epub 2011 Sep 28.
439 Selection of reliable reference genes for gene expression study in nasopharyngeal carcinoma.Acta Pharmacol Sin. 2010 Nov;31(11):1487-94. doi: 10.1038/aps.2010.115.
440 Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma.Mol Cancer. 2010 Apr 16;9:78. doi: 10.1186/1476-4598-9-78.
441 Inhibiting ERp29 expression enhances radiosensitivity in human nasopharyngeal carcinoma cell lines.Med Oncol. 2012 Jun;29(2):721-8. doi: 10.1007/s12032-011-9929-5. Epub 2011 Apr 11.
442 Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma.Cancer Res. 2006 Aug 15;66(16):7999-8006. doi: 10.1158/0008-5472.CAN-05-4399.
443 Functional interaction of Ugene and EBV infection mediates tumorigenic effects.Oncogene. 2011 Jun 30;30(26):2921-32. doi: 10.1038/onc.2011.16. Epub 2011 Feb 14.
444 Anti-angiogenic and tumor-suppressive roles of candidate tumor-suppressor gene, Fibulin-2, in nasopharyngeal carcinoma.Oncogene. 2012 Feb 9;31(6):728-38. doi: 10.1038/onc.2011.272. Epub 2011 Jul 11.
445 FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma.Carcinogenesis. 2013 Sep;34(9):1984-93. doi: 10.1093/carcin/bgt165. Epub 2013 May 14.
446 Epstein-Barr virus-encoded LMP1 interacts with FGD4 to activate Cdc42 and thereby promote migration of nasopharyngeal carcinoma cells.PLoS Pathog. 2012;8(5):e1002690. doi: 10.1371/journal.ppat.1002690. Epub 2012 May 10.
447 GADD45 induces G2/M arrest in human pharynx and nasopharyngeal carcinoma cells by cucurbitacin E.Sci Rep. 2014 Sep 23;4:6454. doi: 10.1038/srep06454.
448 G(alpha)12-mediated pathway promotes invasiveness of nasopharyngeal carcinoma by modulating actin cytoskeleton reorganization.Cancer Res. 2009 Aug 1;69(15):6122-30. doi: 10.1158/0008-5472.CAN-08-3435. Epub 2009 Jul 14.
449 Native early antigen of Epstein-Barr virus, a promising antigen for diagnosis of nasopharyngeal carcinoma.J Med Virol. 2007 Nov;79(11):1710-21. doi: 10.1002/jmv.20987.
450 Exercise affects platelet-promoted tumor cell adhesion and invasion to endothelium.Eur J Appl Physiol. 2009 Feb;105(3):393-401. doi: 10.1007/s00421-008-0916-2. Epub 2008 Nov 8.
451 A gender-specific association of CNV at 6p21.3 with NPC susceptibility.Hum Mol Genet. 2011 Jul 15;20(14):2889-96. doi: 10.1093/hmg/ddr191. Epub 2011 May 2.
452 Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3.Am J Hum Genet. 2009 Aug;85(2):194-203. doi: 10.1016/j.ajhg.2009.07.007. Epub 2009 Aug 6.
453 Aberrantly hypermethylated Homeobox A2 derepresses metalloproteinase-9 through TBP and promotes invasion in Nasopharyngeal carcinoma.Oncotarget. 2013 Nov;4(11):2154-65. doi: 10.18632/oncotarget.1367.
454 Down-regulation of gp130 in nasopharyngeal carcinoma.Am J Rhinol Allergy. 2009 Jan-Feb;23(1):28-32. doi: 10.2500/ajra.2009.23.3257.
455 Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma cDNA libraries.Int J Cancer. 2003 Aug 20;106(2):244-51. doi: 10.1002/ijc.11208.
