General Information of Drug Off-Target (DOT) (ID: OTBZSPEL)

DOT Name Unconventional myosin-VIIa (MYO7A)
Gene Name MYO7A
Related Disease
Autosomal dominant nonsyndromic hearing loss 12 ( )
Autosomal recessive nonsyndromic hearing loss 2 ( )
Metastatic malignant neoplasm ( )
Nonsyndromic genetic hearing loss ( )
Usher syndrome type 1 ( )
Usher syndrome type 1B ( )
Auditory neuropathy ( )
Autosomal dominant nonsyndromic hearing loss 11 ( )
Autosomal dominant nonsyndromic hearing loss 13 ( )
Autosomal dominant nonsyndromic hearing loss 9 ( )
Bardet biedl syndrome ( )
Blindness ( )
Deafness ( )
Lung cancer ( )
Lung carcinoma ( )
Melanoma ( )
Usher syndrome ( )
Usher syndrome type 2D ( )
Usher syndrome type 3 ( )
Age-related macular degeneration ( )
Ear malformation ( )
Retinopathy ( )
Autosomal dominant nonsyndromic hearing loss ( )
Hearing loss, autosomal recessive ( )
Usher syndrome type 2 ( )
Leber congenital amaurosis ( )
Retinitis pigmentosa ( )
Severe early-childhood-onset retinal dystrophy ( )
UniProt ID
MYO7A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5MV9
Pfam ID
PF00373 ; PF00612 ; PF00063 ; PF00784
Sequence
MVILQQGDHVWMDLRLGQEFDVPIGAVVKLCDSGQVQVVDDEDNEHWISPQNATHIKPMH
PTSVHGVEDMIRLGDLNEAGILRNLLIRYRDHLIYTYTGSILVAVNPYQLLSIYSPEHIR
QYTNKKIGEMPPHIFAIADNCYFNMKRNSRDQCCIISGESGAGKTESTKLILQFLAAISG
QHSWIEQQVLEATPILEAFGNAKTIRNDNSSRFGKYIDIHFNKRGAIEGAKIEQYLLEKS
RVCRQALDERNYHVFYCMLEGMSEDQKKKLGLGQASDYNYLAMGNCITCEGRVDSQEYAN
IRSAMKVLMFTDTENWEISKLLAAILHLGNLQYEARTFENLDACEVLFSPSLATAASLLE
VNPPDLMSCLTSRTLITRGETVSTPLSREQALDVRDAFVKGIYGRLFVWIVDKINAAIYK
PPSQDVKNSRRSIGLLDIFGFENFAVNSFEQLCINFANEHLQQFFVRHVFKLEQEEYDLE
SIDWLHIEFTDNQDALDMIANKPMNIISLIDEESKFPKGTDTTMLHKLNSQHKLNANYIP
PKNNHETQFGINHFAGIVYYETQGFLEKNRDTLHGDIIQLVHSSRNKFIKQIFQADVAMG
AETRKRSPTLSSQFKRSLELLMRTLGACQPFFVRCIKPNEFKKPMLFDRHLCVRQLRYSG
MMETIRIRRAGYPIRYSFVEFVERYRVLLPGVKPAYKQGDLRGTCQRMAEAVLGTHDDWQ
IGKTKIFLKDHHDMLLEVERDKAITDRVILLQKVIRGFKDRSNFLKLKNAATLIQRHWRG
HNCRKNYGLMRLGFLRLQALHRSRKLHQQYRLARQRIIQFQARCRAYLVRKAFRHRLWAV
LTVQAYARGMIARRLHQRLRAEYLWRLEAEKMRLAEEEKLRKEMSAKKAKEEAERKHQER
LAQLAREDAERELKEKEAARRKKELLEQMERARHEPVNHSDMVDKMFGFLGTSGGLPGQE
GQAPSGFEDLERGRREMVEEDLDAALPLPDEDEEDLSEYKFAKFAATYFQGTTTHSYTRR
PLKQPLLYHDDEGDQLAALAVWITILRFMGDLPEPKYHTAMSDGSEKIPVMTKIYETLGK
KTYKRELQALQGEGEAQLPEGQKKSSVRHKLVHLTLKKKSKLTEEVTKRLHDGESTVQGN
SMLEDRPTSNLEKLHFIIGNGILRPALRDEIYCQISKQLTHNPSKSSYARGWILVSLCVG
CFAPSEKFVKYLRNFIHGGPPGYAPYCEERLRRTFVNGTRTQPPSWLELQATKSKKPIML
PVTFMDGTTKTLLTDSATTAKELCNALADKISLKDRFGFSLYIALFDKVSSLGSGSDHVM
DAISQCEQYAKEQGAQERNAPWRLFFRKEVFTPWHSPSEDNVATNLIYQQVVRGVKFGEY
RCEKEDDLAELASQQYFVDYGSEMILERLLNLVPTYIPDREITPLKTLEKWAQLAIAAHK
KGIYAQRRTDAQKVKEDVVSYARFKWPLLFSRFYEAYKFSGPSLPKNDVIVAVNWTGVYF
VDEQEQVLLELSFPEIMAVSSSRECRVWLSLGCSDLGCAAPHSGWAGLTPAGPCSPCWSC
RGAKTTAPSFTLATIKGDEYTFTSSNAEDIRDLVVTFLEGLRKRSKYVVALQDNPNPAGE
ESGFLSFAKGDLIILDHDTGEQVMNSGWANGINERTKQRGDFPTDSVYVMPTVTMPPREI
VALVTMTPDQRQDVVRLLQLRTAEPEVRAKPYTLEEFSYDYFRPPPKHTLSRVMVSKARG
KDRLWSHTREPLKQALLKKLLGSEELSQEACLAFIAVLKYMGDYPSKRTRSVNELTDQIF
EGPLKAEPLKDEAYVQILKQLTDNHIRYSEERGWELLWLCTGLFPPSNILLPHVQRFLQS
RKHCPLAIDCLQRLQKALRNGSRKYPPHLVEVEAIQHKTTQIFHKVYFPDDTDEAFEVES
STKAKDFCQNIATRLLLKSSEGFSLFVKIADKVLSVPENDFFFDFVRHLTDWIKKARPIK
DGIVPSLTYQVFFMKKLWTTTVPGKDPMADSIFHYYQELPKYLRGYHKCTREEVLQLGAL
IYRVKFEEDKSYFPSIPKLLRELVPQDLIRQVSPDDWKRSIVAYFNKHAGKSKEEAKLAF
LKLIFKWPTFGSAFFEVKQTTEPNFPEILLIAINKYGVSLIDPKTKDILTTHPFTKISNW
SSGNTYFHITIGNLVRGSKLLCETSLGYKMDDLLTSYISQMLTAMSKQRGSRSGK
Function
