General Information of Drug Off-Target (DOT) (ID: OT9EVUN1)

DOT Name MFS-type transporter SLC18B1 (SLC18B1)
Synonyms Solute carrier family 18 member B1; Vesicular polyamine transporter; VPAT
Gene Name SLC18B1
UniProt ID
S18B1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07690
Sequence
MEALGDLEGPRAPGGDDPAGSAGETPGWLSREQVFVLISAASVNLGSMMCYSILGPFFPK
EAEKKGASNTIIGMIFGCFALFELLASLVFGNYLVHIGAKFMFVAGMFVSGGVTILFGVL
DRVPDGPVFIAMCFLVRVMDAVSFAAAMTASSSILAKAFPNNVATVLGSLETFSGLGLIL
GPPVGGFLYQSFGYEVPFIVLGCVVLLMVPLNMYILPNYESDPGEHSFWKLIALPKVGLI
AFVINSLSSCFGFLDPTLSLFVLEKFNLPAGYVGLVFLGMALSYAISSPLFGLLSDKRPP
LRKWLLVFGNLITAGCYMLLGPVPILHIKSQLWLLVLILVVSGLSAGMSIIPTFPEILSC
AHENGFEEGLSTLGLVSGLFSAMWSIGAFMGPTLGGFLYEKIGFEWAAAIQGLWALISGL
AMGLFYLLEYSRRKRSKSQNILSTEEERTTLLPNET
Function
Proton-coupled polyamine antiporter involved in the translocation of polyamines from cytosol into secretory vesicles prior to their release via exocytosis. Uses the electrochemical proton gradient generated by a V-type proton-pumping ATPase to couple the efflux of protons with the uptake of a polyamine molecule. Facilitates vesicular storage of spermine and spermidine in astrocytes with an impact on glutamatergic neuronal transmission and memory formation. Upon antigen stimulation, regulates polyamine accumulation and release in mast cell secretory granules, which in turn potentiates mast cell degranulation and histamine secretion.
Tissue Specificity Expressed in various tissues including lung, placenta, adrenal gland, liver, testis, and brain.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [5]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [6]
Quercetin DM3NC4M Approved Quercetin decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of MFS-type transporter SLC18B1 (SLC18B1). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [9]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [10]
Testosterone DM7HUNW Approved Testosterone decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [9]
Panobinostat DM58WKG Approved Panobinostat increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [11]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [10]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [13]
Paraquat DMR8O3X Investigative Paraquat increases the expression of MFS-type transporter SLC18B1 (SLC18B1). [14]
AM251 DMTAWHL Investigative AM251 decreases the expression of MFS-type transporter SLC18B1 (SLC18B1). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
9 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
10 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013 Mar;3(3):308-23.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
14 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
15 Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006 Mar 20;580(7):1733-9.