456 Epigenetic inactivation of inositol polyphosphate 4-phosphatase B (INPP4B), a regulator of PI3K/AKT signaling pathway in EBV-associated nasopharyngeal carcinoma.PLoS One. 2014 Aug 15;9(8):e105163. doi: 10.1371/journal.pone.0105163. eCollection 2014.
457 Targeting of DICE1 tumor suppressor by Epstein-Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma.Int J Cancer. 2013 Jul;133(1):79-87. doi: 10.1002/ijc.28007. Epub 2013 Feb 12.
458 Kank1 reexpression induced by 5-Aza-2'-deoxycytidine suppresses nasopharyngeal carcinoma cell proliferation and promotes apoptosis.Int J Clin Exp Pathol. 2015 Feb 1;8(2):1658-65. eCollection 2015.
459 Identification Keratin 1 as a cDDP-resistant protein in nasopharyngeal carcinoma cell lines.J Proteomics. 2012 Apr 18;75(8):2352-60. doi: 10.1016/j.jprot.2012.02.003. Epub 2012 Feb 12.
460 Regulation of DNA Damage Signaling and Cell Death Responses by Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) and LMP2A in Nasopharyngeal Carcinoma Cells.J Virol. 2015 Aug;89(15):7612-24. doi: 10.1128/JVI.00958-15. Epub 2015 May 13.
461 LRIG and cancer prognosis.Acta Oncol. 2014 Sep;53(9):1135-42. doi: 10.3109/0284186X.2014.953258. Epub 2014 Sep 2.
462 Expression and clinical significance of LRRC4 in benign and malignant nasopharyngeal diseases.Genet Mol Res. 2015 Dec 9;14(4):16403-9. doi: 10.4238/2015.December.9.9.
463 LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth factor permissive microenvironment in nasopharyngeal carcinoma.Cancer Lett. 2012 Dec 1;325(1):89-98. doi: 10.1016/j.canlet.2012.06.005. Epub 2012 Jun 26.
464 Whole blood transcriptome correlates with treatment response in nasopharyngeal carcinoma.J Exp Clin Cancer Res. 2012 Sep 17;31(1):76. doi: 10.1186/1756-9966-31-76.
465 MACC1 down-regulation inhibits proliferation and tumourigenicity of nasopharyngeal carcinoma cells through Akt/-catenin signaling pathway.PLoS One. 2013;8(4):e60821. doi: 10.1371/journal.pone.0060821. Epub 2013 Apr 3.
466 Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents.Cancer Res. 2006 Apr 15;66(8):4357-67. doi: 10.1158/0008-5472.CAN-05-3602.
467 MiR-223 targeting MAFB suppresses proliferation and migration of nasopharyngeal carcinoma cells.BMC Cancer. 2015 Jun 9;15:461. doi: 10.1186/s12885-015-1464-x.
468 Discovery of recurrent structural variants in nasopharyngeal carcinoma.Genome Res. 2014 Feb;24(2):300-9. doi: 10.1101/gr.156224.113. Epub 2013 Nov 8.
469 Candidate pathways and genes for nasopharyngeal carcinoma based on bioinformatics study.Int J Clin Exp Pathol. 2015 Feb 1;8(2):2026-32. eCollection 2015.
470 Module function and two-way clustering analysis of Epstein-Barr virus-related nasopharyngeal cancer.Genet Mol Res. 2014 Mar 17;13(1):1823-31. doi: 10.4238/2014.March.17.10.
471 Dione-thiophene conjugate inhibits proliferation and metastasis of nasopharyngeal carcinoma cells through calcium binding protein-P down-regulation.Eur J Med Chem. 2019 Apr 15;168:199-206. doi: 10.1016/j.ejmech.2019.01.051. Epub 2019 Jan 25.
472 Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization.Int J Oncol. 2002 Mar;20(3):467-73.
473 Frequent epigenetic inactivation of Myocardin in human nasopharyngeal carcinoma.Head Neck. 2011 Jan;33(1):54-9. doi: 10.1002/hed.21396.
