General Information of Drug Off-Target (DOT) (ID: OTBIN5IP)

DOT Name Saccharopine dehydrogenase-like oxidoreductase (SCCPDH)
Synonyms EC 1.-.-.-
Gene Name SCCPDH
UniProt ID
SCPDL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.-.-.-
Pfam ID
PF03435
Sequence
MATEQRPFHLVVFGASGFTGQFVTEEVAREQVDPERSSRLPWAVAGRSREKLQRVLEKAA
LKLGRPTLSSEVGIIICDIANPASLDEMAKQATVVLNCVGPYRFYGEPVIKACIENGASC
IDISGEPQFLELMQLKYHEKAADKGVYIIGSSGFDSIPADLGVIYTRNKMNGTLTAVESF
LTIHSGPEGLSIHDGTWKSAIYGFGDQSNLRKLRNVSNLKPVPLIGPKLKRRWPISYCRE
LKGYSIPFMGSDVSVVRRTQRYLYENLEESPVQYAAYVTVGGITSVIKLMFAGLFFLFFV
RFGIGRQLLIKFPWFFSFGYFSKQGPTQKQIDAASFTLTFFGQGYSQGTGTDKNKPNIKI
CTQVKGPEAGYVATPIAMVQAAMTLLSDASHLPKAGGVFTPGAAFSKTKLIDRLNKHGIE
FSVISSSEV
Reactome Pathway
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [7]
Fluorouracil DMUM7HZ Approved Fluorouracil increases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [8]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [9]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [10]
Tamibarotene DM3G74J Phase 3 Tamibarotene decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [3]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [15]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [16]
CH-223191 DMMJZYC Investigative CH-223191 decreases the expression of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Saccharopine dehydrogenase-like oxidoreductase (SCCPDH). [13]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 5-Fluorouracil up-regulates interferon pathway gene expression in esophageal cancer cells. Anticancer Res. 2005 Sep-Oct;25(5):3271-8.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
11 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
14 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol Lett. 2018 Aug;292:162-174.