General Information of Drug Off-Target (DOT) (ID: OTF3TBTK)

DOT Name Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1)
Synonyms EC 1.2.1.24; Aldehyde dehydrogenase family 5 member A1; NAD(+)-dependent succinic semialdehyde dehydrogenase
Gene Name ALDH5A1
Related Disease
Succinic semialdehyde dehydrogenase deficiency ( )
UniProt ID
SSDH_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2W8N; 2W8O; 2W8P; 2W8Q; 2W8R
EC Number
1.2.1.24
Pfam ID
PF00171
Sequence
MATCIWLRSCGARRLGSTFPGCRLRPRAGGLVPASGPAPGPAQLRCYAGRLAGLSAALLR
TDSFVGGRWLPAAATFPVQDPASGAALGMVADCGVREARAAVRAAYEAFCRWREVSAKER
SSLLRKWYNLMIQNKDDLARIITAESGKPLKEAHGEILYSAFFLEWFSEEARRVYGDIIH
TPAKDRRALVLKQPIGVAAVITPWNFPSAMITRKVGAALAAGCTVVVKPAEDTPFSALAL
AELASQAGIPSGVYNVIPCSRKNAKEVGEAICTDPLVSKISFTGSTTTGKILLHHAANSV
KRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNTGQTCVCSNQFLVQRGIHDAFVKAF
AEAMKKNLRVGNGFEEGTTQGPLINEKAVEKVEKQVNDAVSKGATVVTGGKRHQLGKNFF
EPTLLCNVTQDMLCTHEETFGPLAPVIKFDTEEEAIAIANAADVGLAGYFYSQDPAQIWR
VAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLELKYVCYGGL
Function Catalyzes one step in the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA).
Tissue Specificity Brain, pancreas, heart, liver, skeletal muscle and kidney. Lower in placenta.
KEGG Pathway
Alanine, aspartate and glutamate metabolism (hsa00250 )
Butanoate metabolism (hsa00650 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Degradation of GABA (R-HSA-916853 )
BioCyc Pathway
MetaCyc:HS03550-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Succinic semialdehyde dehydrogenase deficiency DISVYC3M Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Gamma hydroxybutyric acid DMGBKVD Approved Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1) increases the abundance of Gamma hydroxybutyric acid. [19]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [10]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [11]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [12]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [14]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [15]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [17]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Succinate-semialdehyde dehydrogenase, mitochondrial (ALDH5A1). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
12 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
13 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
16 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
17 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
18 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
19 Vigabatrin improves paroxysmal dystonia in succinic semialdehyde dehydrogenase deficiency. Neurology. 2007 Apr 17;68(16):1320-1. doi: 10.1212/01.wnl.0000259537.54082.6d.