474 Haplotype of gene Nedd4 binding protein 2 associated with sporadic nasopharyngeal carcinoma in the Southern Chinese population.J Transl Med. 2007 Jul 13;5:36. doi: 10.1186/1479-5876-5-36.
475 The Ratio of C-Reactive Protein/Albumin is a Novel Inflammatory Predictor of Overall Survival in Cisplatin-Based Treated Patients with Metastatic Nasopharyngeal Carcinoma.Dis Markers. 2017;2017:6570808. doi: 10.1155/2017/6570808. Epub 2017 Jun 6.
476 Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury.Transl Res. 2017 May;183:121-136.e9. doi: 10.1016/j.trsl.2016.12.010. Epub 2016 Dec 29.
477 Cloning and characterization of the NPCEDRG gene promoter.Mol Cell Biochem. 2011 Jan;346(1-2):1-10. doi: 10.1007/s11010-010-0584-5. Epub 2010 Sep 7.
478 Metastasis-suppressing NID2, an epigenetically-silenced gene, in the pathogenesis of nasopharyngeal carcinoma and esophageal squamous cell carcinoma.Oncotarget. 2016 Nov 29;7(48):78859-78871. doi: 10.18632/oncotarget.12889.
479 The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer.J Med Virol. 2017 Oct;89(10):1844-1851. doi: 10.1002/jmv.24863. Epub 2017 Jul 6.
480 Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses.J Virol. 2012 Jan;86(1):382-94. doi: 10.1128/JVI.05648-11. Epub 2011 Oct 19.
481 OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation.PLoS One. 2008 Aug 20;3(8):e2990. doi: 10.1371/journal.pone.0002990.
482 Haptoglobin genotypes in nasopharyngeal carcinoma.Int J Biol Markers. 2009 Jan-Mar;24(1):32-7. doi: 10.5301/jbm.2009.3305.
483 Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma.Clin Cancer Res. 2003 Aug 1;9(8):3042-6.
484 Protocadherin8 is a functional tumor suppressor frequently inactivated by promoter methylation in nasopharyngeal carcinoma.Eur J Cancer Prev. 2012 Nov;21(6):569-75. doi: 10.1097/CEJ.0b013e328350b097.
485 Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma.Oral Oncol. 2008 Apr;44(4):400-6. doi: 10.1016/j.oraloncology.2007.05.008. Epub 2007 Aug 3.
486 MicroRNA-1 induces apoptosis by targeting prothymosin alpha in nasopharyngeal carcinoma cells.J Biomed Sci. 2011 Nov 7;18(1):80. doi: 10.1186/1423-0127-18-80.
487 Prostate Tumor Overexpressed 1 (PTOV1) Is a Novel Prognostic Marker for Nasopharyngeal Carcinoma Progression and Poor Survival Outcomes.PLoS One. 2015 Aug 25;10(8):e0136448. doi: 10.1371/journal.pone.0136448. eCollection 2015.
488 PTPRG suppresses tumor growth and invasion via inhibition of Akt signaling in nasopharyngeal carcinoma.Oncotarget. 2015 May 30;6(15):13434-47. doi: 10.18632/oncotarget.3876.
489 Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma.Oncol Rep. 2004 Oct;12(4):781-7.
490 Downregulation of Ras association domain family member 6 (RASSF6) underlies the treatment resistance of highly metastatic nasopharyngeal carcinoma cells.PLoS One. 2014 Jul 16;9(7):e100843. doi: 10.1371/journal.pone.0100843. eCollection 2014.
491 RNA binding motif protein 3 (RBM3) drives radioresistance in nasopharyngeal carcinoma by reducing apoptosis via the PI3K/AKT/Bcl-2 signaling pathway.Am J Transl Res. 2018 Dec 15;10(12):4130-4140. eCollection 2018.
492 Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma.Neoplasia. 2005 Jan;7(1):67-74. doi: 10.1593/neo.04370.