Myosins are actin-based motor molecules with ATPase activity. Unconventional myosins serve in intracellular movements. Their highly divergent tails bind to membranous compartments, which are then moved relative to actin filaments. In the retina, plays an important role in the renewal of the outer photoreceptor disks. Plays an important role in the distribution and migration of retinal pigment epithelial (RPE) melanosomes and phagosomes, and in the regulation of opsin transport in retinal photoreceptors. In the inner ear, plays an important role in differentiation, morphogenesis and organization of cochlear hair cell bundles. Involved in hair-cell vesicle trafficking of aminoglycosides, which are known to induce ototoxicity. Motor protein that is a part of the functional network formed by USH1C, USH1G, CDH23 and MYO7A that mediates mechanotransduction in cochlear hair cells. Required for normal hearing.
Tissue Specificity Expressed in the pigment epithelium and the photoreceptor cells of the retina. Also found in kidney, liver, testis, cochlea, lymphocytes. Not expressed in brain.
KEGG Pathway
Motor proteins (hsa04814 )
Reactome Pathway
Sensory processing of sound by inner hair cells of the cochlea (R-HSA-9662360 )
Sensory processing of sound by outer hair cells of the cochlea (R-HSA-9662361 )
The canonical retinoid cycle in rods (twilight vision) (R-HSA-2453902 )

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autosomal dominant nonsyndromic hearing loss 12 DISPBW4Z Definitive Genetic Variation [1]
Autosomal recessive nonsyndromic hearing loss 2 DIS1P51S Definitive Autosomal recessive [2]
Metastatic malignant neoplasm DIS86UK6 Definitive Biomarker [3]
Nonsyndromic genetic hearing loss DISZX61P Definitive Autosomal dominant [4]
Usher syndrome type 1 DISR29E4 Definitive Autosomal recessive [4]
Usher syndrome type 1B DISWTUHR Definitive Autosomal recessive [5]
Auditory neuropathy DISM6GAU Strong Biomarker [6]
Autosomal dominant nonsyndromic hearing loss 11 DISGBZRR Strong Autosomal dominant [7]
Autosomal dominant nonsyndromic hearing loss 13 DISFLETQ Strong Genetic Variation [6]
Autosomal dominant nonsyndromic hearing loss 9 DISD5HDW Strong Biomarker [6]
Bardet biedl syndrome DISTBNZW Strong Genetic Variation [8]
Blindness DISTIM10 Strong Genetic Variation [9]
Deafness DISKCLH4 Strong Genetic Variation [10]
Lung cancer DISCM4YA Strong Biomarker [11]
Lung carcinoma DISTR26C Strong Biomarker [11]
Melanoma DIS1RRCY Strong Biomarker [3]
Usher syndrome DIS9YIS7 Strong Genetic Variation [12]
Usher syndrome type 2D DISHEVUD Strong GermlineCausalMutation [13]
Usher syndrome type 3 DISRAL84 Strong Biomarker [14]
Age-related macular degeneration DIS0XS2C moderate Altered Expression [15]
Ear malformation DISVJGPS moderate Genetic Variation [16]
Retinopathy DISB4B0F moderate Genetic Variation [17]
Autosomal dominant nonsyndromic hearing loss DISYC1G0 Supportive Autosomal dominant [18]
Hearing loss, autosomal recessive DIS8G9R9 Supportive Autosomal recessive [18]
Usher syndrome type 2 DIS3LO3C Supportive Autosomal recessive [13]
Leber congenital amaurosis DISMGH8F Limited Genetic Variation [19]
Retinitis pigmentosa DISCGPY8 Limited CausalMutation [20]
Severe early-childhood-onset retinal dystrophy DISFDRFO Limited Genetic Variation [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Unconventional myosin-VIIa (MYO7A). [22]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Unconventional myosin-VIIa (MYO7A). [24]
Amphotericin B DMTAJQE Approved Amphotericin B increases the expression of Unconventional myosin-VIIa (MYO7A). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Unconventional myosin-VIIa (MYO7A). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Unconventional myosin-VIIa (MYO7A). [28]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Unconventional myosin-VIIa (MYO7A). [23]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Unconventional myosin-VIIa (MYO7A). [27]
