General Information of Drug Off-Target (DOT) (ID: OT8N9TT5)

DOT Name Phenylalanine--tRNA ligase beta subunit (FARSB)
Synonyms EC 6.1.1.20; Phenylalanyl-tRNA synthetase beta subunit; PheRS
Gene Name FARSB
Related Disease
Intellectual disability ( )
Isolated congenital microcephaly ( )
Rajab interstitial lung disease with brain calcifications 1 ( )
Rajab interstitial lung disease with brain calcifications ( )
UniProt ID
SYFB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3L4G
EC Number
6.1.1.20
Pfam ID
PF03483 ; PF03484 ; PF18262 ; PF17759
Sequence
MPTVSVKRDLLFQALGRTYTDEEFDELCFEFGLELDEITSEKEIISKEQGNVKAAGASDV
VLYKIDVPANRYDLLCLEGLVRGLQVFKERIKAPVYKRVMPDGKIQKLIITEETAKIRPF
AVAAVLRNIKFTKDRYDSFIELQEKLHQNICRKRALVAIGTHDLDTLSGPFTYTAKRPSD
IKFKPLNKTKEYTACELMNIYKTDNHLKHYLHIIENKPLYPVIYDSNGVVLSMPPIINGD
HSRITVNTRNIFIECTGTDFTKAKIVLDIIVTMFSEYCENQFTVEAAEVVFPNGKSHTFP
ELAYRKEMVRADLINKKVGIRETPENLAKLLTRMYLKSEVIGDGNQIEIEIPPTRADIIH
ACDIVEDAAIAYGYNNIQMTLPKTYTIANQFPLNKLTELLRHDMAAAGFTEALTFALCSQ
EDIADKLGVDISATKAVHISNPKTAEFQVARTTLLPGLLKTIAANRKMPLPLKLFEISDI
VIKDSNTDVGAKNYRHLCAVYYNKNPGFEIIHGLLDRIMQLLDVPPGEDKGGYVIKASEG
PAFFPGRCAEIFARGQSVGKLGVLHPDVITKFELTMPCSSLEINVGPFL
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Cytosolic tRNA aminoacylation (R-HSA-379716 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Intellectual disability DISMBNXP Strong Biomarker [1]
Isolated congenital microcephaly DISUXHZ6 Strong Biomarker [1]
Rajab interstitial lung disease with brain calcifications 1 DISV7GZY Strong Autosomal recessive [2]
Rajab interstitial lung disease with brain calcifications DISP95VU Limited Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [3]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [10]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [11]
Menadione DMSJDTY Approved Menadione affects the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [10]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [12]
Irinotecan DMP6SC2 Approved Irinotecan decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [13]
Clozapine DMFC71L Approved Clozapine increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [14]
Sodium phenylbutyrate DMXLBCQ Approved Sodium phenylbutyrate decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [15]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [16]
GSK2110183 DMZHB37 Phase 2 GSK2110183 decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [17]
Tanespimycin DMNLQHK Phase 2 Tanespimycin increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [18]
NVP-AUY922 DMTYXQF Phase 2 NVP-AUY922 increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [19]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [23]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [24]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Phenylalanine--tRNA ligase beta subunit (FARSB). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)

References

1 Homozygosity for FARSB mutation leads to Phe-tRNA synthetase-related disease of growth restriction, brain calcification, and interstitial lung disease. Hum Mutat. 2018 Oct;39(10):1355-1359. doi: 10.1002/humu.23595. Epub 2018 Jul 30.
2 Compound heterozygosity for loss-of-function FARSB variants in a patient with classic features of recessive aminoacyl-tRNA synthetase-related disease. Hum Mutat. 2018 Jun;39(6):834-840. doi: 10.1002/humu.23424. Epub 2018 Apr 10.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
13 Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin Cancer Res. 2008 Oct 15;14(20):6647-55.
14 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
15 Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins. Physiol Genomics. 2004 Jan 15;16(2):204-11.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Novel ATP-competitive Akt inhibitor afuresertib suppresses the proliferation of malignant pleural mesothelioma cells. Cancer Med. 2017 Nov;6(11):2646-2659. doi: 10.1002/cam4.1179. Epub 2017 Sep 27.
18 Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells. 2019 Jul 31;8(8):806. doi: 10.3390/cells8080806.
19 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
20 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
21 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
24 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
25 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.