General Information of Drug Off-Target (DOT) (ID: OTEMJU68)

DOT Name Platelet factor 4 (PF4)
Synonyms PF-4; C-X-C motif chemokine 4; Iroplact; Oncostatin-A
Gene Name PF4
UniProt ID
PLF4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1DN3; 1F9Q; 1F9R; 1F9S; 1PFM; 1PFN; 1RHP; 4R9W; 4R9Y; 4RAU
Pfam ID
PF00048
Sequence
MSSAAGFCASRPGLLFLGLLLLPLVVAFASAEAEEDGDLQCLCVKTTSQVRPRHITSLEV
IKAGPHCPTAQLIATLKNGRKICLDLQAPLYKKIIKKLLES
Function
Released during platelet aggregation. Neutralizes the anticoagulant effect of heparin because it binds more strongly to heparin than to the chondroitin-4-sulfate chains of the carrier molecule. Chemotactic for neutrophils and monocytes. Inhibits endothelial cell proliferation, the short form is a more potent inhibitor than the longer form.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Chemokine sig.ling pathway (hsa04062 )
Reactome Pathway
Common Pathway of Fibrin Clot Formation (R-HSA-140875 )
Cell surface interactions at the vascular wall (R-HSA-202733 )
Chemokine receptors bind chemokines (R-HSA-380108 )
G alpha (i) signalling events (R-HSA-418594 )
RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function (R-HSA-8936459 )
Platelet degranulation (R-HSA-114608 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Platelet factor 4 (PF4). [1]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Platelet factor 4 (PF4). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Platelet factor 4 (PF4). [3]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Platelet factor 4 (PF4). [4]
Cocaine DMSOX7I Approved Cocaine increases the expression of Platelet factor 4 (PF4). [5]
Sertraline DM0FB1J Approved Sertraline decreases the expression of Platelet factor 4 (PF4). [6]
Fructose DM43AN2 Approved Fructose increases the expression of Platelet factor 4 (PF4). [8]
Paroxetine DM5PVQE Approved Paroxetine decreases the expression of Platelet factor 4 (PF4). [9]
Nortriptyline DM4KDYJ Approved Nortriptyline affects the expression of Platelet factor 4 (PF4). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Platelet factor 4 (PF4). [10]
Verapamil DMA7PEW Phase 2/3 Trial Verapamil decreases the expression of Platelet factor 4 (PF4). [11]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Platelet factor 4 (PF4). [13]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Platelet factor 4 (PF4). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ardeparin DMYRX8B Approved Ardeparin increases the secretion of Platelet factor 4 (PF4). [7]
adenosine diphosphate DMFUHKP Investigative adenosine diphosphate increases the secretion of Platelet factor 4 (PF4). [14]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Platelet factor 4 (PF4). [12]
------------------------------------------------------------------------------------

References

1 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci. 2014 Jun;139(2):328-37. doi: 10.1093/toxsci/kfu053. Epub 2014 Mar 27.
4 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
5 Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart. 2000 Jun;83(6):688-95. doi: 10.1136/heart.83.6.688.
6 Relationship between release of platelet/endothelial biomarkers and plasma levels of sertraline and N-desmethylsertraline in acute coronary syndrome patients receiving SSRI treatment for depression. Am J Psychiatry. 2005 Jun;162(6):1165-70. doi: 10.1176/appi.ajp.162.6.1165.
7 Carotid endarterectomy in patients with heparin-induced platelet activation: comparative efficacy of aspirin and iloprost (ZK36374). J Vasc Surg. 1987 May;5(5):693-701.
8 Non-nutritional sweeteners effects on endothelial vascular function. Toxicol In Vitro. 2020 Feb;62:104694. doi: 10.1016/j.tiv.2019.104694. Epub 2019 Oct 23.
9 Evaluation of platelet activation in depressed patients with ischemic heart disease after paroxetine or nortriptyline treatment. J Clin Psychopharmacol. 2000 Apr;20(2):137-40. doi: 10.1097/00004714-200004000-00004.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 [Unstable stenocardia: indicators of platelet activity and the effect of verapamil]. Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR. 1987;10(2):33-9.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 The role of nanoparticle size in hemocompatibility. Toxicology. 2009 Apr 28;258(2-3):139-47. doi: 10.1016/j.tox.2009.01.015. Epub 2009 Jan 22.