493 Differential expression of a subset of ribosomal protein genes in cell lines derived from human nasopharyngeal epithelium.J Hum Genet. 2010 Feb;55(2):118-20. doi: 10.1038/jhg.2009.124. Epub 2009 Nov 20.
494 Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma.Cancer Lett. 2012 Oct 28;323(2):147-54. doi: 10.1016/j.canlet.2012.03.042. Epub 2012 Apr 6.
495 Expression of seven-in-absentia homologue 1 and hypoxia-inducible factor 1 alpha: novel prognostic factors of nasopharyngeal carcinoma.Cancer Lett. 2013 Apr 30;331(1):52-7. doi: 10.1016/j.canlet.2012.12.002. Epub 2012 Dec 8.
496 Anticancer activity of recombinant Siva1 protein in human nasopharyngeal carcinoma cell line CNE-2.Cancer Biomark. 2015;15(6):833-41. doi: 10.3233/CBM-150527.
497 The relationship between secretory leukocyte protease inhibitor expression and Epstein-Barr virus status among patients with nasopharyngeal carcinoma.Anticancer Res. 2012 Apr;32(4):1299-307.
498 MiR-142-3p Suppresses SOCS6 Expression and Promotes Cell Proliferation in Nasopharyngeal Carcinoma.Cell Physiol Biochem. 2015;36(5):1743-52. doi: 10.1159/000430147.
499 SOX1 down-regulates -catenin and reverses malignant phenotype in nasopharyngeal carcinoma.Mol Cancer. 2014 Nov 26;13:257. doi: 10.1186/1476-4598-13-257.
500 Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma.Anat Rec (Hoboken). 2014 Feb;297(2):215-21. doi: 10.1002/ar.22832. Epub 2013 Dec 24.
501 Silencing of long noncoding RNA SRRM2-AS exerts suppressive effects on angiogenesis in nasopharyngeal carcinoma via activating MYLK-mediated cGMP-PKG signaling pathway.J Cell Physiol. 2020 Nov;235(11):7757-7768. doi: 10.1002/jcp.29382. Epub 2019 Nov 19.
502 Functional analysis of the nasopharyngeal carcinoma primary tumorassociated gene interaction network.Mol Med Rep. 2015 Oct;12(4):4975-80. doi: 10.3892/mmr.2015.4090. Epub 2015 Jul 20.
503 Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk.Cancer Epidemiol Biomarkers Prev. 2006 May;15(5):862-6. doi: 10.1158/1055-9965.EPI-05-0874.
504 Correlation of p21 gene codon 31 polymorphism and TNF-alpha gene polymorphism with nasopharyngeal carcinoma.J Clin Lab Anal. 2002;16(3):146-50. doi: 10.1002/jcla.10032.
505 Expression of tumor necrosis factor receptor-associated factor 1 in nasopharyngeal carcinoma: possible upregulation by Epstein-Barr virus latent membrane protein 1.Int J Cancer. 2004 Nov 1;112(2):265-72. doi: 10.1002/ijc.20367.
506 LPLUNC1 stabilises PHB1 by counteracting TRIM21-mediated ubiquitination to inhibit NF-B activity in nasopharyngeal carcinoma.Oncogene. 2019 Jun;38(25):5062-5075. doi: 10.1038/s41388-019-0778-6. Epub 2019 Mar 18.
507 Characterization of TRIP6-dependent nasopharyngeal cancer cell migration.Tumour Biol. 2013 Aug;34(4):2329-35. doi: 10.1007/s13277-013-0780-5. Epub 2013 Apr 11.
508 ADAMTS9 is Silenced by Epigenetic Disruption in Colorectal Cancer and Inhibits Cell Growth and Metastasis by Regulating Akt/p53 Signaling.Cell Physiol Biochem. 2017;44(4):1370-1380. doi: 10.1159/000485534. Epub 2017 Nov 30.