------------------------------------------------------------------------------------

References

1 A gene for autosomal dominant nonsyndromic hearing loss (DFNA12) maps to chromosome 11q22-24.Am J Hum Genet. 1997 May;60(5):1168-73.
2 The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet. 1997 Jun;16(2):191-3. doi: 10.1038/ng0697-191.
3 Unconventional myosin VIIA promotes melanoma progression.J Cell Sci. 2018 Feb 22;131(4):jcs209924. doi: 10.1242/jcs.209924.
4 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
5 Flexible and scalable diagnostic filtering of genomic variants using G2P with Ensembl VEP. Nat Commun. 2019 May 30;10(1):2373. doi: 10.1038/s41467-019-10016-3.
6 Hereditary deafness and phenotyping in humans.Br Med Bull. 2002;63:73-94. doi: 10.1093/bmb/63.1.73.
7 Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet. 1997 Nov;17(3):268-9. doi: 10.1038/ng1197-268.
8 The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22-q23.Genomics. 1999 Jul 15;59(2):150-60. doi: 10.1006/geno.1999.5867.
9 Detecting novel mutations and combined Klinefelter syndrome in Usher syndrome cases.Acta Otolaryngol. 2019 Jun;139(6):479-486. doi: 10.1080/00016489.2019.1603397. Epub 2019 Apr 29.
10 Genetics of Usher Syndrome: New Insights From a Meta-analysis.Otol Neurotol. 2019 Jan;40(1):121-129. doi: 10.1097/MAO.0000000000002054.
11 Integrative system genetic analysis reveals mRNA-lncRNA network associated with mouse spontaneous lung cancer susceptibility.Oncotarget. 2019 Jan 8;10(3):339-351. doi: 10.18632/oncotarget.26554. eCollection 2019 Jan 8.
12 Identification of four novel mutations in MYO7A gene and their association with nonsyndromic deafness and Usher Syndrome 1B.Int J Pediatr Otorhinolaryngol. 2019 May;120:166-172. doi: 10.1016/j.ijporl.2019.02.021. Epub 2019 Feb 11.
13 Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2. PLoS One. 2014 May 15;9(5):e97808. doi: 10.1371/journal.pone.0097808. eCollection 2014.
14 Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics.Genetics. 2005 Aug;170(4):1887-96. doi: 10.1534/genetics.105.044222. Epub 2005 Jun 18.
15 Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration.PLoS One. 2013;8(1):e54339. doi: 10.1371/journal.pone.0054339. Epub 2013 Jan 24.
16 Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila.Curr Biol. 2005 May 10;15(9):862-8. doi: 10.1016/j.cub.2005.03.050.
17 Reinforcement of a minor alternative splicing event in MYO7A due to a missense mutation results in a mild form of retinopathy and deafness.Mol Vis. 2010 Sep 30;16:1898-906.
18 Genetic Hearing Loss Overview. 1999 Feb 14 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
19 Assessment of different virus-mediated approaches for retinal gene therapy of Usher 1B.Adv Exp Med Biol. 2014;801:725-31. doi: 10.1007/978-1-4614-3209-8_91.
20 Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy.Sci Rep. 2019 Feb 4;9(1):1219. doi: 10.1038/s41598-018-38007-2.
21 Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors.Gene Ther. 2014 Apr;21(4):450-6. doi: 10.1038/gt.2014.8. Epub 2014 Feb 27.
22 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
23 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
24 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
25 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
26 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
27 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
28 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.