General Information of Drug Off-Target (DOT) (ID: OT8ED05P)

DOT Name Histone H2B type 1-O (H2BC17)
Synonyms H2B-clustered histone 17; Histone H2B.2; Histone H2B.n; H2B/n
Gene Name H2BC17
Related Disease
Systemic lupus erythematosus ( )
UniProt ID
H2B1O_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7WLP
Pfam ID
PF00125
Sequence
MPDPAKSAPAPKKGSKKAVTKAQKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGISSKAM
GIMNSFVNDIFERIAGEASRLAHYNKRSTITSREIQTAVRLLLPGELAKHAVSEGTKAVT
KYTSSK
Function
Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
KEGG Pathway
Neutrophil extracellular trap formation (hsa04613 )
Alcoholism (hsa05034 )
Viral carcinogenesis (hsa05203 )
Systemic lupus erythematosus (hsa05322 )
Reactome Pathway
Cleavage of the damaged pyrimidine (R-HSA-110329 )
Recognition and association of DNA glycosylase with site containing an affected purine (R-HSA-110330 )
Cleavage of the damaged purine (R-HSA-110331 )
Meiotic synapsis (R-HSA-1221632 )
Packaging Of Telomere Ends (R-HSA-171306 )
Pre-NOTCH Transcription and Translation (R-HSA-1912408 )
Formation of the beta-catenin (R-HSA-201722 )
PRC2 methylates histones and DNA (R-HSA-212300 )
Condensation of Prophase Chromosomes (R-HSA-2299718 )
Oxidative Stress Induced Senescence (R-HSA-2559580 )
Senescence-Associated Secretory Phenotype (SASP) (R-HSA-2559582 )
DNA Damage/Telomere Stress Induced Senescence (R-HSA-2559586 )
HDACs deacetylate histones (R-HSA-3214815 )
HATs acetylate histones (R-HSA-3214847 )
SIRT1 negatively regulates rRNA expression (R-HSA-427359 )
ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression (R-HSA-427389 )
NoRC negatively regulates rRNA expression (R-HSA-427413 )
B-WICH complex positively regulates rRNA expression (R-HSA-5250924 )
DNA methylation (R-HSA-5334118 )
Transcriptional regulation by small RNAs (R-HSA-5578749 )
Activation of anterior HOX genes in hindbrain development during early embryogenesis (R-HSA-5617472 )
Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 (R-HSA-5625886 )
Ub-specific processing proteases (R-HSA-5689880 )
Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks (R-HSA-5693565 )
Nonhomologous End-Joining (NHEJ) (R-HSA-5693571 )
Processing of DNA double-strand break ends (R-HSA-5693607 )
Deposition of new CENPA-containing nucleosomes at the centromere (R-HSA-606279 )
Assembly of the ORC complex at the origin of replication (R-HSA-68616 )
G2/M DNA damage checkpoint (R-HSA-69473 )
RNA Polymerase I Promoter Opening (R-HSA-73728 )
RNA Polymerase I Promoter Escape (R-HSA-73772 )
E3 ubiquitin ligases ubiquitinate target proteins (R-HSA-8866654 )
RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function (R-HSA-8936459 )
RUNX1 regulates transcription of genes involved in differentiation of HSCs (R-HSA-8939236 )
Estrogen-dependent gene expression (R-HSA-9018519 )
Meiotic recombination (R-HSA-912446 )
HCMV Early Events (R-HSA-9609690 )
HCMV Late Events (R-HSA-9610379 )
Transcriptional regulation of granulopoiesis (R-HSA-9616222 )
Inhibition of DNA recombination at telomere (R-HSA-9670095 )
Defective pyroptosis (R-HSA-9710421 )
Amyloid fiber formation (R-HSA-977225 )
Chromatin modifications during the maternal to zygotic transition (MZT) (R-HSA-9821002 )
Replacement of protamines by nucleosomes in the male pronucleus (R-HSA-9821993 )
Recognition and association of DNA glycosylase with site containing an affected pyrimidine (R-HSA-110328 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Systemic lupus erythematosus DISI1SZ7 Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Histone H2B type 1-O (H2BC17). [2]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Histone H2B type 1-O (H2BC17). [13]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Histone H2B type 1-O (H2BC17). [13]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Histone H2B type 1-O (H2BC17). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Histone H2B type 1-O (H2BC17). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Histone H2B type 1-O (H2BC17). [5]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Histone H2B type 1-O (H2BC17). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Histone H2B type 1-O (H2BC17). [7]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Histone H2B type 1-O (H2BC17). [7]
Menadione DMSJDTY Approved Menadione affects the expression of Histone H2B type 1-O (H2BC17). [8]
Berberine DMC5Q8X Phase 4 Berberine decreases the expression of Histone H2B type 1-O (H2BC17). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Histone H2B type 1-O (H2BC17). [10]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Histone H2B type 1-O (H2BC17). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Histone H2B type 1-O (H2BC17). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 The molecular mechanism study of insulin in promoting wound healing under high-glucose conditions.J Cell Biochem. 2019 Sep;120(9):16244-16253. doi: 10.1002/jcb.28905. Epub 2019 May 12.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Berberine acts as a putative epigenetic modulator by affecting the histone code. Toxicol In Vitro. 2016 Oct;36:10-17. doi: 10.1016/j.tiv.2016.06.004. Epub 2016 Jun 13.
10 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
11 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.