509 Reduced expression of argininosuccinate synthetase 1 has a negative prognostic impact in patients with pancreatic ductal adenocarcinoma.PLoS One. 2017 Feb 10;12(2):e0171985. doi: 10.1371/journal.pone.0171985. eCollection 2017.
510 miR-346 promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1.J Biochem Mol Toxicol. 2016 Dec;30(12):602-607. doi: 10.1002/jbt.21827. Epub 2016 Aug 8.
511 Folic acid inhibits nasopharyngeal cancer cell proliferation and invasion via activation of FR/ERK1/2/TSLC1 pathway. Biosci Rep. 2017 Dec 5;37(6):BSR20170772. doi: 10.1042/BSR20170772. Print 2017 Dec 22.
512 Capn4 is induced by and required for Epstein-Barr virus latent membrane protein 1 promotion of nasopharyngeal carcinoma metastasis through ERK/AP-1 signaling.Cancer Sci. 2020 Jan;111(1):72-83. doi: 10.1111/cas.14227. Epub 2019 Nov 25.
513 Anti-interleukin-10 antibodies in patients with chronic active Epstein-Barr virus infection.J Infect Dis. 1997 Dec;176(6):1454-61. doi: 10.1086/514141.
514 Transmembrane Domains Mediate Intra- and Extracellular Trafficking of Epstein-Barr Virus Latent Membrane Protein 1.J Virol. 2018 Aug 16;92(17):e00280-18. doi: 10.1128/JVI.00280-18. Print 2018 Sep 1.
515 KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in nasopharyngeal carcinoma cells.Am J Otolaryngol. 2017 Sep-Oct;38(5):511-517. doi: 10.1016/j.amjoto.2016.09.011. Epub 2016 Sep 28.
516 Downregulated CDK10 expression in gastric cancer: Association with tumor progression and poor prognosis.Mol Med Rep. 2018 May;17(5):6812-6818. doi: 10.3892/mmr.2018.8662. Epub 2018 Mar 1.
517 PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy.Mol Cancer Ther. 2013 Nov;12(11):2517-28. doi: 10.1158/1535-7163.MCT-13-0010. Epub 2013 Aug 26.
518 Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand.Cancer Causes Control. 2012 Dec;23(12):1995-2002. doi: 10.1007/s10552-012-0077-9. Epub 2012 Oct 21.
519 Increased expression of Cks1 protein is associated with lymph node metastasis and poor prognosis in nasopharyngeal carcinoma.Diagn Pathol. 2017 Jan 7;12(1):2. doi: 10.1186/s13000-016-0589-9.
520 Leukocyte telomere length associates with nasopharyngeal carcinoma risk and survival in Hong Kong Chinese.Int J Cancer. 2018 Nov 1;143(9):2289-2298. doi: 10.1002/ijc.31617. Epub 2018 Aug 7.
521 Improved Radiotherapy Sensitivity of Nasopharyngeal Carcinoma Cells by miR-29-3p Targeting COL1A1 3'-UTR.Med Sci Monit. 2019 Apr 29;25:3161-3169. doi: 10.12659/MSM.915624.
522 Correlation between COX-2 gene polymorphism and susceptibility to nasopharyngeal carcinoma.Eur Rev Med Pharmacol Sci. 2019 Jul;23(13):5770-5778. doi: 10.26355/eurrev_201907_18315.
523 Anti-angiogenic pathway associations of the 3p21.3 mapped BLU gene in nasopharyngeal carcinoma.Oncogene. 2015 Aug 6;34(32):4219-28. doi: 10.1038/onc.2014.353. Epub 2014 Oct 27.
524 Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: potential usage of cystatin A for predicting nodal stage and poor prognosis.Proteomics. 2010 Jul;10(14):2644-60. doi: 10.1002/pmic.200900620.
