General Information of Drug Off-Target (DOT) (ID: OTEUYEW6)

DOT Name Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1)
Synonyms Neurotrophic tyrosine kinase, receptor-related 1
Gene Name ROR1
Related Disease
Hearing loss, autosomal recessive 108 ( )
Hearing loss, autosomal recessive ( )
Nonsyndromic genetic hearing loss ( )
UniProt ID
ROR1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5Z55; 6BA5; 6BAN; 6TU9; 7TNG
Pfam ID
PF01392 ; PF07679 ; PF00051 ; PF07714
Sequence
MHRPRRRGTRPPLLALLAALLLAARGAAAQETELSVSAELVPTSSWNISSELNKDSYLTL
DEPMNNITTSLGQTAELHCKVSGNPPPTIRWFKNDAPVVQEPRRLSFRSTIYGSRLRIRN
LDTTDTGYFQCVATNGKEVVSSTGVLFVKFGPPPTASPGYSDEYEEDGFCQPYRGIACAR
FIGNRTVYMESLHMQGEIENQITAAFTMIGTSSHLSDKCSQFAIPSLCHYAFPYCDETSS
VPKPRDLCRDECEILENVLCQTEYIFARSNPMILMRLKLPNCEDLPQPESPEAANCIRIG
IPMADPINKNHKCYNSTGVDYRGTVSVTKSGRQCQPWNSQYPHTHTFTALRFPELNGGHS
YCRNPGNQKEAPWCFTLDENFKSDLCDIPACDSKDSKEKNKMEILYILVPSVAIPLAIAL
LFFFICVCRNNQKSSSAPVQRQPKHVRGQNVEMSMLNAYKPKSKAKELPLSAVRFMEELG
ECAFGKIYKGHLYLPGMDHAQLVAIKTLKDYNNPQQWTEFQQEASLMAELHHPNIVCLLG
AVTQEQPVCMLFEYINQGDLHEFLIMRSPHSDVGCSSDEDGTVKSSLDHGDFLHIAIQIA
AGMEYLSSHFFVHKDLAARNILIGEQLHVKISDLGLSREIYSADYYRVQSKSLLPIRWMP
PEAIMYGKFSSDSDIWSFGVVLWEIFSFGLQPYYGFSNQEVIEMVRKRQLLPCSEDCPPR
MYSLMTECWNEIPSRRPRFKDIHVRLRSWEGLSSHTSSTTPSGGNATTQTTSLSASPVSN
LSNPRYPNYMFPSQGITPQGQIAGFIGPPIPQNQRFIPINGYPIPPGYAAFPAAHYQPTG
PPRVIQHCPPPKSRSPSSASGSTSTGHVTSLPSSGSNQEANIPLLPHMSIPNHPGGMGIT
VFGNKSQKPYKIDSKQASLLGDANIHGHTESMISAEL
Function
Has very low kinase activity in vitro and is unlikely to function as a tyrosine kinase in vivo. Receptor for ligand WNT5A which activate downstream NFkB signaling pathway and may result in the inhibition of WNT3A-mediated signaling. In inner ear, crucial for spiral ganglion neurons to innervate auditory hair cells.
Tissue Specificity
Expressed strongly in human heart, lung and kidney, but weakly in the CNS. Isoform Short is strongly expressed in fetal and adult CNS and in a variety of human cancers, including those originating from CNS or PNS neuroectoderm.
KEGG Pathway
Wnt sig.ling pathway (hsa04310 )
Reactome Pathway
WNT5A-dependent internalization of FZD2, FZD5 and ROR2 (R-HSA-5140745 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hearing loss, autosomal recessive 108 DISMSLXN Moderate Autosomal recessive [1]
Hearing loss, autosomal recessive DIS8G9R9 Supportive Autosomal recessive [1]
Nonsyndromic genetic hearing loss DISZX61P Limited Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [9]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the methylation of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [20]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [7]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [8]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [11]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [12]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [14]
Isotretinoin DM4QTBN Approved Isotretinoin increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [15]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [16]
Dasatinib DMJV2EK Approved Dasatinib increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [17]
Melphalan DMOLNHF Approved Melphalan decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [18]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [19]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [21]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Inactive tyrosine-protein kinase transmembrane receptor ROR1 (ROR1). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5993-8. doi: 10.1073/pnas.1522512113. Epub 2016 May 9.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009 Sep 4;284(36):24306-19.
8 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
16 Keratinocyte-derived IL-36gama plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Arch Toxicol. 2019 Aug;93(8):2307-2320.
17 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
18 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
19 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.