General Information of Drug Off-Target (DOT) (ID: OTEGF2BV)

DOT Name Transmembrane protein 176B (TMEM176B)
Synonyms Protein LR8
Gene Name TMEM176B
Related Disease
Alzheimer disease ( )
Amyloidosis ( )
Carcinoma of liver and intrahepatic biliary tract ( )
Clear cell renal carcinoma ( )
Liver cancer ( )
Neoplasm ( )
Renal cell carcinoma ( )
UniProt ID
T176B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF04103
Sequence
MTQNTVIVNGVAMASRPSQPTHVNVHIHQESALTQLLKAGGSLKKFLFHPGDTVPSTARI
GYEQLALGVTQILLGVVSCVLGVCLSLGPWTVLSASGCAFWAGSVVIAAGAGAIVHEKHP
GKLAGYISSLLTLAGFATAMAAVVLCVNSFIWQTEPFLYIDTVCDRSDPVFPTTGYRWMR
RSQENQWQKEECRAYMQMLRKLFTAIRALFLAVCVLKVIVSLVSLGVGLRNLCGQSSQPL
NEEGSEKRLLGENSVPPSPSREQTSTAIVL
Function May play a role in the process of maturation of dendritic cells. Required for the development of cerebellar granule cells.
Tissue Specificity Expressed in lung and dermal fibroblasts.

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alzheimer disease DISF8S70 Strong Biomarker [1]
Amyloidosis DISHTAI2 Strong Biomarker [1]
Carcinoma of liver and intrahepatic biliary tract DIS8WA0W Strong Genetic Variation [2]
Clear cell renal carcinoma DISBXRFJ Strong Altered Expression [3]
Liver cancer DISDE4BI Strong Genetic Variation [2]
Neoplasm DISZKGEW Strong Biomarker [4]
Renal cell carcinoma DISQZ2X8 Strong Altered Expression [3]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Transmembrane protein 176B (TMEM176B). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transmembrane protein 176B (TMEM176B). [12]
------------------------------------------------------------------------------------
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane protein 176B (TMEM176B). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Transmembrane protein 176B (TMEM176B). [7]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Transmembrane protein 176B (TMEM176B). [8]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Transmembrane protein 176B (TMEM176B). [9]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Transmembrane protein 176B (TMEM176B). [10]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Transmembrane protein 176B (TMEM176B). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Transmembrane protein 176B (TMEM176B). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease.ASN Neuro. 2010 Jul 12;2(3):e00037. doi: 10.1042/AN20100010.
2 Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology.Acta Histochem. 2012 Nov;114(7):705-12. doi: 10.1016/j.acthis.2011.12.006. Epub 2012 Jan 12.
3 Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells.Cancer Sci. 2014 May;105(5):560-7. doi: 10.1111/cas.12394. Epub 2014 Apr 19.
4 Targeting TMEM176B Enhances Antitumor Immunity and Augments the Efficacy of Immune Checkpoint Blockers by Unleashing Inflammasome Activation.Cancer Cell. 2019 May 13;35(5):767-781.e6. doi: 10.1016/j.ccell.2019.04.003.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
10 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
11 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.