525 MicroRNA-93 promotes cell growth and invasion in nasopharyngeal carcinoma by targeting disabled homolog-2.Cancer Lett. 2015 Jul 28;363(2):146-55. doi: 10.1016/j.canlet.2015.04.006. Epub 2015 Apr 16.
526 Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma.Cancer Biol Ther. 2009 Mar;8(5):444-51. doi: 10.4161/cbt.8.5.7686. Epub 2009 Mar 21.
527 Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype.Int J Cancer. 2012 Jan 1;130(1):83-95. doi: 10.1002/ijc.25970. Epub 2011 Apr 20.
528 Downregulated ECRG4 is correlated with lymph node metastasis and predicts poor outcome for nasopharyngeal carcinoma patients.Clin Transl Oncol. 2017 Jan;19(1):84-90. doi: 10.1007/s12094-016-1507-z. Epub 2016 Apr 27.
529 EMP2 re-expression inhibits growth and enhances radiosensitivity in nasopharyngeal carcinoma.Tumour Biol. 2017 Mar;39(3):1010428317695972. doi: 10.1177/1010428317695972.
530 Is excision repair cross-complementation Group1 expression a biological marker in nasopharynx carcinoma?.J Cancer Res Ther. 2019 Jul-Sep;15(3):550-555. doi: 10.4103/0973-1482.206865.
531 Snail promotes metastasis of nasopharyngeal carcinoma partly by down-regulating TEL2.Cancer Commun (Lond). 2018 Sep 25;38(1):58. doi: 10.1186/s40880-018-0328-6.
532 Oncogenic fibulin-5 promotes nasopharyngeal carcinoma cell metastasis through the FLJ10540/AKT pathway and correlates with poor prognosis.PLoS One. 2013 Dec 27;8(12):e84218. doi: 10.1371/journal.pone.0084218. eCollection 2013.
533 An Oncogenic Role for Four-Jointed Box 1 (FJX1) in Nasopharyngeal Carcinoma.Dis Markers. 2019 May 19;2019:3857853. doi: 10.1155/2019/3857853. eCollection 2019.
534 Prognostic value of flotillins (flotillin-1 and flotillin-2) in human cancers: A meta-analysis.Clin Chim Acta. 2018 Jun;481:90-98. doi: 10.1016/j.cca.2018.02.036. Epub 2018 Feb 28.
535 The role of MALAT1/miR-1/slug axis on radioresistance in nasopharyngeal carcinoma.Tumour Biol. 2016 Mar;37(3):4025-33. doi: 10.1007/s13277-015-4227-z. Epub 2015 Oct 20.
536 Follistatin-Like Protein-1 Upregulates Dendritic Cell-Based Immunity in Patients with Nasopharyngeal Carcinoma.J Interferon Cytokine Res. 2017 Nov;37(11):494-502. doi: 10.1089/jir.2017.0064.
537 Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology.Oncotarget. 2017 Apr 13;8(32):52708-52723. doi: 10.18632/oncotarget.17085. eCollection 2017 Aug 8.
538 Role of the RARRES1 gene in nasopharyngeal carcinoma.Cancer Genet Cytogenet. 2009 Oct;194(1):58-64. doi: 10.1016/j.cancergencyto.2009.06.005.
539 Fine-mapping of HLA class I and class II genes identified two independent novel variants associated with nasopharyngeal carcinoma susceptibility.Cancer Med. 2018 Dec;7(12):6308-6316. doi: 10.1002/cam4.1838. Epub 2018 Oct 30.
540 Are HLA-E*0103 alleles predictive markers for nasopharyngeal cancer risk?.Pathol Res Pract. 2016 Apr;212(4):345-9. doi: 10.1016/j.prp.2016.01.010. Epub 2016 Feb 2.
541 MicroRNA-185 inhibits cell proliferation while promoting apoptosis and autophagy through negative regulation of TGF-1/mTOR axis and HOXC6 in nasopharyngeal carcinoma.Cancer Biomark. 2018;23(1):107-123. doi: 10.3233/CBM-181459.
