General Information of Drug Off-Target (DOT) (ID: OTAU54U3)

DOT Name Keratin, type II cytoskeletal 80 (KRT80)
Synonyms Cytokeratin-80; CK-80; Keratin-80; K80; Type-II keratin Kb20
Gene Name KRT80
Related Disease
Advanced cancer ( )
Pachyonychia congenita ( )
Breast cancer ( )
Breast carcinoma ( )
Colorectal carcinoma ( )
Monilethrix ( )
Neoplasm ( )
UniProt ID
K2C80_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00038
Sequence
MACRSCVVGFSSLSSCEVTPVGSPRPGTSGWDSCRAPGPGFSSRSLTGCWSAGTISKVTV
NPGLLVPLDVKLDPAVQQLKNQEKEEMKALNDKFASLIGKVQALEQRNQLLETRWSFLQG
QDSAIFDLGHLYEEYQGRLQEELRKVSQERGQLEANLLQVLEKVEEFRIRYEDEISKRTD
MEFTFVQLKKDLDAECLHRTELETKLKSLESFVELMKTIYEQELKDLAAQVKDVSVTVGM
DSRCHIDLSGIVEEVKAQYDAVAARSLEEAEAYSRSQLEEQAARSAEYGSSLQSSRSEIA
DLNVRIQKLRSQILSVKSHCLKLEENIKTAEEQGELAFQDAKTKLAQLEAALQQAKQDMA
RQLRKYQELMNVKLALDIEIATYRKLVEGEEGRMDSPSATVVSAVQSRCKTAASRSGLSK
APSRKKKGSKGPVIKITEMSEKYFSQESEVSE
Tissue Specificity Weakly expressed in tongue, but not skin or in any other tissues or organs examined.
Reactome Pathway
Formation of the cornified envelope (R-HSA-6809371 )
Keratinization (R-HSA-6805567 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Advanced cancer DISAT1Z9 Definitive Altered Expression [1]
Pachyonychia congenita DISW8VPN Definitive Biomarker [2]
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [3]
Monilethrix DISF9MNT Strong Genetic Variation [4]
Neoplasm DISZKGEW Strong Altered Expression [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Keratin, type II cytoskeletal 80 (KRT80). [5]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Keratin, type II cytoskeletal 80 (KRT80). [23]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [10]
Testosterone DM7HUNW Approved Testosterone increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [10]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [11]
Hydroquinone DM6AVR4 Approved Hydroquinone increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [12]
Etoposide DMNH3PG Approved Etoposide increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [13]
Nicotine DMWX5CO Approved Nicotine increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [14]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [15]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [13]
Dactinomycin DM2YGNW Approved Dactinomycin increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [16]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [18]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [19]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [20]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Keratin, type II cytoskeletal 80 (KRT80). [21]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Keratin, type II cytoskeletal 80 (KRT80). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 SREBP1 drives Keratin-80-dependent cytoskeletal changes and invasive behavior in endocrine-resistant ER breast cancer.Nat Commun. 2019 May 9;10(1):2115. doi: 10.1038/s41467-019-09676-y.
2 Mutation of a type II keratin gene (K6a) in pachyonychia congenita.Nat Genet. 1995 Jul;10(3):363-5. doi: 10.1038/ng0795-363.
3 Keratin 80 promotes migration and invasion of colorectal carcinoma by interacting with PRKDC via activating the AKT pathway.Cell Death Dis. 2018 Sep 27;9(10):1009. doi: 10.1038/s41419-018-1030-y.
4 Mutations in the hair cortex keratin hHb6 cause the inherited hair disease monilethrix. Nat Genet. 1997 Aug;16(4):372-4. doi: 10.1038/ng0897-372.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
11 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
12 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
13 Genomic profiling uncovers a molecular pattern for toxicological characterization of mutagens and promutagens in vitro. Toxicol Sci. 2011 Jul;122(1):185-97.
14 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
15 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
16 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
17 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
20 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
21 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
22 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
23 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.