General Information of Drug Off-Target (DOT) (ID: OTEV2XGW)

DOT Name AP-2 complex subunit sigma (AP2S1)
Synonyms
Adaptor protein complex AP-2 subunit sigma; Adaptor-related protein complex 2 subunit sigma; Clathrin assembly protein 2 sigma small chain; Clathrin coat assembly protein AP17; Clathrin coat-associated protein AP17; HA2 17 kDa subunit; Plasma membrane adaptor AP-2 17 kDa protein; Sigma2-adaptin
Gene Name AP2S1
Related Disease
Familial hypocalciuric hypercalcemia 3 ( )
Familial primary hyperparathyroidism ( )
Hyperparathyroidism ( )
Hypocalcemia ( )
Hypoparathyroidism ( )
Pancreatitis ( )
Primary hyperparathyroidism ( )
Autism spectrum disorder ( )
Hypercalcaemia ( )
UniProt ID
AP2S1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6URI
Pfam ID
PF01217
Sequence
MIRFILIQNRAGKTRLAKWYMQFDDDEKQKLIEEVHAVVTVRDAKHTNFVEFRNFKIIYR
RYAGLYFCICVDVNDNNLAYLEAIHNFVEVLNEYFHNVCELDLVFNFYKVYTVVDEMFLA
GEIRETSQTKVLKQLLMLQSLE
Function
Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif. May also play a role in extracellular calcium homeostasis.
KEGG Pathway
Endocytosis (hsa04144 )
Sy.ptic vesicle cycle (hsa04721 )
Endocrine and other factor-regulated calcium reabsorption (hsa04961 )
Huntington disease (hsa05016 )
Reactome Pathway
Retrograde neurotrophin signalling (R-HSA-177504 )
Nef Mediated CD8 Down-regulation (R-HSA-182218 )
MHC class II antigen presentation (R-HSA-2132295 )
EPH-ephrin mediated repulsion of cells (R-HSA-3928665 )
Recycling pathway of L1 (R-HSA-437239 )
WNT5A-dependent internalization of FZD4 (R-HSA-5099900 )
WNT5A-dependent internalization of FZD2, FZD5 and ROR2 (R-HSA-5140745 )
Cargo recognition for clathrin-mediated endocytosis (R-HSA-8856825 )
Clathrin-mediated endocytosis (R-HSA-8856828 )
VLDLR internalisation and degradation (R-HSA-8866427 )
LDL clearance (R-HSA-8964038 )
Potential therapeutics for SARS (R-HSA-9679191 )
Nef Mediated CD4 Down-regulation (R-HSA-167590 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Familial hypocalciuric hypercalcemia 3 DISTIR0K Strong Autosomal dominant [1]
Familial primary hyperparathyroidism DIS6NA55 Strong Biomarker [2]
Hyperparathyroidism DIS4FVAT Strong Genetic Variation [3]
Hypocalcemia DISTCK2W Strong Genetic Variation [4]
Hypoparathyroidism DISICS0V Strong Genetic Variation [5]
Pancreatitis DIS0IJEF Strong Genetic Variation [6]
Primary hyperparathyroidism DISB4U1Q Strong Genetic Variation [7]
Autism spectrum disorder DISXK8NV Limited Autosomal dominant [1]
Hypercalcaemia DISKQ2K7 Limited Genetic Variation [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of AP-2 complex subunit sigma (AP2S1). [9]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of AP-2 complex subunit sigma (AP2S1). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of AP-2 complex subunit sigma (AP2S1). [11]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of AP-2 complex subunit sigma (AP2S1). [12]
Selenium DM25CGV Approved Selenium increases the expression of AP-2 complex subunit sigma (AP2S1). [14]
Cocaine DMSOX7I Approved Cocaine decreases the expression of AP-2 complex subunit sigma (AP2S1). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of AP-2 complex subunit sigma (AP2S1). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of AP-2 complex subunit sigma (AP2S1). [17]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of AP-2 complex subunit sigma (AP2S1). [18]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of AP-2 complex subunit sigma (AP2S1). [19]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of AP-2 complex subunit sigma (AP2S1). [20]
AHPN DM8G6O4 Investigative AHPN decreases the expression of AP-2 complex subunit sigma (AP2S1). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of AP-2 complex subunit sigma (AP2S1). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of AP-2 complex subunit sigma (AP2S1). [16]
------------------------------------------------------------------------------------

References

1 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
2 Stepwise CaSR, AP2S1, and GNA11 sequencing in patients with suspected familial hypocalciuric hypercalcemia.Endocrine. 2017 Mar;55(3):741-747. doi: 10.1007/s12020-017-1241-5. Epub 2017 Feb 7.
3 Diseases associated with calcium-sensing receptor.Orphanet J Rare Dis. 2017 Jan 25;12(1):19. doi: 10.1186/s13023-017-0570-z.
4 Mutational analysis of the adaptor protein 2 sigma subunit (AP2S1) gene: search for autosomal dominant hypocalcemia type 3 (ADH3).J Clin Endocrinol Metab. 2014 Jul;99(7):E1300-5. doi: 10.1210/jc.2013-3909. Epub 2014 Apr 7.
5 Analysis of AP2S1, a calcium-sensing receptor regulator, in familial and sporadic isolated hypoparathyroidism.J Clin Endocrinol Metab. 2014 Mar;99(3):E469-73. doi: 10.1210/jc.2013-3136. Epub 2014 Jan 1.
6 Cinacalcet sustainedly prevents pancreatitis in a child with a compound heterozygous SPINK1/AP2S1 mutation.Pancreatology. 2019 Sep;19(6):801-804. doi: 10.1016/j.pan.2019.07.045. Epub 2019 Jul 30.
7 AP2S1 and GNA11 mutations - not a common cause of familial hypocalciuric hypercalcemia.Eur J Endocrinol. 2017 Feb;176(2):177-185. doi: 10.1530/EJE-16-0842. Epub 2016 Nov 15.
8 Cinacalcet Treatment in an Adolescent With Concurrent 22q11.2 Deletion Syndrome and Familial Hypocalciuric Hypercalcemia Type 3 Caused by AP2S1 Mutation.J Clin Endocrinol Metab. 2015 Jul;100(7):2515-8. doi: 10.1210/jc.2015-1518. Epub 2015 May 20.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
11 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
12 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
13 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
14 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
15 Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004 Mar;88(5):1211-9. doi: 10.1046/j.1471-4159.2003.02247.x.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
20 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
21 ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: modulation of intracellular calcium homeostasis. Blood. 2004 Jan 1;103(1):194-207.