542 N,N'-dinitrosopiperazine--mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma.PLoS One. 2013 May 7;8(5):e62908. doi: 10.1371/journal.pone.0062908. Print 2013.
543 Interferon-alpha and p53 alleles involved in nasopharyngeal carcinoma.Carcinogenesis. 1997 Apr;18(4):645-7. doi: 10.1093/carcin/18.4.645.
544 Expression of interferon regulatory factor 7 correlates with the expression of Epstein-Barr Virus latent membrane protein 1 and cervical lymph node metastasis in nasopharyngeal cancer.Pathol Int. 2017 Sep;67(9):461-466. doi: 10.1111/pin.12561. Epub 2017 Jul 16.
545 Effects of KIF2A on the prognosis of nasopharyngeal carcinoma and nasopharyngeal carcinoma cells.Oncol Lett. 2019 Sep;18(3):2718-2723. doi: 10.3892/ol.2019.10597. Epub 2019 Jul 9.
546 Overexpression of the Oncogenic Variant (KLF6-SV1) in Young NPC Patients and Correlation with Lack of E-Cadherin.Anal Cell Pathol (Amst). 2018 Apr 19;2018:9654067. doi: 10.1155/2018/9654067. eCollection 2018.
547 Mitotic arrest deficient 2 expression induces chemosensitization to a DNA-damaging agent, cisplatin, in nasopharyngeal carcinoma cells.Cancer Res. 2005 Feb 15;65(4):1450-8. doi: 10.1158/0008-5472.CAN-04-0567.
548 Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3/-catenin signaling pathway.EBioMedicine. 2019 Oct;48:386-404. doi: 10.1016/j.ebiom.2019.08.040. Epub 2019 Oct 5.
549 FBW7 increases drug sensitivity to cisplatin in human nasopharyngeal carcinoma by downregulating the expression of multidrug resistance-associated protein.Tumour Biol. 2015 Jun;36(6):4197-202. doi: 10.1007/s13277-015-3056-4. Epub 2015 Jan 14.
550 Loss of NFBD1/MDC1 disrupts homologous recombination repair and sensitizes nasopharyngeal carcinoma cells to PARP inhibitors.J Biomed Sci. 2019 Feb 4;26(1):14. doi: 10.1186/s12929-019-0507-z.
551 Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9.Signal Transduct Target Ther. 2019 Nov 18;4:48. doi: 10.1038/s41392-019-0084-3. eCollection 2019.
552 Prognostic significance of DNA flow cytometric analysis in patients with nasopharyngeal carcinoma.Cancer. 1998 Dec 1;83(11):2284-92.
553 Methylation of nucleolar and coiled-body phosphoprotein1 is associated with the mechanism of tumorigenesis in hepatocellular carcinoma.Oncol Rep. 2013 Nov;30(5):2220-8. doi: 10.3892/or.2013.2676. Epub 2013 Aug 20.
554 The characteristics and biological significance of NPC2: Mutation and disease.Mutat Res Rev Mutat Res. 2019 Oct-Dec;782:108284. doi: 10.1016/j.mrrev.2019.108284. Epub 2019 Jul 8.
555 miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma.Oncotarget. 2015 Jun 30;6(18):15995-6018. doi: 10.18632/oncotarget.4138.
556 OVOL2 links stemness and metastasis via fine-tuning epithelial-mesenchymal transition in nasopharyngeal carcinoma.Theranostics. 2018 Mar 8;8(8):2202-2216. doi: 10.7150/thno.24003. eCollection 2018.
557 High-resolution melting analysis of PCDH10 methylation levels in gastric, colorectal and pancreatic cancers.Neoplasma. 2010;57(3):247-52. doi: 10.4149/neo_2010_03_247.
558 MircoRNA-629 promotes proliferation, invasion and migration of nasopharyngeal carcinoma through targeting PDCD4.Eur Rev Med Pharmacol Sci. 2019 Jan;23(1):207-216. doi: 10.26355/eurrev_201901_16766.
559 Differential expression of osteoblast-specific factor 2 and polymeric immunoglobulin receptor genes in nasopharyngeal carcinoma.Head Neck. 2005 Oct;27(10):873-82. doi: 10.1002/hed.20253.
560 Comprehensive pathway-based association study of DNA repair gene variants and the risk of nasopharyngeal carcinoma.Cancer Res. 2011 Apr 15;71(8):3000-8. doi: 10.1158/0008-5472.CAN-10-0469. Epub 2011 Mar 2.
561 Mutation screening analysis of the retinoblastoma related gene RB2/p130 in sporadic ovarian cancer and head and neck squamous cell cancer.Mol Pathol. 2002 Jun;55(3):153-5. doi: 10.1136/mp.55.3.153.
562 RBMS3 is a tumor suppressor gene that acts as a favorable prognostic marker in lung squamous cell carcinoma.Med Oncol. 2015 Feb;32(2):459. doi: 10.1007/s12032-014-0459-9. Epub 2015 Jan 15.
563 Inflammation and cancer.Environ Health Prev Med. 2018 Oct 20;23(1):50. doi: 10.1186/s12199-018-0740-1.
564 Quantitation of DNA methylation in Epstein-Barr virus-associated nasopharyngeal carcinoma by bisulfite amplicon sequencing.BMC Cancer. 2017 Jul 17;17(1):489. doi: 10.1186/s12885-017-3482-3.
565 Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma.Mol Imaging Biol. 2019 Oct;21(5):954-964. doi: 10.1007/s11307-018-01304-3.
566 Identification of genes involved in radioresistance of nasopharyngeal carcinoma by integrating gene ontology and protein-protein interaction networks.Int J Oncol. 2012 Jan;40(1):85-92. doi: 10.3892/ijo.2011.1172. Epub 2011 Aug 19.
567 F-127-PEI co-delivering docetaxel and TFPI-2 plasmid for nasopharyngeal cancer therapy.Mater Sci Eng C Mater Biol Appl. 2016 Apr 1;61:269-77. doi: 10.1016/j.msec.2015.12.049. Epub 2015 Dec 24.
568 Secreted TGF-beta-induced protein promotes aggressive progression in bladder cancer cells.Cancer Manag Res. 2019 Jul 25;11:6995-7006. doi: 10.2147/CMAR.S208984. eCollection 2019.
569 MicroRNA-139-5p affects cisplatin sensitivity in human nasopharyngeal carcinoma cells by regulating the epithelial-to-mesenchymal transition.Gene. 2018 Apr 30;652:48-58. doi: 10.1016/j.gene.2018.02.003. Epub 2018 Feb 8.
570 Expression and purification of a rapidly degraded protein, TMEM8B-a, in mammalian cell line.Protein Expr Purif. 2018 Nov;151:38-45. doi: 10.1016/j.pep.2018.06.002. Epub 2018 Jun 8.
571 NF-B-mediated transcriptional upregulation of TNFAIP2 by the Epstein-Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma.Oncogene. 2014 Jul 10;33(28):3648-59. doi: 10.1038/onc.2013.345. Epub 2013 Aug 26.
572 TNFRSF19 Inhibits TGF Signaling through Interaction with TGF Receptor Type I to Promote Tumorigenesis.Cancer Res. 2018 Jul 1;78(13):3469-3483. doi: 10.1158/0008-5472.CAN-17-3205. Epub 2018 May 7.
573 MicroRNA?22 acts as tumor suppressor by targeting TRIM29 and blocking the activity of PI3K/AKT signaling in nasopharyngeal carcinoma invitro.Mol Med Rep. 2018 Jun;17(6):8244-8252. doi: 10.3892/mmr.2018.8894. Epub 2018 Apr 19.